Complements of closed line segments in the plane

We would like to prove that the complement of a closed line segment in the coordinate plane \mathbb{R}^2 is homeomorphic to the complement of a point. It will suffice to define a continuous mapping F from the square $[0, 2] \times [0, 2]$ to itself is the identity on the boundary, preserves the second coordinate, is onto, and finally is 1 - 1 except on the segment $[0, 1] \times \{1\}$, which is mapped to the point (0, 1). We can then extend F to all of \mathbb{R}^2 by taking the identity map off the square, and the restriction of the resulting map will define a homeomorphism G from $\mathbb{R}^2 - [0, 1] \times \{1\}$ to $\mathbb{R}^2 - \{(0,1)\}$. The assertion that map G is a homeomorphism will follow if we can show that G is a closed mapping, and this can be done as follows: Suppose that A is a closed subset of $\mathbb{R}^2 - [0, 1] \times \{1\}$. Then $\mathbb{B} = \mathbb{A} \cup [0, 1] \times \{1\}$ is a closed subset of \mathbb{R}^2 (Why?). We claim that F[B] is closed in \mathbb{R}^2 ; if so, then the elementary relationship G[A] = F[B] - {(0,1)} implies that G[A] is closed in $\mathbb{R}^2 - \{(0,1)\}$. To complete the argument, we shall show that F is a closed mapping. Its restriction to the compact set $[0, 2] \times [0, 2]$ is closed and it is the identity (hence closed) on the closed set $\mathbb{R}^2 - (0, 2) \times (0, 2)$; since these two sets form a finite closed covering of \mathbb{R}^2 , it follows that F is a closed mapping as required.

The drawing below illustrates how **F** can be constructed. In this picture, the square is cut into four smaller squares of side **1**, and the colors indicate how each of the smaller squares is mapped. On each horizontal segment of the form $[0, 2] \times \{t\}$, the restriction of the mapping to the sub-segments $[0,1] \times \{t\}$ and $[1,2] \times \{t\}$ will be linear.

In this drawing, the smaller squares on the left hand side are $[0,1] \times [0,1]$ (*red*), $[1,2] \times [0,1]$ (*yellow*), $[0,1] \times [1,2]$ (*dark blue*) and $[1,2] \times [1,2]$ (*light blue*).

In order to make this mathematically rigorous, we need to give explicit formulas for the value of **F** on each of the four pieces.

On the square $[0, 1] \times [0, 1]$, we have F(s,t) = (s(1 - t), t). On the square $[1, 2] \times [0, 1]$, we have F(s,t) = (s + st - 2t, t). On the square $[0, 1] \times [1, 2]$, we have F(s,t) = (s(t - 1), t). On the square $[1, 2] \times [1, 2]$, we have F(s,t) = (2t + 3s - st - 4, t).

It is also necessary to check that the definitions agree on the overlapping pieces of the four squares; however, this is just a sequence of routine algebraic computations. Note that there are \underline{six} cases to be checked, corresponding to the six combinations of two squares from the original set of four.