The Euler characteristic formula

The objective is to give a relatively brief and self-contained proof of the following result:

THEOREM. Let C_* be a chain complex such that each C_j is finitely generated and free abelian, and assume that $C_j = 0$ if $j < 0$ or $j > n$. Furthermore, assume that each $H_k(C)$ is free abelian (it must be finitely generated by standard results in algebra). Then the ranks of the free abelian groups satisfy the formula

$$
\sum_{k} (-1)^{k} \operatorname{rank}(C_{k}) = \sum_{k} (-1)^{k} \operatorname{rank}(H_{k}(C)) .
$$

The Euler Formula for polyhedra is an immediate consequence of this.

Proof. We shall repeatedly use the following fact, which is proved in first year graduate algebra courses:

(*) If $0 \to A \to B \to C \to 0$ is a short exact sequence of finitely generated free abelian groups, then rank $(B) = \text{rank}(C) + \text{rank}(A)$.

The following notational conventions will simplify our computations:

- (*i*) Set c_k equal to the rank of C_k .
- (*ii*) Set b_k equal to the rank of d_k .
- (*iii*) Set z_k equal to the rank of the kernel of d_k .
- (iv) Set h_k equal to the rank of $H_k(C)$.

It follows immediately that these numbers are defined for all q and are equal to zero if $k < 0$ or $k > n$. The theorem can then be restated in the form

$$
\sum_{k} (-1)^{k} c_{k} = \sum_{k} (-1)^{k} h_{k} .
$$

By the identity (*) mentioned at the beginning of this proof, we have $c_k-z_k=b_k$ and $z_k-b_{k+1}=h_k$, so that

$$
\sum_{k} (-1)^{k} h_{k} = \sum_{k} (-1)^{k} (z_{k} - b_{k+1}) = \sum_{k} (-1)^{k} z_{k} - \sum_{k} (-1)^{k} b_{k+1} =
$$

$$
\sum_{r} (-1)^{r} z_{r} + \sum_{r} (-1)^{r} b_{r} = \sum_{k} (-1)^{k} c_{k}
$$

proving that the two sums in the theorem are equal.