FUNDAMENTAL GROUPS OF COMPLEX PROJECTIVE SPACES

A standard result in many graduate topology classes describes the fundamental groups of the real projective spaces \mathbb{RP}^n : If n = 1 the fundamental group is \mathbb{Z} , while if $n \ge 2$ the fundamental group is \mathbb{Z}_2 . There is also a very simple description for the fundamental group of \mathbb{CP}^n :

Theorem 1. For all $n \ge 1$ the fundamental group of \mathbb{CP}^n is trivial.

A similar result holds for quaternionic projective spaces. The proof for the latter is similar to the complex case, but we shall pass on giving details here. Our proof of Theorem 1 is essentially the one which appears in Section 3.4 of the following book:

E. L. Lima. Fundamental Groups and Covering Spaces (Translated by J. Gomes). A K Peters, Natick, MA, 2003.

We shall use the notation and results from projspaces1a.pdf as needed. Note that the spaces \mathbb{FP}^n are arcwise connected because they are quotient spaces of the arcwise connected spaces $\mathbb{F}^{n+1} - \{\mathbf{0}\}$.

Local triviality and path lifting

We shall begin by introducing an important generalization of a covering space projection.

Definition. A continuous map $q: E \to B$ of topological spaces is said to be *locally trivial* if for each point $x \in B$ there is an open neighborhood U of x and a homeomorphism $\varphi: U \times F \to q^{-1}[U]$ such that $q \circ \varphi$ is the projection mapping from $U \times F$ to U.

This is similar to one characterization of a smooth submersion of smooth manifolds, but one difference is the stipulation that the entire inverse image looks like a product; for a smooth submersion, one only knows that part of the inverse image looks like a product (however, if a smooth submersion is a **proper mapping**, for which inverse images of compact subsets are compact, a result of C. Ehresmann shows that the map is also locally trivial). A homeomorphism with the properties of φ is called a *local trivialization* of q.

A continuous mapping q satisfying the conditions in the definition is also said to be a topological fiber bundle projection. Two consequences of the definition are that q is a surjective open mapping (hence is a quotient map).

The key steps in the proof of Theorem 1 are given by the next two results:

PROPOSITION 2. (Weak Path Lifting Property) Let $q: E \to B$ be a locally trivial continuous mapping. If $h: [0,1] \to B$ is a continuous path and $y \in E$ satisfies q(y) = h(0), then there is a continuous lifting of h to a continuous path $h': [0,1] \to E$ such that h'(0) = y and $q \circ h' = h$.

In general one cannot expect the lifted path h' to be unique. For example, if $q: B \times F \to B$ is coordinate projection and F is an arcwise connected space with more than one point, then h' can be any mapping h'(x,t) = (h(x,t), g(t)), where $g: [0,1] \to F$ is chosen so that y = (x,a) and g(0) = a. Clearly there is more than one choice for g, and therefore there is more than one choice for h'.

Proof. (*Sketch*) The argument closely resembles the proof for the existence part of the Path Lifting Property for covering space projections. As in that proof, one can find a finite collection of open subsets $U_j \subset B$, where $1 \leq j \leq m$, such that there are local trivializations of the maps $U_j \times F \cong q^{-1}[U_j] \to U_j$ and h maps each subinterval $\left[\frac{j-1}{m}, \frac{j}{m}\right]$ into U_i . There is no problem constructing a lifting over the first interval starting at the point y, so by induction we can assume

that we have a lifting over the interval $\begin{bmatrix} 0, \frac{j-1}{m} \end{bmatrix}$. To complete the inductive step, it is only necessary to construct a continuous lifting of the curve $\begin{bmatrix} \frac{j-1}{m}, \frac{j}{m} \end{bmatrix}$ starting at $h'(\frac{j-1}{m})$. As in the case j = 1 we can find a lifting using local triviality. Ultimately we obtain the desired continuous lifting h'.

PROPOSITION 3. For each $n \ge 1$, the quotient mapping $\pi : \mathbb{C}^{n+1} - \{\mathbf{0}\} \to \mathbb{CP}^n$ is locally trivial.

Proof. We need to construct an open covering \mathcal{V} of \mathbb{CP}^n such that for each open subset $V_k \in \mathcal{V}$ the open subset $\pi^{-1}[V_k]$ is homeomorphic to $V_k \times (\mathbb{C} - \{0\})$ such that π corresponds to projection onto the first factor. For each k such that $1 \leq k \leq n+1$ take V_k be the set of all points in \mathbb{CP}^n represented by homogeneous coordinates (z_1, \cdots, z_{n+1}) such that $z_k \neq 0$; these sets form an open covering because every element of $\mathbb{C}^{n+1} - \{\mathbf{0}\}$ has at least one nonzero coordinate. Note that if one set of homogeneous coordinates for a point has a nonzero k^{th} coordinate, then so does every other set.

If k = n + 1 then V_k is the image of the mapping $j : \mathbb{C}^n \to \mathbb{CP}^n$ appearing in projspaces1a.pdf; by construction this map sends (z_1, \dots, z_n) to $(z_1, \dots, z_n, 1)$. Furthermore, if $\Phi : \mathbb{C}^n \times (\mathbb{C} - \{0\}) \to \mathbb{C}^{n+1} - \{0\}$ sends (z, t) to (tz, t), then Φ defines a homeomorphism onto the open subset $\pi^{-1}[V_{n+1}]$ such that $\pi \circ \Phi(z, t) = j(z)$. This means that the open set V_{n+1} satisfies the condition in the definition of local triviality.

To complete the proof, we need to show that each of the remaining open subsets V_k (where $k \leq n$) also satisfies the condition in the definition of local triviality. One quick way of doing this is to consider the invertible $(n+1) \times (n+1)$ matrices A_k obtained by interchanging columns number k and n+1 in the $(n+1) \times (n+1)$ identity matrix. Let $L(A_k)$ be the induced homeomorphism of $\mathbb{C}^{n+1} - \{\mathbf{0}\}$ as in Theorem 5 of projspaces1a.pdf, and let T_k be the associated projective collineation of \mathbb{CP}^n . Then as in the proof of the cited theorem we have $\pi \circ L(A_k) = T_k \circ \pi$. By construction T_k maps V_k to V_{n+1} , and $L(A_k)$ maps $\pi^{-1}[V_k]$ to $\pi^{-1}[V_{n+1}]$, and therefore there is a homeomorphism from $\mathbb{C}^n \times (\mathbb{C} - \{0\})$ to $\pi^{-1}[V_k]$ such that π restricted to the latter corresponds to projection onto the \mathbb{C}^n coordinate. Since the sets V_k form an open covering of \mathbb{CP}^n , it follows that π is locally trivial.

Proof of Theorem 1

Let $u \in \pi_1(\mathbb{CP}^n, p_0)$, and let $h : [0, 1] \to \mathbb{CP}^n$ be a closed curve representing u. By the preceding two results there is a continuous lifting $h' : [0, 1] \to \mathbb{C}^{n+1} - \{\mathbf{0}\}$ such that h'(0) is a predetermined point which projects to p_0 . Since h' is a lifting of h and the latter is a closed curve, it follows that h'(1) also projects to p(0). Now the inverse image of $\{p_0\}$ in $\mathbb{C}^{n+1} - \{\mathbf{0}\}$ is homeomorphic to the arcwise connected space $\mathbb{C} - \{0\}$, so there is a continuous curve f joining h'(1) to h'(0). Consider the concatenation h' + f of these two curves. Since $\mathbb{C}^{n+1} - \{\mathbf{0}\} \cong S^{2n+1} \times \mathbb{R}$ is simply connected, it follows that h' + f represents the trivial element of $\pi_1(\mathbb{CP}^n, p_0)$. Since h and h + (constant) represent the same element and h represents the original class u, it follows that u must be trivial. The class u was chosen arbitrarily, and therefore it follows that the fundamental group of \mathbb{CP}^n must be trivial.