Note on the Hilbert Cube — II

This document may be viewed as a footnote to

http://math.ucr.edu/~res/math205A-2014/hilbert-cube.pdf

and its purpose is to prove the following result:

PROPOSITION. Define the Hilbert cube \mathbf{HQ} to be a cartesian product of \aleph_0 copies of the unit interval [0,1]. Then there is no positive integer n such that \mathbf{HQ} is homeomorphic to a subset of \mathbb{R}^n .

Proof. Suppose that $X \subset \mathbb{R}^n$ is homeomorphic to \mathbf{HQ} for some n, and consider the subset $B_{n+1} \subset \mathbf{HQ}$ consisting of all points (x_1, \cdots) such that $x_k = 0$ if k > n+1. If $h : \mathbf{HQ} \to \mathbb{R}^n$ is given by the homeomorphism $\mathbf{HQ} \cong X$, let f be the restriction of h to the set V of points (x_1, \cdots) such that $x_k = 0$ if k > n+1 and $0 < x_k < 1$ if $k \le n+1$. Then f determines a continuous 1–1 map from V, which is homeomorphic to an open subset in \mathbb{R}^{n+1} , into \mathbb{R}^n , and if $j : \mathbb{R}^n \to \mathbb{R}^{n+1}$ sends v to (v, 0) then f also determines a continuous 1–1 map $j \circ f$ from V into \mathbb{R}^{n+1} . By Invariance of Domain the mapping $j \circ f$ is open; however, by construction the image of $j \circ f$ is **NOT** open in \mathbb{R}^{n+1} . The source of the contradiction was our assumption about the existence of a continuous 1–1 mapping from \mathbf{HQ} to \mathbb{R}^n , and therefore no such mapping can exist.

Note that if ℓ_2 is the infinite-dimensional Hilbert space consisting of all real valued sequences (x_1, \dots) such that

$$\sum_{i=1}^{\infty} x_i^2 < \infty$$

then there is a 1–1 continuous mapping from HQ to ℓ_2 sending $(x_1, \dots) \in HQ$ to

$$(x_1, \cdots, x_k/k, \cdots) \in \ell_2$$

and since **HQ** is compact (see the file cited above) it follows that this map defines a homeomorphism from **HQ** onto its image.