
Real and complex projective spaces – 1  
 

Generations of mathematicians are growing up who are on the whole splendidly 
trained, but suddenly find that, after all, they do need to know what a projective 
plane is.   
 

I. Kaplansky,  Linear Algebra and Geometry: A Second Course (Dover, New 
York, 2003), p. vii. 

 

Although many books on algebraic topology define and use projective spaces as examples to 
illustrate the basic constructions in the subject, usually the reasons for interest in such spaces 
are discussed to a very limited extent and their rich geometric structure receives little if any 
attention.  This is certainly understandable because the time and space devoted to background 
material and other subjects must be limited.  However, at certain points a little additional 
information on the underlying geometry of such spaces can be helpful for motivating some of 
the constructions in algebraic topology and making them easier to understand, and this 
document is an attempt to fill in some basic geometrical properties of projective spaces. 
 
The obvious first question is how and why mathematicians started working with projective 
spaces, and the answer goes back to the theory of perspective drawing which was developed 
mainly during the 14th and 15th centuries.  Among other things, perspective geometry provides a 
theoretical explanation of a basic empirical fact about vision; namely, when we see parallel lines 
it generally looks as if they meet at some point very far away on the horizon.  This suggest the 
potential usefulness of thinking that parallel lines meet in some point at infinity. 

 

 
 

(Sources: http://en.wikipedia.org/wiki/Projective_space 
http://en.wikipedia.org/wiki/Complex_projective_space) 

 

One also expects that different families of parallel lines will meet at different points at infinity 
depending upon their directions.  One can do this in a purely formal manner by adding one point 
at infinity to each line in a plane such that two lines have the same point at infinity if and only if 



the lines are parallel, and as in the citation below such a notational convention is sometimes 
very useful.     
 

Extending the space  ...  [is often a] fruitful method for extracting understandable 
results from the bewildering chaos of special cases: projective geometry and n – 
dimensional geometry paved the way for the modern concepts [upon which 
algebraic geometry is based].   
 

J. Dieudonné, The historical development of algebraic geometry. American 
Mathematical Monthly 88 (1972), 827 – 866. 

 
Given the importance of coordinates studying geometrical problems, it is natural to ask if one 
can find a reasonable extension of ordinary (so – called) Cartesian coordinates to points at 
infinity.  The following description of the standard way of doing so is taken from the article  
http://en.wikipedia.org/wiki/Real_projective_plane; there are a few editorial changes to clarify 
possible misprints and similar issues. 

 

Homogeneous coordinates.   The points in the [projective] plane can be represented by 
homogeneous coordinates.  A point has homogeneous coordinates [x : y : z], where the 
coordinates [x : y : z] and [tx : ty : tz] are considered to represent the same point, for all 
nonzero values of t. The points with coordinates [x : y : 1] are the usual real plane, called 
the finite part of the projective plane, and points with coordinates [x : y : 0], called points at 
infinity or ideal points, constitute a line called the line at infinity. (The homogeneous 
coordinates [0 : 0 : 0] do not represent any point.) 
 

The lines in the plane can also be represented by homogeneous coordinates. A projective 
line corresponding to an ordinary line ax + by + c = 0 in R

2
 has homogeneous coordinates 

(a : b : c). Thus, these coordinates have the equivalence relation (a : b : c) = (da : db : dc) 
for all nonzero values of d. Hence a different equation of the same line dax + dby + dc = 0 
gives the same homogeneous coordinates. A point [x : y : z] lies on a line (a : b : c) if 
ax + by + c = 0. Therefore, lines with coordinates (a : b : c) where a, b are not both 0 
correspond to the lines in the usual real plane, because they contain points that are not at 
infinity. The projective line with coordinates (0 : 0 : 1) is the line at infinity, since the only 
points on it are those with z = 0. 

 
Higher dimensional projective spaces can be defined similarly; in n – dimensional projective 
geometry there are sets of (n+1) homogeneous coordinates, and as before two sets of 
homogeneous coordinates define the same point if and only if one set is a nonzero multiple of 
the other.  In another direction, if one generalizes ordinary coordinate space to the standard n – 
dimensional coordinate vector space over an arbitrary field F, then the associated affine n – 
space can be extended to a projective n – space over F by a formally identical construction.   
In this course we shall be particularly interested in the case where this new field F is the 
complex numbers.   One motivation for working with complex projective spaces is that they 
provide an extremely convenient and powerful setting for studying questions about solutions to 
systems of algebraic equations in several variables (the starting point of algebraic geometry); 
the previously cited quote from Dieudonné’s paper reflects this fact. 
 

It is often useful to know something about the symmetry and incidence structures of the 
projective space FPn.   We shall start with the latter.  Actually, we shall start with the symmetry 
and incidence structures on coordinate affine n – space Fn in order to motivate everything.   In 

ordinary  2 –  and  3 – dimensional  Euclidean/Cartesian geometry,  lines and planes are 
respectively given as translates (in group – theoretic language, the cosets) of 1 –  and  2 – 
dimensional vector subspaces, and in fact one can extend this definition to Fn where n is an 
arbitrary field (furthermore, everything can be done over a division ring in which one drops the 
commutativity assumption on multiplication).  Similarly, we can define the k – planes in Fn to be 
the translates of the k – dimensional vector subspaces.  One can then prove the following 
result: 



 
THEOREM 1.   Suppose that P  =  y + V is a  k – plane in Fn, and let W be the vector subspace 
of  Fn+1  =  Fn x F spanned by P x {1}.   Then the following hold: 
 

 (1) W  is a (k+1) – dimensional vector subspace of Fn+1. 
 

(2) If H(W) is the set of all points in FPn represented by points whose homogeneous 

coordinates lie in W, then P = H(W) ∩∩∩∩  Fn, where  Fn  is viewed as the ordinary 
points  of  FPn.�    

 

Conversely, if W is a (k+1) – dimensional vector subspace of  Fn+1 = Fn x F whose intersection 

with Fn × {1} is nonempty,  then P  =  H(W) ∩∩∩∩  Fn is either a point or a k – plane. 
 
This theorem indicates that one should define  k – planes in FPn  to be sets of the form H(W), 
where  W is a (k+1) – dimensional vector subspace of  Fn+1. 
 

We then have the following symmetry result. 
 

THEOREM 2.   Suppose that  F is the real or complex numbers, and suppose that P and Q are 
k – planes in FPn.  Then there is a homeomorphism h from FPn  to itself which sends P to Q.   
 

SKETCH OF THE PROOF:   Let W and V be the (k+1) – dimensional vector subspaces of Fn+1 
associated to P and Q respectively, and let T be an invertible F – linear transformation on Fn+1 

sending  W to V.  One can then check that T passes to a self – homeomorphism on the quotient 
space FPn  and it sends P to Q.� 
 
This result gives us all we need for the present course, but it is definitely just the beginning of 
the geometrical study of projective spaces.  Although Cayley’s often repeated 19th century 
statement, “Projective geometry is all geometry,” is no longer broad enough to be accurate, 
the role of projective spaces in geometry and topology is, and for many reasons is certain to 
remain, fundamental to both subjects.  Here are some references for further information. 

    

http://math.ucr.edu/~res/progeom/ 
 

The files in this directory give most of the basic results in the subject up to and including 
theorems on quadric hypersurfaces, and they also discuss the topological classification of the 
latter.  The files also contain extensive references for still further information. 

 
http://math.ucr.edu/~res/math133/geometrynotes4a.pdf 
http://math.ucr.edu/~res/math133/geometrynotes4b.pdf 

 http://math.ucr.edu/~res/math153/history08.pdf  (see pp. 4 – 7) 
 

These files discuss the role of perspective theory in the development of projective geometry and 
contain material not in the previously cited directory.  The cited passage in the third document 
contains some additional historical remarks. 

 
http://isaacsolomonmath.wordpress.com/2011/12/25/real-complex-projective-space-part-1/ 
http://isaacsolomonmath.wordpress.com/2011/12/26/real-complex-projective-space-part-2/ 

 

These links provide more detailed information on the topology of complex projective spaces. 

   
http://math.ucr.edu/~res/math205A/gentopexercises2008.pdf 

 

Exercises V.1.3 – 4 on pages 12 – 13 of this file are about the topological structure of the real 
projective plane, and likewise for  Exercise V.2.3 on page 13.  
  


