Dual spaces, annihilators and subquotients

In the proof of Proposition IV.2.4 on page 98, on lines 13–15 we use a relationship involving dual spaces and subquotients of a vector space. In this document we shall state and prove this relationship.

THE BASIC SETTING. Let V by a vector space over the field \mathbb{F} , suppose we are given vector subspaces $U_2 \subset U_1 \subset v$, and let $\alpha : V \to V/U_2$ denote the quotient projection. As in the proof of Propsition IV.2.4, if W is a vector subspace of V then W^{\dagger} will denote the annihilator of W, which is a vector subspace of the dual space V^* .

Define a linear transformation

$$\varphi: U_2^{\dagger}/U_1^{\dagger} \longrightarrow (U_1/U_2)^{\circ}$$

as follows: Given $f \in U_2^{\dagger}$, let $f' : V/U_2 \to \mathbb{F}$ be the unique linear functional such that $f' \circ \alpha = f$, and set $\varphi(f)$ equal to $f'|(U_1/U_2)$.

CLAIM. The map φ is a vector space isomorphism.

Proof. We shall first prove that φ is 1–1. Suppose that $\varphi(f) = 0$; then the restriction of f' to U_1/U_2 is zero, and therefore the restriction of f to U_1 is zero. But this means that $f \in U_1^{\dagger}$, so that $\varphi(f) = 0$ on $(U_1/U_2)^*$.

Next, we shall prove that φ is onto. Given a linear functional $g: U_1/U_2 \to \mathbb{F}$, one can always find an extension of g to $G: V/U_2 \to \mathbb{F}$, and the composite $G \circ \alpha \in V^*$ clearly belongs to U_2^{\dagger} . By construction, $\varphi(G \circ \alpha) = g$.