
to prove a few topological results — for example, the fact that open subsets
of R

n and R
m are not homeomorphic if m 6= n, the Jordan Curve Theorem

which states that a simple closed curve in S2 separates its complement into two
connected components, the Brouwer Fixed Point Theorem, and the fact that
certain graphs are not homeomorphic to subsets of R2. It is often easier to work
slowly through some complicated mathematical constructions if their ultimate
benefits are understood.

As noted at the beginning of this unit, the first step in constructing a singular homol-
ogy theory satisfying the axioms in 205B is to formulate and prove results about simplicial
complexes that are needed in the construction or are useful in some other respect, and
the present unit is devoted to this process. The construction of singular homology will be
given in the next unit.

I.1 : Ordered simplicial chains

(Hatcher, § 2.1)

We have already mentioned the topological invariance question, and in fact there
is another issue along these lines which is even more basic. The definition of simplicial
chains in 205B required the choice of a linear ordering for the vertices, so the first step
is to prove that different orderings yield isomorphic homology groups. In order to show
this, we have to go back and give alternate definitions of simplicial homology groups which
by construction do not involve any choices of vertex orderings. As noted in the 205B
notes, this need to redo fundamental definitions frequently is typical of the subject, and
it sometimes makes algebraic topology seem like a real-life parody of the film Groundhog

Day (see http://www.imdb.com/title/t0107048).

Well, it’s Groundhog Day ... again. ... I was in the Virgin Islands once
... That was a pretty good day. Why couldn’t I get that day over and
over and over?

Phil Connors, in the film Groundhog Day

Definition. Suppose that (P,K) is a simplicial complex The unordered simplicial chain

group Ck(P,K) is the free abelian group on all symbols u0 · · · uk, where the uj are
all vertices of some simplex in K and repetitions of vertices are allowed. A family of
differential or boundary homomorphisms dk is defined as before, and the k-dimensional
simplicial homology Hk(P,K) is defined to be the k-dimensional homology of this chain
complex.
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If ω is a linear ordering for the vertices of K, then the unordered simplicial chain
complex C∗(P,K) contains the ordered simplicial chain complex C∗(P,K

ω) as a chain
subcomplex, and we shall let i denote the resulting inclusion map of chain complexes. If we
can show that the associated homology maps i∗ are isomorphisms, then it will follow that
the homology groups for the ordered simplicial chain complex agree with the corresponding
groups for the unordered simplicial chain complex, and therefore the homology groups do
not depend upon choosing a linear ordering of the vertices.

One major difference between the unordered and ordered simplicial chain groups is
that the latter are nontrivial in every positive dimension. In particular, if v is a vertex
of K, then the free generator v · · · v = u0 · · · uk, with uj = v for all j, represents a
nonzero element of Ck(P,K). On the other hand, the ordered simplicial chain groups are
nonzero for only finitely many values of k.

In order to analyze the mappings i∗, we shall introduce yet another definition of
homology groups.

Third Definition. In the setting above, define the subgroup C ′k(P,K) of degenerate
simplicial k-chains to be the subgroup generated by

(a) all elements v0 · · · vk such that vi = vi+1 for some (at least one) i,

(b) all sums v0 · · · vivi+1 · · · vk + v0 · · · vi+1vi · · · vk, where 0 ≤ i < k.

We claim these subgroups define a chain subcomplex, and to show this we need to verify
the following.

LEMMA 1. The boundary homomorphism dk sends elements of C ′k(P,K) to C ′k−1(P,K).

It suffices to prove that the boundary map sends the previously described generators
into degenerate chains, and checking this is essentially a routine calculation.

We now define the complex of alternating simplicial chains Calt
∗

(P,K) to be the quo-
tient complex C∗(P,K)/C ′

∗
(P,K) with the associated differential or boundary map.

PROPOSITION 2. The composite ϕ : C∗(P,K
ω) → C∗(P,K) → Calt

∗
(P,K) is an

isomorphism of chain complexes.

COROLLARY 3. The morphism i∗ : H∗(P,K
ω)→ H∗(P,K) is injection onto a direct

summand.

Proof that Proposition 2 implies Corollary 3. Let q be the projection map from
unordered to alternating chains, so that ϕ∗ = q∗ oi∗. General considerations imply that ϕ∗
is an isomorphism.

Suppose now that i∗(a) = i∗(b). Applying q∗ to each side we obtain

ϕ∗(a) = q∗ oi∗(a) = q∗ oi∗(b) = ϕ∗(b)

and since ϕ∗ is bijective it follows that a = b.
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Now let B∗ be the kernel of q∗. We shall prove that every element of H∗(P,K) has
a unique expression as i∗(a) + c, where c ∈ B∗. Given u ∈ H∗(P,K), direct computation
implies that

u − i∗(ϕ∗)
−1q∗(u) ∈ B∗

and thus yields existence. Suppose now that u = i∗(a) + c, where c ∈ B∗. It then follows
from the definitions that

i∗(a) = i∗(ϕ∗)
−1q∗(u)

and hence we also have

c = u − i∗(a) = u − i∗(ϕ∗)
−1q∗(u)

which proves uniqueness.

Proof of Proposition 2. Analogs of standard arguments for determinants yield the
following observations:

(1) The generator v0 · · · vk ∈ Ck(P,K) lies in the subgroup of degenerate chains if

two vertices are equal.

(2) If σ is a permutation of {0, · · · , k}, then v0 · · · vk − (−1)sgn(σ)vσ(0) · · · vσ(k)

is a degenerate chain.

Define a map of graded abelian groups Ψ from C∗(P,K) to C∗(P,K
ω) which sends v0 · · · vk

to zero if there are repeated vertices and sends v0 · · · vk to (−1)sgn(σ)vσ(0) · · · vσ(k) if
the vertices are distinct and σ is the unique permutation which puts the vertices in the
proper order:

vσ(0) < · · · < vσ(k)

It follows that Ψ passes to a map ψ of quotients from Calt
∗

(P,K) to C∗(P,K
ω) such that

ψ oϕ is the identity. In particular, it follows that ϕ is injective. To prove it is surjective,
note that (1) and (2) imply that Calt

k (P,K) is generated by the image of ϕ and hence
ϕ is also surjective. It follows that ϕ determines an isomorphism of chain complexes as
required.

Acyclic complexes

Definition. An augmented chain complex over a ring R consists of a chain complex
(C∗, d) and a homomorphism ε : C0 → R (the augmentation map) such that ε is onto and
ε od1 = 0.

All of the simplicial chain complexes defined above have canonical augmentations
given by sending expressions of the form

∑

nv v to the corresponding integers
∑

nv.

Definition. A simplicial complex is said to be acyclic (“has no nontrivial cycles”) if
Hj(P,K) = 0 for j 6= 0 and H0

∼= Z, with the generator in homology represented by an
arbitrary free generator of C0(P,K).

There is a simple geometric criterion for a simplicial chain complexe to be acyclic.
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Definition. A simplicial complex (P,K) is said to be star shaped with respect to some
vertex v in K if for each simplex A in K either v is a vertex of A or else there is a simplex
B in K such that A is a face of B and v is a vertex of B.

One particularly important example for the time being is the standard simplex ∆n

with its standard decomposition. Another is illustrated below. It is an eight pointed star
which is star shaped with respect to the vertex in the center but not to any other vertex.

PROPOSITION 4. If the simplicial complex (P,K) is star shaped with respect to some

vertex, then it is acyclic, and the map i∗ : H∗(P,K
ω)→ H∗(P,K) is an isomorphism.

Proof. Define a map of graded abelian groups η : C∗(P,K) → C∗(P,K) such that
ηq : Cq(P,K) → Cq(P,K) is zero if q 6= 0 and η0 sends a chain y to ε(y)v. Then η is a
chain map because ε od1 = 0.

We next define homomorphisms Dq : Cq(P,K)→ Cq+1(P,K) such that

dq+1
oDq = identity − dq oDq−1

if q is positive and
d1 oD0 = identity − η0

on C0. We do this by setting Dq(x0 · · · xq) = vx0 · · · xq and taking the unique extension
which exists since the classes x0 · · · xq are free generators for Cq. Elementary calculations
show that the mappings Dq satisfy the conditions given above.

To see that Hq(P,K) = 0 if q > 0, suppose that dq(z) = 0. Then the first formula
implies that z = dq+1

oDq(z). Therefore Hq = 0 if q > 0. On the other hand, if z ∈ C0,
then the second formula implies that d1 oD0(z) = z − ε(z)v. Furthermore, since ε od1 = 0
and d0 = 0, it follows that

(i) the map ε passes to a homomorphism from H0 to Z,

(ii) since ε(v) = 1 this homomorphism is onto,
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(iii) the multiples of the class [v] give all the classes in H0.

Taken together, these imply that H0(P,K) ∼= Z, and it is generated by [v]. This completes
the computation of H∗(P,K).

By Corollary 3 we know thatHq(P,K
ω) is isomorphic to a direct summand ofHq(P,K)

and since the latter is zero if q > 0 it follows that the former is also zero if q > 0. Sim-
ilarly, we know that H0(P,K

ω) is isomorphic to a direct summand of H0(P,K) ∼= Z.
By construction we know that the generating class [v] for the latter lies in the image of
i∗, and therefore it follows that the map from H0(P,K

ω) to H0(P,K) must also be an
isomorphism.

COROLLARY 5. If ∆ is a simplex with the standard simplicial decomposition, then

Hq(∆,K
ω) ∼= Hq(∆,K)

is trivial if q 6= 0 and infinite cyclic if q = 0.

Clearly we would like to “leverage” this result into a proof for an arbitrary simplicial
complex (P,K). This will require some additional algebraic tools.

Extension to pairs

Let
(

(P,K), (Q,L)
)

be a simplicial complex pair consisting of a simplicial complex
(P,K) and a subcomplex (Q,L). To simplify notation, we shall often denote such a
pair by (K,L). The unordered simplicial chain complex C∗(K,L) is defined to be the
quotient chain complex C∗(K)/C∗(L), and the unordered relative simplicial homology
groups, denoted by H∗(K,L), are the homlogy groups of these chain complexes. As in the
absolute case, we have canonical homomorphisms from the relative homology groups for
ordered chains to the relative homology groups for unordered chains. We should also note
that the previously defined absolute chain groups may be viewed as special cases of this
definition where L = ∅.

By the preceding discussion and Theorem V.3.2 from algtopnotes2012.tex; (i.e.,
short exact sequences of chain complexes determine long exact sequences of homology
groups), we have the following result:

THEOREM 6. (Long Exact Homology Sequence Theorem — Simplicial Version). Let
i : L→ K denote a simplicial subcomplex inclusion, and let ω be a linear ordering of the

vertices. Then there are long exact sequences of homology groups, and they fit into the

following commutative diagram, in which the rows are exact and the horizontal arrows

represent the canonical maps from ordered to unordered chains:

· · · Hk+1(K
ω,Lω)

∂
−→ Hk(L

ω)
i∗−→ Hk(K

ω)
j∗
−→ Hk(K

ω,Lω)
∂
−→ Hk−1(L

ω) · · ·




y

ϕ∗




y

ϕ∗




y

ϕ∗




y

ϕ∗




y

ϕ∗

· · · Hk+1(K,L)
∂
−→ Hk(L)

i∗−→ Hk(K)
j∗
−→ Hk(K,L)

∂
−→ Hk−1(L) · · ·

15



Sketch of proof. The definitions of simplicial chain groups imply that one has a
commutative diagram of short exact sequences which goes from the ordered chain complex
short exact sequence

0 → C∗(L
ω) → C∗(K

ω) → C∗(K
ω,Lω) → 0

to the unordered chain complex short exact sequence

0 → C∗(L) → C∗(K) → C∗(K,L) → 0 .

The theorem follows by taking the associated long exact homology sequences and using
the naturality of these sequences with respect to maps of short exact sequences of chain
complexes.

At this point it is also appropriate to recall another result on diagrams with exact
sequences from algtopnotes2012.tex; namely, the Five Lemma (Theorem V.3.4).

The isomorphism theorem

Here is the result that has been our main objective:

THEOREM 7. If (K,L) is a simplicial complex pair, then the canonical map

ϕ∗ : H∗(K
ω,Lω) → H∗(K,L)

is an isomorphism.

Proof. Consider the following statements:

(Xn) The map ϕ above is an isomorphism for all simplicial complex pairs (K,L)
such that dimK ≤ n.

(Yn+1) The map ϕ above is an isomorphism for all (K,L) such that dimK ≤ n
and also for (∆n+1, ∂∆n+1).

(Wn+1,m) The map ϕ above is an isomorphism for all (K,L) such that dimK ≤ n
and also for all (K,L) such that dimK ≤ n+ 1 and K has at most m simplices

of dimension equal to n+ 1.

The theorem is then established by the following double inductive argument:

[F] The statement (X0) and the equivalent statement (W1,0) are true.

[G] For all nonnegative integers n, the statement (Xn) implies (Yn+1).

[K] For all nonnegative integers n and m, the statements (Wn+1,m) and (Yn+1)
imply (Wn+1,m+1).

Since statement (Xn) is true if and only if (Wn,m) is true for all m, and the latter are all
true if and only if (Wn+1,0) is true, we also have the following:
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[L] For all n the statements (Xn)⇐⇒ (Wn+1,0) and (Yn+1) imply (Wn+1,m) for all
m, and hence (Xn) implies (Xn+1).

Therefore (Xn) is true for all n, and this is the conclusion of the theorem.

Proof of [F]. By the Five Lemma it suffices to prove the result when L is empty. Since
the 0-dimensional complex determined by K is merely a finite set of vertices, write these
vertices as w1, · · · wm. We then have canonical chain complex isomorphisms

m
⊕

j=1

C∗({wj}
ω) −→ C∗(K

ω) ,

m
⊕

j=1

C∗({wj}) −→ C∗(K)

and these pass to homology isomorphisms

m
⊕

j=1

H∗({wj}
ω) −→ H∗(K

ω) ,

m
⊕

j=1

H∗({wj}) −→ H∗(K) .

These maps commute with the homomorphisms ϕ∗ sending ordered to unordered chains.
and since the maps ϕ∗ are isomorphisms for one point complexes (= 0-simplices), it follows
that ϕ defines an isomorphism from H∗(K

ω) to H∗(K). The completes the proof of (X0).

Proof of [G]. By (Xn) we know that ϕ∗ is an isomorphism for the complex ∂∆n+1.
Since ϕ∗ is also an isomorphism for ∆n+1 by Corollary III.3.6. Therefore the Five Lemma
implies that ϕ∗ is an isomorphism for (∆n+1, ∂∆n+1).

Proof of [K]. This is the crucial step. Let K be an (n + 1)-dimensional complex,
and let M be a subcomplex obtained by removing exactly one (n+ 1)-simplex from K, so
that ϕ∗ is an isomorphism for M by the inductive hypothesis. If we can show that ϕ∗ is
an isomorphism for (K,M), then it will follow that ϕ∗ is an isomorphism for K, and the
relative case will the follow from the Five Lemma.

Let S be the extra simplex of K and let ∂S be its boundary. Then there are canonical
isomorphism from the chain groups of ∆n+1, ∂∆n+1 and (∆n, ∂∆n+1) to the chain groups
of S, ∂S and (S, ∂S). We then have the following commutative diagram, in which the
morphisms α and β are determined by subcomplex inclusions:

C∗(S
ω, ∂Sω)

α
−−−−−→ C∗(K

ω,Mω)




y
ϕ(S, ∂S)





y
ϕ(K,M)

C∗(S, ∂S)
β

−−−−−→ C∗(K,M)

We CLAIM that α and β are isomorphisms of chain complexes. For the mapping α, this
follows because the relative ordered chain groups of a pair (T,T0) are free abelian groups
on the simplices in T−T0, and each of the sets S− ∂S and K−M is given by the same
(n + 1)-simplex. For the mapping β, this follows because the relative unordered chain
groups of a pair (T,T0) are free abelian groups on the generators v0 · · · vk, where the
vj are vertices of a simplex that is in T but not in T0 (with repetitions allowed as usual),
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and once again these free generators are identical for te pairs (S, ∂S) and (K,M) because
S− ∂S and K−M are the same.

By (Yn+1) we know that ϕ(S, ∂S) defines an isomorphism in homology, and therefore
it follows that the homology map

ϕ(K,M)∗ = β∗ oϕ(S, ∂S)∗ oα−1
∗

also defines an isomorphism in homology. We can now use the Five Lemma and (Wn+1,m)
to conclude that the map ϕ(K) defines an isomorphism in homology, and finally we can use
the Five Lemma once more to see that the statement (Wn+1,m+1) is true. This completes
the proof of [K], and as noted above it also yields [L] and the theorem.

The preceding result can be reformulated in an abstract setting that will be needed
later. We begin by defining a category SCPairs whose objects are pairs of simplicial
complexes (K,K0) and whose morphisms are given by subcomplex inclusions (L,L0) ⊂
(K,K0); in other words, L0 is a subcomplex of both L and K0 while L is also a subcomplex
of K. A homology theory on this category is a covariant functor h∗ valued in some category
of modules together with a natural transformation

∂(K,L) : h∗(K,L) −→ h∗−1(L)

such that

(a) one has long exact homology sequences,

(b) if K is a simplex and v is a vertex of K then h∗({v})→ h∗(K) is an isomorphism,

(c) if K is 0-dimensional with vertices vj then the associated map from ⊕j hj({vj})
to h∗(K) is an isomorphism,

(d) ifK is obtained fromM by adding a single simplex S, then h∗(S, ∂S)→ h∗(M,K)
is an isomorphism,

(d) if K is complex consisting only of a single vertex then h0(K) is the underlying
ring R and hj(K) = 0 if j 6= 0.

A natural transformation from one such theory (h∗, ∂) to another (h′
∗
, ∂′) is a natural

transformation of θ of functors that is compatible with the mappings ∂ and ∂′; specifically,
we want

θ(L) o∂ = ∂ ′ oθ(K,L) .

These conditions imply the existence of a commutative ladder diagram as in Theorem 6,
where the rows are the long exact sequences determined by the two abstract homology
theories. The definition is set up so that the proof of the next result is formally parallel
to the proof of Theorem 7:

THEOREM 8. Suppose we are given a natural transformation of homology theories

θ as above such that θ(K) is an isomorphism if K consists of just a single vertex. Then

θ(K,L) is an isomorphism for all pairs (K,L).
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