
Axiomatic equivalence of homology theories

This is a consolidation of material from several places in the course notes.

The isomorphism between ordered and unordered simplicial chains can be reformulated in
an abstract setting that will be needed later. We begin by defining a category SCPairs whose
objects are pairs of simplicial complexes (K,K0) and whose morphisms are given by subcomplex
inclusions (L,L0) ⊂ (K,K0); in other words, L0 is a subcomplex of both L and K0 while L is also
a subcomplex of K. A homology theory on this category is a covariant functor h∗ valued in some
category of modules together with a natural transformation

∂(K,L) : h∗(K,L) −→ h∗−1(L)

such that

(a) one has long exact homology sequences,

(b) if K is a simplex and v is a vertex of K then h∗({v}) → h∗(K) is an isomorphism,

(c) if K is 0-dimensional with vertices vj then the associated map from ⊕j h∗({vj}) to h∗(K)
is an isomorphism,

(d) if K is obtained from M by adding a single simplex S, then h∗(S, ∂S) → h∗(M,K) is an
isomorphism,

(e) if K is complex consisting only of a single vertex then h0(K) is the underlying ring R and
hj(K) = 0 if j 6= 0.

A natural transformation from one such theory (h∗, ∂) to another (h′

∗
, ∂′) is a natural transformation

of θ of functors that is compatible with the mappings ∂ and ∂ ′; specifically, we want

θ(L) o∂ = ∂ ′ oθ(K,L) .

These conditions imply the existence of a commutative ladder diagram as in Theorem 6, where
the rows are the long exact sequences determined by the two abstract homology theories. The
definition is set up so that the proof of the next result is formally parallel to the proof of Theorem
I.1.7:

THEOREM I.1.8. Suppose we are given a natural transformation of homology theories θ as

above such that θ(K) is an isomorphism if K consists of just a single vertex. Then θ(K,L) is an

isomorphism for all pairs (K,L).

Relating simplicial to singular homology

As noted at the beginning of Section II.1, if (P,K) is a simplicial complex, then for each free
generator v0 · · · vq of Cq(P,K) there is a unique affine (hence continuous) map T : ∆q → P

which sends a point (t0, · · · , tq) ∈ ∆q to
∑

j tj vj ∈ P . One can think of these as linear simplices
in P , and accordingly this construction assigns a singular simplex in P to each free generator.
By construction, this actually defines a chain map θ# from C∗(P,K) onto a chain subcomplex of
Sq(P ), and the inclusion is augmentation preserving. Note that if (K,L) is a pair consisting of a
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simplicial complex and a subcomplex with underlying space pair (P,Q), then the construction also
yields a chain map from θ# : C∗(K,L) to S∗(P,Q), with a commutative diagram involving short
exact sequences of simplicial and singular chain complexes which goes from the unordered chain
complex short exact sequence

0 → C∗(L) → C∗(K) → C∗(K,L) → 0

to the singular chain complex short exact sequence

0 → S∗(Q) → S∗(P ) → S∗(P,Q) → 0 .

THEOREM II.4.1. Let (X,K) be a simplicial complex, let (A,L) determine a subcomplex, and

let θ∗ : H∗(K,L) → H∗(X,A) be the natural transformation from simplicial to singular homology

that was described previously. Then θ∗ is an isomorphism.

Proof. The idea is to apply Theorem I.1.8 on natural transformations of homology theories on
simplicial complex pairs. In order to do this, we must check that singular homology for simplicial
complexes satisfies the five properties (a) − (e) listed shortly before the statement of I.1.8 on page
15. Property (c), which gives the homology of a finite set, is verified in Proposition IV.1.4, and
Properties (a), (b), (d) and (e) — which involve long exact sequences, the homology of a contractible
space (more precisely, a simplex), excision for adjoining a single simplex, and the homology of
a point — are respectively established in Theorem II.2.2, Corollary II.2.5, Theorem II.3.8, and
the discussion following the problem stated after Corollary 1.1.4. Since all these properties hold,
Theorem I.1.8 implies that the map θ∗ must be an isomorphism for all simplicial complex pairs.
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