Solutions to Homework 5.

(1) Prove the Five Lemma:

Consider a commutative diagram with exact rows:

$$A_{1} \xrightarrow{f_{1}} A_{2} \xrightarrow{f_{2}} A_{3} \xrightarrow{f_{3}} A_{4} \xrightarrow{f_{4}} A_{5}$$

$$\downarrow t_{1} \qquad \downarrow t_{2} \qquad \downarrow t_{3} \qquad \downarrow t_{4} \qquad \downarrow t_{5}$$

$$B_{1} \xrightarrow{g_{1}} B_{2} \xrightarrow{g_{2}} B_{3} \xrightarrow{g_{3}} B_{4} \xrightarrow{g_{4}} B_{5}$$

and prove:

- (a) [4pts] If t_2 and t_4 are surjective and t_5 is injective, then t_3 is surjective.
- (b) [4pts] If t_2 and t_4 are injective and t_1 is surjective, then t_3 is injective.
- (c) [2pts] If t_1, t_2, t_4 and t_5 are isomorphisms, then t_3 is an isomorphism.

Proof. (a) Let $b_3 \in B_3$.

$$\begin{split} &\Rightarrow \exists a_4 \in A_4 \text{ with } t_4(a_4) = g_3(b_3) \ \, (t_4 \text{ surjective}) \\ &\Rightarrow g_4 g_3(b_3) = 0 = g_4 t_4(a_4) = t_5 f_4(a_4) \\ &\Rightarrow f_4(a_4) = 0 \ \, (t_5 \text{ injective}) \\ &\Rightarrow \exists a_3 \in A_3 \text{ with } f_3(a_3) = a_4 \\ &\Rightarrow g_3(b_3 - t_3(a_3)) = g_3(b_3) - g_3 t_3(a_3) = t_4(a_4) - t_4 f_3(a_3) = t_4(a_4) - t_4(a_4) = 0 \\ &\Rightarrow \exists b_2 \in B_2 \text{ with } g_2(b_2) = b_3 - t_3(a_3) \\ &\Rightarrow \exists a_2 \in A_2 \text{ with } t_2(a_2) = b_2 \ \, (t_2 \text{ surjective}) \end{split}$$

Then

$$t_3(f_2(a_2) + a_3) = t_3f_2(a_2) + t_3(a_3)$$

$$= g_2t_2(a_2) + t_3(a_3)$$

$$= g_2(b_2) + t_3(a_3)$$

$$= b_3 - t_3(a_3) + t_3(a_3)$$

$$= b_3$$

(b) Let $a_3 \in A_3$ with $t_3(a_3) = 0$.

⇒
$$t_4 f_3(a_3) = g_3 t_3(a_3) = 0$$

⇒ $f_3(a_3) = 0$ (t_4 injective)
⇒ $\exists a_2 \in A_2$ with $f_2(a_2) = a_3$
⇒ $g_2 t_2(a_2) = t_3 f_2(a_2) = t_3(a_3) = 0$
⇒ $\exists b_1 \in B_1$ with $g_1(b_1) = t_2(a_2)$
⇒ $\exists a_1 \in A_1$ with $t_1(a_1) = b_1$ (t_1 surjective)
⇒ $g_1 t_1(a_1) = g_1(b_1) = t_2 f_1(a_1) = t_2(a_2)$
⇒ $f_1(a_1) = a_2$ (t_2 injective)
⇒ $f_2(a_2) = f_2 f_1(a_1) = 0 = a_3$