Complements of finite sets in \mathbb{R}^n

We shall begin by stating the two main results.

THEOREM 1. If X is a finite set with $k \ge 1$ elements and $n \ge 3$. then $\mathbb{R}^n - X$ is simply connected.

THEOREM 2. Let $n \ge 2$, let $S \subset \mathbb{R}^n$ consist of exactly p points, and let $T \subset \mathbb{R}^n$ consist of exactly q points. If $p \ne q$, then $\mathbb{R}^n - S$ and $\mathbb{R}^n - T$ are not homeomorphic.

The first result will be proved using the Seifert-van Kampen Theorem. On the other hand, we shall prove Theorem 2 using techniques from 205B, most notably homology theory, referring to the file of notes for that course

http://math.ucr.edu/~res/math205B-2012/algtop-notes.pdf

freely and whenever it is necessary.

Proof of Theorem 1. If X contains only one point, then the space $\mathbb{R}^n - X$ is homeomorphic to $S^{n-1} \times (0, \infty)$, and therefore the simple connectivity of $\mathbb{R}^n - X$ follows from the simple connectivity of S^{n-1} .

The inductive step. Suppose that the result is true for $\mathbb{R}^n - Y$ if Y contains strictly less than $k \geq 2$ points, and suppose that X contains exactly k points. For each j such that $1 \leq j \leq n$ let M_j be the largest j^{th} coordinate among all the points of X. Since there cannnot be two points x and y such that $x_j = M_j = y_j$ for all j, we can find a pair of points u and v and some j(0) such that $u_{j(0)} < v_{j(0)}$. Furthermore, since there are only finitely many possibilities for the value of this coordinate for points in the finite set X, we can choose u so that it has the largest $j(0)^{\text{th}}$ coordinate among all points whose $j(0)^{\text{th}}$ coordinate is strictly less than $v_{j(0)}$.

Choose $c_1, c_2 \in \mathbb{R}$ such that $u_{j(0)} < c_1 < c_2 < v_{j(0)}$, and let U_2 and U_1 be the sets of points in \mathbb{R}^n such that $x_{j(0)} < c_2$ and $x_{j(0)} > c_1$ respectively. Then both $U_2 \cap X$ and $U_1 \cap X$ are nonempty but $U_1 \cap U_2 \cap X$ is empty; let $p_1, p_2 > 0$ be such that $|U_i \cap X| = p_i$. Consider the decomposition $\mathbb{R}^n - X = V_1 \cup V_2$, where $V_i = U_i - (U_i \cap X)$ is arcwise connected and $V_1 \cap V_2 = U_1 \cap V_2$. Since each of the sets U_1, U_2 and $U_1 \cap U_2$ is homeomorphic to \mathbb{R}^n (for example, the intersection is homeomorphic to $(c_1, c_2) \times \mathbb{R}^{n-1}$ and the latter is homeomorphic to \mathbb{R}^n) we have can apply the Seifert-van Kampen Theorem to conclude that $\pi_1(\mathbb{R}^n - X)$ is isomorphic to a free product of $\pi_1(\mathbb{R}^n - Y_1)$ and $\pi_1(\mathbb{R}^n - Y_2)$ where Y_i has p_i elements for i = 1, 2. By induction the fundamental groups of the spaces $\mathbb{R}^n - Y_i$ are trivial, and therefore the fundamental group of $\mathbb{R}^n - X$ is also trivial.

Proof of Theorem 2. Since homology groups of homeomorphic spaces are isomorphis, it will suffice to prove the following assertion:

If $n \geq 2$ and $X \subset \mathbb{R}^n$ consists of k points, then the singular homology groups of $\mathbb{R}^n - X$ are given by $H_j(\mathbb{R}^n - X) \cong \mathbb{Z}$ if k = 0, $H_j(\mathbb{R}^n - X) \cong \mathbb{Z}^k$ if k = n - 1, and $H_j(\mathbb{R}^n - X) \cong 0$ otherwise.

It follows that if X' has k' points and $k \neq k'$, then the complements of X and X' are not isomorphic so these spaces cannot even be homotopy equivalent.

To prove the assertion, for each $x \in X$ let U_x be the open neighborhood of radius r centered at x; choose r to be smaller than half the minimum distance between points of X (the minimum exists by the finiteness of X), and let $U = \bigcup_x U_x$, so that $\mathbb{R}^n = U \cup (\mathbb{R}^n - X)$) and $U \cap X = \bigcup_x U_x - \{x\}$.

Then by excision, the splitting of the homology of X into the homology of its arc componenents, and Theorem VII.1.7 in algtop-notes.pdf we know that

$$H_j(\mathbb{R}^n, \mathbb{R}^n - X) \cong H_j(U, U - X) \cong H_j(\cup_x U_x, \cup_x U_x - \{x\}) \cong \bigoplus_x H_j(U_x, U_x - \{x\}) \cong \mathbb{Z}^k \text{ or } 0$$

where the group is zero unless j = n - 1. We can now recover the homology groups $\mathbb{R}^n - X$ from the long exact homology sequence for $(\mathbb{R}^n, \mathbb{R}^n - X)$ and the fact that $H_j(\mathbb{R}^n)$ is \mathbb{Z} if j = 0 and zero otherwise.

Finally, we note that the argument proving Theorem 1 can also be used to prove the following result:

PROPOSITION 3. If X is a finite set with $k \ge 1$ elements, then the fundamental group of $\mathbb{R}^2 - X$ is a free group on k generators.

A straightforward modification of the proof of Theorem 1 yields this result; the details are left to the reader as an exercise. \blacksquare