
The Polish Circle and the Seifert-van Kampen Theorem

The objective is to give an example of a subset of the plane X and arcwise connected closed
subsets A, B such that

(1) X is homeomorphic to S1 × [0, 1],

(2) A ∩B is nonempty, and both A ∩B and X = A ∪B are arcwise connected,

(3) the fundamental group of X is not a pushout of the diagram π1(A)← π1(A∩B)→ π1(B).

As in some of our other examples which do not behave well algebraically, our example here will
involve the Polish circle, and we shall refer to the two online documents polishcircle.pdf and
polishcircleA.pdf as needed.

Recall that the Polish circle P ⊂ R
2 is the union of the graph of sin(1/x) for 0 < x ≤ 1

and the three closed line segments joining (0, 1) to (0,−2), (0,−2) to (1,−2), and (1,−2) to
(1, sin 1); there is a rough sketch of P in polishcircleA.pdf. By Proposition 2 and Corollary 3
in polishcircle.pdf we know that P is simply connected.

The drawing on the first page of polishcircleA.pdf suggests that P is the boundary of the
closed bounded region B consisting of points (x, y) in R

2 satisfying

0 ≤ x ≤ 1 and either

−2 ≤ y ≤ sin(1/x) if x 6= 0 or − 2 ≤ y ≤ 1 if x = 0 .

It follows immediately that B = Interior(B) ∪ P , where the two subsets on the right hand side are
disjoint, and that B is the closure of Interior(B). In particular, the point z =

(

1

2
,− 3

2

)

lies in the
interior of B, and one can easily verify that the closed disk D of radius 1

4
centered at z is contained

in Interior(B). As in polishcircleA.pdf, let A = S2 − Interior(B); then one can check directly
that A ∩B = P .

Since B is a bounded region, there is some M > 0 such that B is contained in in the open
disk NM (z); in fact, since B is contained in the solid square [0, 1] × [−2, 1] by definition and the
solid square is contained in NM (z), we can take M ≥ 3. Define Y to be the closed disk of radius 3
centered at z, and let X = Y − Interior(D). By construction we have P ⊂ X, and therefore if we
set E and F equal to A ∩X and B ∩X respectively, then X = E ∪ F and P = E ∩ F . Choose a
basepoint x ∈ P . We shall show that E and F are arcwise connected (even though this statement
might seem obvious), and more importantly that the commutative diagram of fundamental groups

π1(P, x)
i1∗−−−−−→ π1(E, x)





y
i2∗





y
j1∗

π1(F, x)
j2∗

−−−−−→ π1(X,x)

is NOT a pushout diagram. — This example shows that one cannot prove a general version of
the Seifert-van Kampen theorem in which open subsets are replaced by closed subsets.
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Verification of arcwise connectedness

We shall describe arcwise connected subsets E0 ⊂ E and F0 ⊂ F such that (i) E0 and F0 are
arcwise connected, (ii) every point in E can be joined to a point in E0 by a continuous curve, (iii)
every point in F can be joined to a point in F0 by a continuous curve. The argument requires the
right choices of the subsets, and it breaks into cases corresponding to suitable decompositions of E
and F into finite unions of more tractable closed subsets.

We begin by defining closed subsets of E. The circle of radius 3 centered at z is contained in
E, and it will be denoted by C+. We shall split E into four subsets by cutting it along the vertical
lines L0 and L1 defined by x = 0 and x = 1 respectively. There is a drawing depicting this splitting
on the next page. In terms of equations and inequalities, the four subsets are defined as follows:

E1 is the set of all points in E such that either 0 < x ≤ 1 and y ≥ sin(1/x) or else x = 0
and y ≥ −1.

E2 is the set of all points in E such that x ≥ 1.

E3 is the set of all points in E such that 0 ≤ x ≤ 1 and y ≤ −2.

E4 is the set of all points in E such that x ≤ 0.

The subset E0 is defined to be the union of the Polish Circle P ⊂ E with the vertical line segments
L0 ∩E and L1 ∩E. Since each of these three pieces is arcwise connected and each vertical segment
has a nonempty intersection with P , it follows that E0 is arcwise connected.

There are fewer subsets of F to describe, but their definitions are more complicated. By
construction the circle C− with center z and radius 1

2
is part of the boundary of F ; note that the

points of this circle are defined by the equations

y = −
3

2
±

√

1

16
−

(

x−
1

2

)2

where
1

4
≤ x ≤

3

4
.

Define functions α(x) and β(x) such that each function is equal to − 3

2
for x ≤ 1

4
or x ≥ 3

4
, and over

the interval 1

4
≤ x ≤ 3

4
the functions α(x) and β(x) are given by the displayed formula(s), with a

positive sign for α and a negative sign for β. Using the preceding definitions, we shall split F into
two pieces as follows:

F1 is the set of all points in F such that 0 ≤ x ≤ 1 and y ≥ α(x).

F2 is the set of all points in F such that y ≤ β(x).

The subset F0 is defined to be all points in X which satisfy 0 ≤ x ≤ 1 and either y = α(x) or
y = β(x). These sets are graphs of continuous functions defined on the interval, and hence each is
arcwise connected. Since α(0) = β(0) the intersection of their graphs is nonempty and hence the
union F0 is also arcwise connected.

All of the subsets defined above are depicted in the drawing on the next page.
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The following drawing shows the decompositions of  E  and  F  into closed subspaces 

described on the preceding page.  The turquoise and yellow regions are in  E,  and the light 

shaded regions are in  F.  The rectangle shaded in gray is a region where the graph of the 

function  y = sin (1/x)  oscillates too much to be drawn easily.  The regions  E 1,  E 2,  E 3  and  

E 4  are the upper turquoise region, the  right hand yellow region, the lower turquoise region and 

the left hand yellow region respectively.   The regions  F 1  and  F 2  are the regions above and 

below the blue horizontal line, which is defined by the equation  y =  ----  3/2.   The dark red 

point is the center of the two circles which form the boundary of  X,  and the interior of the pink 

disk is not contained in  X  or  F.  For the sake of completeness, we note that the Polish circle  

P  is the union of the graph of the function   y = sin (1/x)  together with the vertical and 

horizontal line segments whose endpoints are indicated by black dots; by construction,  this 

subset is the intersection of  E  and  F. 

 

 

 

 

The coordinates of the dark red point are  (1/2, ----  3/2)   
 

The set  E0  is the union of the Polish Circle  P  with the vertical chords,  and the set  F0  is the 

union of the two blue horizontal line segments with the circle whose radius is  ¼  and whose 

center is the dark red point.   



Motivated by the drawings, we can verify that E and F are arcwise connected as follows:

(E1) If (x, y) ∈ E1 and x > 0, then the vertical straight line curve joining (x, y) to the graph
of y = sin(1/x) lies entirely inside E1. If (x, y) ∈ E1 and x = 0, then (x, y) lies on L0. In
both cases, we have continuous curves in E1 joining the given point to some point in E0.

(E2) If (x, y) ∈ E2, then the horizontal straight line curve joining (x, y) to (1, y) lies entirely in
E2 and its endpoint lies in E0.

(E3) If (x, y) ∈ E3, then the vertical straight line curve joining (x, y) to the graph of y = −2
lies entirely inside E3 and its endpoint lies in E0.

(E4) If (x, y) ∈ E4, then the horizontal straight line curve joining (x, y) to (0, y) lies entirely in
E4 and its endpoint lies in E0.

(F1) If (x, y) ∈ F1, then the vertical straight line curve joining (x, y) to the graph of y = α(x)
lies entirely inside F1 and its endpoint lies in F0.

(F2) If (x, y) ∈ F2, then the vertical straight line curve joining (x, y) to the graph of y = β(x)
lies entirely inside F2 and its endpoint lies in F0.

If we combine these statements, we see that every point in E can be joined to a point in the arcwise
connected set E0 by a continuous curve, and similarly every point in F can be joined to a point
in the arcwise connected set F0 by a continuous curve. Since E0 and F0 are arcwise connected, it
follows that the subsets E and F must be arcwise connected.

Fundamental group computations

By construction we know that π1(X) ∼= Z. We claim that π1(E) and π1(F ) are at least that
large.

LEMMA. The circle C+ is a retract of E, and the circle C− is a retract of F .

Proof. Since X is homeomorphic to S1 × [0, 1] such that C− corresponds to S1 × {0} and C+

corresponds to S1 × {1}, the first coordinate projection and the identifications define retractions
r± : X → C±. The desired retractions on E and F are given by restricting r− to E and r− to F .

In fact, one can prove the stronger conclusion that the circles are deformation retracts of E
and F , but we shall not need this additional information.

COROLLARY. The fundamental groups of E and F are infinite; in fact, each has a quotient

which is isomorphic to Z.

Proof. This is true because the retractions E → C+ and F → C− induce surjections of
fundamental groups.

Completion of the argument

We know that π1(X,x) ∼= Z, so it is enough to show that the pushout of the diagram

π1(E, x) ←− π1(P, x) −→ π1(F, x)

is not infinite cyclic. Since P is simply connected, the pushout in this case is a free product of
π1(E, x) and π1(F, x). By the preceding discussion, neither of these groups is trivial. Since a free
product of two nontrivial groups is always nonabelian (use the result on unique factorizations!), it
follows that the pushout group is also nonabelian and hence is not isomorphic to π1(X,x) ∼= Z.
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