Mathematics 205B, Winter 2021, Examination 1

Answer Key

1. [25 points] Suppose that X is the union of the arcwise connected open sets $U \cup V$ such that $U \cap V$ is also arcwise connected. Assume further that the homomorphismss $\pi_{1}(U \cap V) \rightarrow($ both $) \pi_{1}(U), \pi_{1}(V)$ induced by inclusion are isomorphisms. Prove that the maps from both $\pi_{1}(U)$ and $\pi_{1}(V)$ to $\pi_{1}(X)$ induced by inclusion are also isomorphisms.

SOLUTION

Let G_{0}, G_{1} and G_{2} be $\pi_{1}(U \cap V), \pi_{1}(U)$ and $\pi_{1}(V)$ respectively, and let $f: G_{0} \rightarrow G_{1}$ and $g: G_{0} \rightarrow G_{2}$ be the induced maps of fundamental groups; our assumptions imply that these maps are group isomorphisms.

By Van Kampen's Theorem we know that $\pi_{1}(X)$ is isomorphic to the pushot in the following diagram, in which f and g are isomorphisms:

It suffices to show that the Universal Mapping Property for pushouts holds if we substitute G_{0} for P and take the maps $G_{1} \rightarrow P$ and $G_{2} \rightarrow P$ to be f^{-1} and g^{-1} respectively.

To prove this, we need to show that if we are given group homomorphisms $p: G_{1} \rightarrow H$ and $q: G_{2} \rightarrow H$ satisfying $p^{\circ} f=q^{\circ} g$, then there is a unique homomorphism $k: G_{0} \rightarrow H$ such that $k^{\circ} f^{-1}=p$ and $k^{\circ} g^{-1}=q$. If we let k be the composite $p^{\circ} f=q^{\circ} g$ then we have the desired identities $k^{\circ} f^{-1}=p$ and $k^{\circ} g^{-1}=q$ by the assumptions. This proves existence; to prove uniqueness, suppose that $j: G_{0} \rightarrow H$ satisfies $j{ }^{\circ} f^{-1}=p$ and $j{ }^{\circ} g^{-1}=q$. If we right multiply both sides of the first identity by f, we find that $j=p^{\circ}=k$. Therefore our diagram satisfies the conditions for a pushout.■
2. [25 points] (a) If the following statement is true, give a proof; if it is false, give a counterexample: Suppose that the graph T is a tree and F is an edge in T. Then the subgraph formed by all edges except F is a tree.
(b) Give an example of a connected graph with exactly one maximal tree, and give an example of a connected graph with at least two maximal trees.

SOLUTION

(a) Here is a simple counterexample: Take X to be the union of the three edges $[0,1]$, $[1,2]$ and $[2,3]$, so that $X=[0,3]$ is a tree. If we remove $F=[1,2]$ then the remaining subgraph is the disconnected set $[0,1] \cup[2,3]$. Since a tree is connected, the remaining subgraph is not a tree.
(b) Every tree is (tautologically) a maximal tree; the simplest example is the one edge graph $[0,1]$. If we take the boundary of a 2 -simplex and remove any one of the edges, the remaining subgraph is a maximal tree. Since there are three edges in the original graph, there are three maximal trees given by this process. More generally, if we take the graph obtained from a regular n-gon and remove one edge, the remaining subgraph is a tree, and hence we have n maximal trees in this case.
3. [25 points] Let W be a simply connected space, let X be a connected graph, and let $Y \rightarrow X$ be a finite covering. Prove that every continuous map $W \rightarrow X$ lifts to a continuous mapping from W to Y. You may assume all spaces are also Hausdorff and locally arcwise connected.

SOLUTION

Choose an arc component $Y_{0} \subset Y$; then the restriction $q: Y_{0} \rightarrow X$ is also a finite covering. Choose $w_{0} \in W$ and $y_{0} \in Y_{0}$ such that $f\left(w_{0}\right)=x_{0}$ lifts to y_{0} in Y_{0} (one can always find such a point by the Path Lifting Property). By the Lifting Criterion there is a continuous lifting $F:\left(W, w_{0}\right) \rightarrow\left(Y_{0}, y_{0}\right)$ if and only if the image of the homomorhism $f_{*}: \pi_{1}\left(W, w_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$ is contained in the image of $q_{*}: \pi_{1}\left(Y, y_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$. Since the fundamental group of W is assumed to be trivial, the image of f_{*} is the trivial group, which is contained in the image of q_{*} regardless of what the latter image might be, and therefore we know that f lifts to a map $f_{0}: W \rightarrow Y_{0}$. The lifting to Y is simply the composite of f_{0} with the inclusion $Y_{0} \subset Y$.
4. [25 points] Suppose that we are given a solid regular n-gon X in the plane, where $n \geq 4$, and let v_{1}, \cdots, v_{n} are its vertices so that the boundary is the closed path $x_{1} x_{2}+x_{2} x_{3}+\ldots+x_{n} x_{1}$. Assume the vertices are ordered as indicated; denote this ordering by ω. Let \mathbf{K} be the triangulation of X by the 2 -simplices $x_{i} x_{i+1} x_{n}$ where $i=1, \ldots, n-2$. A drawing for $n=7$ is given on the next page. Find a simplicial 2-chain in $C_{2}(X, \mathbf{K}, \omega)$ whose boundary is a sum of terms

$$
\varepsilon_{1} x_{1} x_{2}+\varepsilon_{2} x_{2} x_{3}+\cdots \varepsilon_{n-1} x_{n-1} x_{n}+\varepsilon_{n} x_{1} x_{n}
$$

where $\varepsilon_{i}= \pm 1$. Prove that the boundary of your 2-chain has the required property.

SOLUTION

By definition we know that

$$
d\left(x_{i} x_{i+1} x_{n}\right)=x_{i} x_{i+1}+x_{i+1} x_{n}-x_{i} x_{n}
$$

and if we take the sum of these for $i=1, \ldots, n-2$ we find that

$$
d\left(\sum_{i=1}^{n-2} x_{i} x_{i+1} x_{n}\right)=\left(\sum_{k=i}^{n-1} x_{i} x_{i+1}\right)-x_{1} x_{n}
$$

which is the sort of answer one expects (the contributions from terms of the form $x_{i} x_{n}$ cancel each other out unless $i=1$ or $n-1$.■

