CHAPTER VI

Background and Motivation
for Homology Theory

§1. Introduction

Homology theory is a subject whose development requires a long chain of
definitions, lemmas, and theorems before it arrives at any interesting results
or applications. A newcomer to the subject who piunges into a formai, logical
presentation of its ideas is likely to be somewhat puzzled because he will
probably have difficulty seeing any motivation for the various definitions and
theorems. It is the purpose of this chapter to present some expianation, which
will help the reader to overcome this difficulty. We offer two different kinds
of material for background and motivation. First, there is a summary of some
of the most easily understood properties of homology theory, and a hint at
how it can be applied to specific problems. Second, there is a brief outline of
some of the problems and ideas which led certain mathematicians of the
nineteenth century to develop homology theory.

It should be emphasized that the reading of this chapter is not a logical
prerequisite to the understanding of anything in later chapters of this book.
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§2. Summary me of the Basic Properties
of Homology Thoery

Homology theory assigns to any topological space X a sequence of abelian
groups Hy(X), H,(X), H,(X), ..., and to any continuous map f: X - Y a
sequence of homomorphisms

fo H(X)> H(Y), n=0,1,2,...
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H,(X) is called the n-dimensional homology group of X, and f, is called the
homomorphism induced by f. We will list in more or less random order some
of the principal properties of these groups and homomorhisms.

(a) If f: X —>Y is a homeomorphism of X onto Y, then the induced
homomorphism f, : H,(X) - H,(Y) is an isomorphism for all n. Thus, the
algebraic structure of the groups H,(X), n =0, 1, 2, ..., depends only on the
topological type of X. In fact, an even stronger statement holds: if f is a
homotopy equivalence, then f, is an isomorphism. Thus, the structure of
H,(Y) only depends on the homotopy type of X. Two spaces of the same
homotopy type have isomorphic homology groups (for the definition of these
terms, the reader is referred to Chapter II, §4 and §8.

(b) If two maps f,, f; : X — Y are homotopic, then the induced homomor-
phisms f;, and f,, : H,(X) = H,(Y) are the same for all n. Thus, the induced
homomorphism f, only depends on the homotopy class of f. By its use, we
can sometimes prove that certain maps are not homotopic.

(c) For any space X, the group Hy(X) is free abelian, and its rank is equal
to the number of arcwise connected components of X. In other words, Hy(X)
has a basisin 1-1 correspondence with the set of arc components of X. Thus,
the structure of Hy(X) has to do with the arcwise connectedness of X. By
analogy, the groups H,(X), H,(X), ... have something to do with some kind
of higher connectivity of X. In fact, one can look on this as one of the principal
purposes for the introduction of the homology grups: to express what may be
called the higher connectivity properties of X.

(d) If X is an arcwise-connected space, the 1-dimensional homology group,
H,(X), is the abelianized fundamental group. In other words, H,(X) is isomor-
phic to n(X) modulo its commutator subgroup.

(e) If X is a compact, connected, orientable n-dimensional manifold, then
H,(X) is infinite cyclic, and H (X) = {0} for all g > n. In some vague sense,
such a manifold is a prototype or model for nonzero n-dimensional homology
groups.

(f) If X is an open subset of Euclidean n-space, then Hy(X) = {0} for all
q=n.

We have already alluded to the fact that sometimes it is possible to use
homology theory to prove that two continuous maps are not homotopic.
Analogously, homology groups can sometimes be used to prove that two
spaces are not homeomorphic, or not even of the same homotopy type. These
are rather obvious applications. In other cases, homology theory is used in
less obvious ways to prove theorems. A nice example of this is the proof of
the Brouwer fixed-point theorem in Chapter VIII, §2. More subtie examples
are the Borsuk—Ulam theorem in Chapter XV, §2 and the Jordan-Brouwer
separation theorem in Chapter VIII, §6.



[
oy
o

§3. Development of Homology Theory in the Nineteenth Century

§3. Some Examples of Problems Which Motivated
the Development of Homology Theory in the
Nineteenth Century

The problems we are going to consider all have to do with line integrals,
surface integrals, etc., and theorems relating these integrals, such as the weli-
known theorems of Green, Stokes, and Gauss. We assume the reader is
familiar with these topics.

As a first example, consider the following problem which is discussed in
most advanced caiculus books. Let U be an open, connected set in the plane,
and let V be a vector field in U (it is assumed that the components of V have
continuous partial derivatives in U). Under what conditions does there exist
a “potential function” for V, i.e., a differentiabie function F(x, y) such that V
is the gradient of F? Denote the x and y components of V by P(x, y) and
QO(x, y) respectively; then an obvious necessary condition is that

0P 8Q

dy  ox
at every point of U. If the set U is convex, then this necessary condition is also
sufficient. The standard proof of sufficiency is based on the use of Green’s
theorem, which asserts that

[ (0 oP

Here D is a domain with piecewise smooth boundary C (which may have
several component) such that D and C are both contained in U. By using
Green’s theorem, one can prove that the line integral on the left-hand side
vanishes if C is any closed curve in U. This implies that if (x,, y) and (x, y)
are any two points of U, and L is any piecewise smooth path in U joining
(xo. ¥o) and (x, y), then the line integral

Jde+Qdy
L

is independent of the choice of L; it only depends on the end points (x4, y,)
and (x, y). If we hold (x,, y,) fixed, and define F(x, y) to be the value of this
line integral for any point (x, y) in U, then F(x, y) is the desired potential
function.

On the other hand, if the open set U is more complicated, the necessary
condition dP/dy = 0Q/0x may not be sufficient. Perhaps the simplest example
to illustrate this point is the following: Let U denote the plane with the origin
deleted,

y X

P=— and =
x: +y? Q x2 4y

2
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Then the condition 6Q/dx = dP/0dy is satisfied at each point of U. However,
if we compute the line integral

J Pdx + Q dy, (6.3.1)
C

where C is a circle with center at the origin, we obtain the value 2n. Since
2n # 0, there cannot be any potential function for the vector field V = (P, Q)
in the open set U. It is clear where the preceding proof breaks down in this
case: the circle C (with center at the origin) does not bound any domain D
such that D < U.

Since the line integral (1) may be nonzero in this case, we may ask, What
are all possible values of this line 1ntegral as C ranges over all piecewise smooth
closed curvesin U? The answer is 2nm, where nranges over all integers, positive
or negative. Indeed, any of these values may be obtained by integrating around
the unit circle with center at the origin an appropriate number of times in the
clockwise or counterclockwise direction; and an informal argument using
Green’s theorem should convince the reader that these are the only possible
values.

We can ask the same question for any open, connected set U in the plane,
and any continuously differentiable vector field V = (P, Q) in U satisfving the
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condition 6P/dy = 0Q/dx: What are all possible values of the line integral

(6.3.1) as C ranges over all piece-wise smooth closed curves in U? Anybody
who studies this problem will auickly come to the conclusion that the answer
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depends on the number of “holes” in the set U. Let us associate with each hole
the value of the integral (6.3.1) in the case where C is a closed path which goes
around the given hole exactly once and does not encircle any other hole
(assuming such a path exists). By analogy with compiex function theory, we

will call this number the residue associated with the given hole. The answer
to our prnhlpm then is that the value of the ineoral (6.3.1) is some finite, inteoral
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linear combination of these residues, and any such ﬁmte integral linear com-

bination actually occurs as a value.
Next, let us consider the nnn]nannc problem in 3- -space: we now assum
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that U is an open, connected set in 3-space, and V is a vector field in U with
components P(x, y, z), Q(x, y, z), and R(x, y, z) (which are assumed to be
continuously differentiable in U). Furthermore, we assume thatcurl V = 0.1In
terms of the components, this means that the equations

<

R _0Q 0oP_OR 4 9Q_0F

dy 8z’ 8z ox’ éx 0y

hold at each point of U. Once again it can be shown that if U is convex, then
there exists a function F(x, y, z) such that V is the gradient of F. The proof is
much the same as the previous case, except that now one must use Stokes’s
theorem rather than Green’s theorem to show that the line integral
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is nonzero for some closed path C in U. Once again we can ask: What are all
pncmhlp valueg of the line integral (2) for all nossible closed naths in [7? The
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“holes” in U are again what makes the problem interesting; however, in this
case there seem to be different kinds of holes. Let us consider some examples:

(a) Let U = {(x, y, 2)|x? + y* > 0}, ie, U is the complement of the z axis.
This example is similar to the 2-dimensional case treated earlier. If C denotes

a circle in the xy plane with center at the origin, we could call the value of the
inteoral (6.3 7\ with this choice of C the recidue corresnondine to the hole in
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U. Then the value of the integral (6.3.2) for any other choice of C in U would
be some integral multiple of this residue; the reader should be able to convince

himealf of thic in anv narticular cace l-\v neing Stokee’s theorem
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(b) Let U be the complement of the origin in R? If X is any piecewise

smooth orientable surface in U with boundary C consisting of one or more
pmnpwmp smooth curves. then nm‘nrlhna to Stokeg’s theorem
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#de+Qdy+Rdz—J\J\(———)dydz

+(6—P—6—R)dzdx+(a—Q—a—)dxdy.
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We leave it to the reader to convince himself that any piecewise smooth closed
curve ¢ in U 1s the boundary of such a surface Z, hence by Stokes’s theorem,
the integral around such a curve is zero (the integral on the right-hand side is
identically zero). Thus, the same argument applies as in the case where U is
convex to show that any vector fixed V in U such that curl V = 0in U is of
the form V = grad F for some function F. The existence of the hole in U does
not matter in this case.

(c) It is easy to give other examples of domains in 3-space with holes in
them such that the hole does not matter. The following are such examples: let
U, = {(x, y, 2lx*> + y*> + z? > 1}, let U, be the complement of the upper half
(z = 0) of the z axis; and let U, be the complement of a finite set of points in
3-space. In each case, if V is a vector field in U; such that curl V = 0, then
V = grad F for some function F. The basic reason is that any closed curve C
in U, is the boundary of some oriented surface X in U; in each of the cases
i=1,2or3.
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There is another problem for 3-dimensional space which involves closed
surfaces rather than closed curves. It may be phrased as follows: Let U be a
connected open set in R? and let V be a continuously differentiable vector
field in U such that div V = 0. Is the integral of (the normal component of) V
over any closed, orientable piecewise smooth surface X in U equal to 0? If not,
what are the possible values of the integral of V over any such closed surface?
If U is a convex open set, then any such integral of 0. One proves this by the
use of Gauss’s theorem (also called the divergence theorem):

JJV = Jj](div V)dx dy dz.

Here D is a domain in U with piecewise smooth boundary X (the boundary
may have several components). The main point is that a closed orientable
surface X contained in a convex open set U is always the boundary of a domain
D contained in U. However, if the open set U has holes in it, this may not be
true, and the situation is more complicated. For example, suppose that U is
the complement of the origin in 3-space, and V is the vector field in U with
components P = x/r3, Q = y/r®, and R = z/r3, where r = (x> + y? + z2)"* is
the distance from the origin. It is readily verified that div V = 0; on the other
hand, the integral of V over any sphere with center at the origin is readily
calculated to be +4m; the sign depends on the orientation conventions. The
set of all possible values of the surface integral { {5 V for all closed, orientable
surfaces X in U is precisely the set of all integral multiples of 47.

On the other hand, if U is the complement of the z axis in 3-space, then the
situation is exactly the same as in the case where U is convex. The reason is
that any closed, orientable surface in U bounds a domain D in U; the existence
of the hole in U does not matter.

There is a whole series of analogous problems in Euclidean spaces of
dimension four or more. Also, one could consider similar problems on curved
submanifolds of Euclidean space. Although there would doubtless be interest-
ing new complications, we have already presented enough examples to give
the flavor of the subject.

At some point in the nineteenth century certain mathematicians tried to
set up general procedures to handle problems such as these, This led them to
introduce the following terminology and definitions, The closed curves, sur-
faces, and higher-dimensional manifolds over which one integrates vector
fields, etc., were called cycles. In particular, a closed curve is a 1-dimensional
cycle, a closed surface is a 2-dimensional cycle, and so on. To complete the
picture, a O-dimensional cycle is a point. It is understood, of course, that cycles
of dimension > 0 always have a definite orientation, i.¢., a 2-cycle is an oriented
closed surface, Moreover, it is convenient to attach to each cycle a certain
integer which may be thought of as its “multiplicity.” To integrate a vector
field over a 1-dimensional cycle or closed curve with multiplicity + 3 means
to integrate it over a path going around the curve 3 times; the resuit will be
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three times the value of the integral going around it once. If the multiplicity
is —3, then one integrates three times around the curve in the opposite
direction. If the symbol ¢ denotes a 1-dimensional cycle, then the symbol 3¢
denotes this cycle with the multiplicity + 3, and — 3c denotes the same cycle
with muitiplicity — 3. It is also convenient to allow formal sums and linear
combinations of cycles (all of the same dimension), that is, expressions like
3¢, + 5¢, — 10c;, where c,, c,, and c; are cycles. With this definition of
addition, the set of all n-dimensional cycles in an open set U of Euclidean
space becomes an abelian group; in fact it is a free abelian group. It is
customary to denote this group by Z,(U). There is one further convention that
is understood here: If ¢ is the 1-dimensional cycle determined by a certain
oriented closed curve, and ¢’ denotes the cycle determined by the same curve
with the opposite orientation, then ¢ = —c’. This is consistent with the fact
that the integral of a vector field over ¢’ is the negative of the integral over c.
Of course, the same convention aiso holds for higher-dimensional cycles.

It is important to point out that 1-dimensional cycles are only assumed to
be closed curves; they are not assumed to be simple closed curves. Thus, they
may have various self-intersections or singularities. Similarly, a 2-dimensions
cycle in U is an oriented surface in U which is allowed to have various
seif-intersections or singuiarities. It is reaily a continuous (or differentiabie)
mapping of a compact, connected, oriented 2-manifold into U. Because of the
possible existence of self-intersections or singularities, these cycles are often
called singular cycies.

Once one knows how to define the integral of a vector field (or differential
form) over a cycle, it is obvious how to define the integral over a formal linear
combination of cycles. If ¢, ..., ¢, are cycles in U and

z=n¢, + " + NGy,
where n,, n,, ..., n, are integers, then
k
Vv=>n| V
Jz =1 Je

for any vector field V in U.

The next step is to define an equivalence relation between cycles. This
equivalence relation is motivated by the following considerations. Assume
that U is an open set in 3-space,

(a) Let u and w be 1-dimensional cycles in U, i.e., u and w are elements of the
goups Z,(U). Then we wish to define u ~ w so that this implies

I

for any vector field V in U such that curl V = 0.
(b) Letu and w be elements of the group Z,(U). Then we wish to define u ~ w
so that this implies
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Jv=l

for any vector field V in U such that div V = 0.

bv-L

can be rewritten as follows, in view of our conventions:

Note that the condition

[ v-o

Ju-w

Thus, u ~ wif and only if u — w ~ 0.
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(b) the divergence theorem points the way.
We will discuss case (a) first. Suppose we have an oriented surface in U

whose boundarv consists of the oriented closed curves ¢,. ¢, . The
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orientations of the boundary curves are determined according to the conven-
tions used in the statement of Stokes’s theorem. Then the 1-dimensional cycle

z=¢C;+ ¢+ 4+ ¢

is defined to be homologous to zero, written

n

Z~\,

More generally, any linear combination of cycles homologous to zero is also
defined to be homologous to zero. The set of all cycles homologous to zero is
a subgroup of Z,(U) which is denoted by B,(U). We define z and z’ to be
homologous (written z ~ z’) if and only if z — z' ~ 0. Thus, the set of equiva-
lence classes of cycles, called homology classes, is nothing other than the
quotient group

H,(U) = Z,(U)/B,(U)

which is called the 1-dimensional homology group of U.

Analogous definitions apply to case (b). Let D be a domain in U whose
boundary consists of the connected oriented surfaces s,, s,, ..., . The
orientation of the boundary surfaces is determined by the conventions used
for the divergence theorem. Then the 2-dimensional cycle

Z=SI+S2+"'+S,‘
is by definition homologous to zero, written z ~ 0. As before, any linear
combination of cycles homologous to zero is also defined to be homologous
to 0, and the set of cycles homologous to 0 constitutes a subgroup, B,(U), of
Z,(U). The quotient group

H,(U) = Z,(U)/B,(U)

is called the 2-dimensional homology group of U.
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Let us consider some examples. If U is an open subset of the plane, then
H,(U)is a free abelian group, and it has a basis (or minimal set of generators)
in 1-1 correspondence with the holes in U. If U is an open subset of 3-spaces,
then both H,(U) and H,(U) are free abelian groups, and each hole in U
contributes generators to H,(U) or H,(U), or perhaps to both. This helps
explain the different kinds of holes in this case.

In principle, there is nothing to stop us from generalizing this procedure,
and defining for any topological space X and non-negative integer n the group

Z,(X) of n-dimensional cycles in X, the subgroup B,(X) consisting of cycles
which are homologous to zero, and the quotient group

Hn(X) = Zn(X)/Bn(X),

called the n-dimensional homology group of X. However, there are difficulties
in formulating the definitions rigorously in this generality; the reader may
have noticed that some of the definitions in the preceding pages were lacking
in precision. Actually, it took mathematicians some years to surmount these
difficulties. The key idea was to think of an n-dimensional cycle as made up
of small n-dimensional pieces which fit together in the right way, in much the
same way that bricks fit together to make a wall. In this book, we will use
n-dimensional cycles that consist of n-dimensional cubes which fit together in
a nice way. To be more precise, the “singular” cycles will be built from
“singular” cubes; a singular n-cube in a topological space X is simply a
continuous map T:I" - X, where I" denotes the unit n-cube in Euclidean
n-space.

There is another complication which should be pointed out. We mentioned
in connection with the examples above that if U is an open subset of the plane
or 3-space, then the homology groups of U are free abelian groups. However,
there exist open subsets U of Euclidean n-space for all n > 3 such that the
group H,(U) contains elements of finite order (compare the discussion of the
homology groups of nonorientable surfaces in §VII1.4). Suppose that ue
H,(U) is a homology class of order k # 0. Let z be a 1-dimensional cycle in
the homology class u. Then z is not homologous to 0, but k- z is homologous
to 0. This implies that if V is any vector field in U such that curl V =0,

then
f Vo

Toseethis,let {,V = r. Then |,, V = k-r; but [, V = Osince kz ~ 0. Therefore
r = 0. It is not clear that this phenomenon was understood in the nineteenth
century; at least there seems to have been some confusion in Poincaré’s early
papers on topology about this point. Of course, one source of difficulty is the
fact that this phenomenon eludes our ordinary geometric intuition, since it
dows not occur in 3-dimensional space. Nevertheless it is a phenomenon of
importance 1n algebraic topology.
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Before ending this account, we should make clear that we do not claim that
the nineteenth century development of homology theory actually proceeded
along the lines we have just described. For one thing, the nineteenth centry
mathematicians involved in this development were more interested in complex
analysis than real analysis. Moreover, many of their false starts and tentative
attempts to establish the subject can only be surmised from reading the
published papers which have survived to the present. For a fairly readable
nineteenth century account of some of these ideas, the reader is referred to the
famous book by J. C. Maxwell [6].

The modern development of these same ideas led to De Rham’s theorem;
see Appendix A.

NOTES

The history of algebraic topology

The early development of what is now calied algebraic topology occurred
mainly in the nineteenth century. Even in the early part of that century some
mathematicians, such as Gauss, foresaw the need for such a development. In
those days topology was referred to as “analysis situs.” The work of Riemann
on complex function theory in the middle of the century was a strong stimulus
for the further development of the subject, especially for the topology of
surfaces. Unfortunately, Riemann never published his ideas on algebraic
topology; the brief “Fragment” [ 10] published after his death in his collected
works seems rather vague and incomprehensible, Riemann contracted tuber-
culosis in 1862 and spent much of the few remaining years of his life in Italy,
trying to regain his health. While there, he discussed his ideas on topology with
some Italian mathematicians, especially Professor Enrico Betti of Pisa. Some
of Betti’s letters to other Italian mathematicians have been published; he writes
of the things he has learned from Riemann, Betti published on these topics in
a paper [1] after Riemann’s death. In 1895 Poincaré tried to further develop
the ideas of Riemann and Betti in a long paper entitled “Analysis Situs” [7].
The Danish mathematician P. Heegard in his Copenhagen thesis of 1898
criticized certain aspects of Poincaré’s paper. This apparently forced Poincaré
to reexamine his ideas, and in subsequent “Complements” to his original paper
on analysis situs he changed his point of view and created what was to become
homology theory.

Background and motivation for homology theory

The student may find it helpful to read further articles on this subject. Several
such articles are listed in the bibliography blow, The books by Blackett [11]
and Frechet and Fan [12] have bibliographies which list many additional
articles that are helpful and interesting.
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