
Note on the Hilbert Cube

The Hilbert cube HQ is defined to be a cartesian product of ℵ0 copies of the unit interval
[0, 1]. This space was also mentioned in Appendix C to gentopnotes2014.pdf. By the Tychonoff
Theorem this space is compact, and it is also metrizable because a countably infinite product of
metrizable spaces is always metrizable. In Appendix C we noted that HQ is homogeneous — in
other words, given two points in this space there is a homeomorphism sending the first point to the
second — and this contrasts sharply with the fact that all finite products [0, 1]n are not homogeneous
(for example, a homeomorphism of [0, 1]n to itself cannot send the point whose coordinates are all
zero to the point whose coordinates are all equal to 1

2
; see the previously cited Appendix C for

more on this). The Hilbert Cube has been studied extensively, both for its own sake and for its role
in solving several problems of independent interest (for example, see the article by T. Chapman in
the bibliography of gentopnotes2014.pdf), but we shall not try to elaborate on any of this here.
Our objective in this document is merely to prove the following property of the Hilbert Cube.

PROPOSITION. There is no nonnegative integer n such that the Hilbert Cube HQ is a top-

logical n-manifold.

Intuitively this may seem obvious, for one thinks informally of topological n-manifolds as finite
dimensional objects, and HQ seems like it should be an infinite dimensional object. One obvious
weakness of this intuition is that we have not defined a suitable notion of dimension for topological
spaces. However, it turns out that one can define a reasonably well-behaved dimension, at least for
topological spaces that are themselves reasonably well-behaved. There are a couple of approaches
to doing this, and for most purposes the definition of choice in modern mathematics is the one
which appears in Section 50 of Munkres (see page 305) and is generally known as the Lebesgue

covering dimension to distinguish it from other approaches to defining topological dimensions for
spaces. In fact, everything we need to know about topological dimension theory for the proof of
the proposition can be found either in the text of Section 50 or in its exercises.

As in the previously cited Appendix C, we shall need to use a theorem from 205B called
Invariance of Domain: If U is open in R

n and f : U → R
n is continuous and 1− 1, then f is an

open mapping. — This result is Theorem VII.3.5 on pages 94–95 of the following notes for 205B:

http://math.ucr.edu/∼res/math205B-2012/algtop-notes.pdf

And here is the specific input from Section 50 of Munkres that we shall need.

CLAIM. If X is a compact topological n-manifold, then the dimension of X (in the sense of
Munkres) is less than or equal to n.

Proof of claim. By compactness and the definition of a topological manifold we know that X is
a union of finitely many closed subsets Bk such that each is homeomorphic to the closed disk Dn.
Theorem 50.6 of Munkres (see pp. 314–315) implies that dimBk ≤ n for all k. We can now apply
Corollary 50.3 (see Munkres, p. 308) to conclude that dimX ≤ n.

Proof of the proposition. Some notation will be convenient: For each nonnegative integer n

let HQn be the subspace of all points in HQ whose ith coordinate vanishes for each i ≥ n (hence
HQn is homeomorphic to [0, 1]n).

Suppose that HQ is a topological n-manifold for some n ≥ 0. By Corollary 50.8 on page
314 of Munkres, it then follows that HQ must be homeomorphic to a subset of R

2n+1. Let
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f : HQ → R
2n+1 be a homeomorphism onto a compact subset. Also, let h : [0, 1]2n+2 → HQ2n+2

be the homeomorphism mentioned earlier, let W denote the image of (0, 1)2n+2 under h, and let
W0 denote the image of (0, 1)2n+1 × { 1

2
}. Then Invariance of Domain implies that f(W0) is open

in R
2n+1. On the other hand, W0 is also nowhere dense in HQ, and hence f [W0]) must also be

nowhere dense in R
2n+1. In particular, the latter implies that f(W0) cannot be an open subset of

R
2n+1, yielding a contradiction. The latter means that the assumption that HQ is a topological

n-manifold must be false. It follows that HQ is not a topological n-manifold for any choice of n.

FINAL REMARKS. In fact, a second countable topological n-manifold is n-dimensional in the sense
of Munkres (the compact case of this result is noted without proof in Munkres). This dimension
identity follows from the results in Section III.5 of the following notes for an algebraic topology
class which is a sequel to 205B:

http://math.ucr.edu/∼res/math246A-2012/advancednotes2012.pdf

With this dimension identity at our disposal, we can prove the infinite dimensionality of HQ as
follows: Suppose that dimHQ = m for some positive integer m. By Theorem 50.1 of Munkres
(see p. 306) we know that dimHQ ≥ dimHQ

n
for all n. If we take m = n + 1 we obtain a

contradiction, and this means that the Hilbert Cube must be an infinite dimensional topological
space.

Further references for dimension theory

W. Hurewicz and H. Wallman. Dimension Theory (Revised Edition, Princeton
Mathematical Series, Vol. 4). Princeton University Press, Princeton, 1996.

K. Nagami. Dimension Theory (with an appendix by Y. Kodama, Pure and Applied
Mathematics Series, Vol. 37). Academic Press, New York , 1970.

J. Nagata. Modern Dimension Theory (Second Edition, revised and extended; Sigma
Series in Pure Mathematics, Vol. 2). Heldermann-Verlag, Berlin, 1983.

http://en.wikipedia.org/wiki/Lebesgue covering dimension

http://en.wikipedia.org/wiki/Dimension

http://en.wikipedia.org/wiki/Inductive dimension

FRACTAL DIMENSIONS. There are several notions of fractal dimension for subsets of R
n which

depend on the way in which an object is embedded in R
n and not just the subset’s underlying

topological structure; for example, various standard types of nonrectifiable curves in the plane
have fractal dimensions which are numbers strictly between 1 and 2. Such objects are interesting
for a variety of reasons , but they are mostly beyond the scope of this course (however, see the
comments below), so we shall simply give two online references here along with links to material
from an undergraduate topology course:

http://en.wikipedia.org/wiki/Fractal dimension

http://www.warwick.ac.uk/∼masdbl/dimension-total.pdf

Some topological concepts which are central to the study of fractals are considered in Exercise 6
on pages 1–2 of the online document

http://math.ucr.edu/∼res/math145A-2014/exercises02w14.pdf

and the solution to this exercise is written out on page 6 of the following companion document:

http://math.ucr.edu/∼res/math145A-2014/solutions02w14.pdf
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