
I.2 : Subdivisions

(Hatcher, § 2.1)

For many purposes it is convenient or necessary to replace a simplicial decomposition
K of a polyhedron P by another decomposition L with smaller simplices. More precisely,
we would like the smaller simplices in L to determine simplicial decompositions for each
of the simplices in K.

The need for working with subdivisions arises in many contexts. For example, as in
the figure below, the union of two solid triangular regions in the plane usually does not
satify the conditions for a simplicial decomposition, but it is possible to subdivide the
union and obtain a simplicial decomposition such that each of the original regions is a
subcomplex.

Similar considerations apply to arbitrary polyhedra. We shall not attempt to state this
precisely or prove it because we do not need such results in this course, but here are some
references:

J. F. P. Hudson. Piecewise Linear Topology . W. A. Benjamin, New York ,
1969. (Online: http://www.maths.ed.ac.uk/∼aar/surgery/hudson.pdf)

C. P. Rourke and B. J. Sanderson. Introduction to Piecewise-Linear
Topology (Ergeb. Math. Bd. 69). Springer -Verlag, New York–etc., 1972.

A few topics are also discussed in [MunkresEDT]. An extremely detailed study of some
topics in this section also appears in the following online book:

http://www.cis.penn.edu/∼jean/gbooks/convexpoly.html

Explicit simple examples

1. If P is a 1-simplex with vertices x and y, and K is the standard decomposition
given by P and the endpoints, then there is a subdivision L given by trisecting
P ; specifically, the vertices are given by x, y, z = 2

3
x + 1

3
y, and w = 1

3
x + 2

3
y,

and the 1-simplices are xw, wz and zy. This is illustrated in the figure below.
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2. Similarly, if [a, b] is a closed interval in the real line and we are given a finite
sequence a = t0 < · · · < tm = b, then these points and the intervals [tj−1, tj ],
where 1 ≤ j ≤ n, form a subdivision of the standard decomposition of [a, b].

3. If P is the 2-simplex with vertices x, y and z, andK is the standard decomposition
given by P and its faces, then there is an obvious decomposition L which splits
P into two simplices xyz and xyw, where w = 1

2
y + 1

2
z is the midpoint of the

1-simplex yz. Similar eamples exist if we take z = ay + (1 − a)z, where a is an
arbitrary number such that 0 < a < 1 (see the figure below).

Formal definition of subdivisions

Each of the preceding examples is consistent with the following general concept.

Definition. Let (P,K) be a simplicial complex, and let L be a simplicial decomposition
of P . Then L is called a (linear) subdivision of K if every simplex of L is contained in a
simplex of K.

The following observation is very elementary, but we shall need it in the discussion
below.

PROPOSITION 0. Suppose P is a polyhedron with simplicial decompositions K, L
and M such that L is a subdivision of K and M is a subdivision of L. Then M is also a
subdivision of K.

The first figure below depicts two subdivisions of a 2-simplex that are different from
the one in Example 3 above. As indicated by the second figure, in general if we have two
simplicial decompositions of a polyhedron then neither is necessarily a subdivision of the
other.
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.

However, it is possible to prove the following compatibilty result for linear subdivisions:

If K and L are simplicial decompositions of the same polyhedron P ,
then there is a third decomposition which is a subdivision of both K
and L.

Proving this requires more machinery than we need for other purposes, and since we shall
not need the existence of such subdivisions in this course we shall simply note that one
can prove this result using methods from the second part of [MunkresEDT]:

SUBDIVISION AND SUBCOMPLEXES. These two concepts are related by the follow-
ing elementary results.

PROPOSITION 1. Suppose that (P,K) is a simplicial complex and that (P1,K1) is
a subcomplex of (P,K). If L is a subdivision of K and L1 is the set of all simplices in L
which are contained in P1, then (P1,L1) is a subcomplex of (P,L).

Recall our Default Hypothesis (at the end of Section I.2) that all simplicial decompo-
sitions should be closed under taking faces unless specifically stated otherwise.

COROLLARY 2. Let P , K and L be as above, and let A ⊂ P be a simplex of K. Then
L determines a simplicial decomposition of A.
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Barycentric subdivisions

We are particularly interested in describing a systematic construction for subdivisions
that works for all simplicial complexes and allows one to form decompositions for which
the diameters of all the simplices are very small. This will generalize a standard method
for partitioning an interval [a, b] into small intervals by first splitting the interval in half
at the midpoint, then splitting the two subintervals in half similarly, and so on. If this is
done n times, the length of each interval in the subdivision is equal to (b − a)/2n, and if
ε > 0 is arbitrary then for sufficiently large values of n the lengths of the subintervals will
all be less than ε.

The generalization of this to higher dimensions is called the barycentric subdivi-
sion.

Definition. Given an n-simplex A ⊂ R
m with vertices v0, · · · ,vn, the barycenter bA

of A is given by

bA =
1

n+ 1

n
∑

i=0

vi .

If n ≤ m ≤ 3, this corresponds to the physical center of mass for A, assuming the density
in A is uniform.

Definition. If P ⊂ R
m is a polyhedron and (P,K) is a simplicial complex, then the

barycentric subdivision B(K) consists of all simplices having the form b0 · · · bk, where
(i) each bj is the barycenter of a simplex Aj ∈ K, (ii) for each j > 0 the simplex Aj−1 is
a face of Aj .

Here is the barycentric subdivision of a 2-simplex:

In order to justify this definition and show that we actually have a simplicial decomposition,
we first need to prove the following result:
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PROPOSITION 3. Let A be an n-simplex, suppose that we are given simplices Aj ⊂ A
such that Aj−1 is a face of Aj for each j, and let bj be the barycenter of Aj . Then the set
of vertices {b0, · · · ,bq} is affinely independent.

Proof. We can extend the sequence of simplices {Aj } to obtain a new sequence
C0 ⊂ · · · ⊂ Cn = A such that each Ck is obtained from the preceding one Ck−1 by
adding a single vertex, and it suffices to prove the result for the corresponding sequence of
barycenters. Therefore we shall assume henceforth in this proof that each Aj is obtained
from its predecessor by adding a single vertex and that A is the last simplex in the list.

It suffices to show that the vectors bj − b0 are linearly independent. For each j let
vji be the vertex in Aj that is not in its predecessor. Then for each j > 0 we have

bj − b0 =





1

j + 1

∑

k≤j

vik



 − v0 =
1

j + 1

∑

k≤j

(vik − vi0) .

which is a linear combination of the linearly independent vectors vi1 − vi0 , · · · ,vij − vi0

such that the coefficient of the last vector in the set is nonzero.

If we let uk = vik−vi0 , then it follows that for all k > 0 we have bk−b0 = akuk+yk,
where yk is a linear combination of u1, · · · ,uk−1 and ak 6= 0. Since the vectors uj are
linearly independent, it follows that the vectors bk − b0 (where 0 < k ≤ n) are linearly
independent and hence the vectors b0, · · · ,bn are affinely independent.

The simplest nontrivial examples of barycentric subdivisions are given by 2-simplices.
For the sake of definiteness, we shall call the simplex P and the vertices v0, v1 and v2.

(i) The 0-simplices are merely the barycenters bA, where A runs through all the
nonempty faces of P and P itself. There are 7 such simplices and hence 7 vertices
in B(K).

(ii) The 1-simplices have the form bAbC , where A is a face of C. There are three
possible choices for the ordered pair (dimA, dimC); namely, (0, 1), (0, 2) and
(1, 2). The number of pairs {A, C} for the case (0, 1) is equal to 6, the number
for the case (0, 2) is equal to 3, and the number for the case (0, 1) is also equal
to 3, so there are 12 different 1-simplices in B(K).

(iii) The 2-simplices have the form bAbCbE , where A is a face of C and C is a face
of E. There are 6 possible choices for {A, C, E}.

Obviously one could carry out a similar analysis for a 3-simplex but the details would be
more complicated.

Of course, it is absolutely essential to verify the that barycentric subdivision construc-
tion actually defines simplicial decompositions.

THEOREM 4. If (P,K) is a simplicial complex andB(K) is the barycentric subdivision
of K, then (P,B(K) ) is also a simplicial complex (in other words, the collection B(K)
determines a simplicial decomposition of P ).
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By their second year of graduate studies students must make the transi-
tion from understanding simple proofs line-by-line to understanding the
overall structure of proofs of [long or] difficult theorems. [Of course it
is still necessary to understand simple proofs in detail, but as one pro-
gresses it is necessary to begin the study of more complicated arguments
by having some grasp of the main steps and how they are studied.]

Several steps in the proof of this result are fairly intricate, and the following remark
from Davis and Kirk, Lecture Notes in Algebraic Topology , are worth remembering:

Proof. We shall concentrate on the special case where P is a simplex. The general case
can be recovered from the special case and Lemma IV.2.6 in algtop-notes.pdf (see p.
51).

Suppose now that P is a simplex with vertices vertices v0, · · · ,vn. We first show that
P is the union of the simplices in B(K). Given x ∈ P , write x as a convex combination
∑

j tj vj, and rearrange the scalars into a sequence

tk0
≥ tk1

· · · ≥ tkn

(this is not necessarily unique, and in particular it is not so if tu = tv for u 6= v). For each
i between 0 and n, let Ai be the simplex whose vertices are vk0

, · · · ,vki
. We CLAIM

that x ∈ b0 · · · bn, where bi is the barycenter of Ai.

Let si = tki
− tki+1

for 0 ≤ i ≤ n− 1 and set sn = tkn
. Then si ≥ 0 for all i, and it is

elementary to verify that

x =
n
∑

i=0

(i+ 1) si bi , where

n
∑

1=0

(i+ 1) si =

n
∑

i=0

tki
= 1 .

Therefore x ∈ b0 · · · bn, so that every point in A lies on one of the simplices in the
barycentric subdivision.

To conclude the proof, we must show that the intersection of two simplices in B(K)
is a common face. First of all, it suffices to show this for a pair of n-dimensional simplices;
this follows from the argument following the Default Hypothesis at the end of Section IV.2
in algtop-notes.pdf.

Suppose now that α and γ are n-simplices inB(K). Then the vertices of α are barycen-
ters of simplices A0, · · · , An where Aj has one more vertex than Aj−1 for each j, and
the vertices of γ are barycenters of simplices C0, · · · , Cn where Cj has one more vertex
than Cj−1 for each j. Label the vertices of the original simplex as vi0 , · · · ,vin where
Aj = vi0 · · · vij and also as vk0

, · · · ,vkn
where Cj = vk0

· · · vkj
. The key point is to

determine how (i0, · · · , in) and (k0, · · · , kn) are related.
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.

If x lies on the original simplex and x is written as a convex combination
∑

j tj vj , then
we have shown that x ∈ A if ti0 ≤ · · · ≤ tin . In fact, we can reverse the steps in that
argument to show that if x ∈ A then conversely we have ti0 ≤ · · · ≤ tin . Similarly, if
x ∈ C then tk0

≤ · · · ≤ tkn
. Therefore if x ∈ A ∩ C then tij = tkj

for all j. Choose
m0, · · · ,mq ∈ {0, · · · , n} such that tmj

> tmj+1
, with the convention that tn+1 = 0,

and split {0, · · · ,n } into equivalence classes M0, · · · ,Mq such that Mj is the set of
all u such that tu = tmj

. It follows that x lies on the simplex z0 · · · zq, where zj is the
barycenter of the simplex whose vertices areM0 ∪ · · · ∪Mj . The vertices of this simplex
are vertices of both A and C. Since A ∩ C is convex, this implies that it is the simplex
whose vertices are those which lie in A ∩ C, and thus A ∩ C is a face of both A and C.

Terminology. Frequently the complex (P,B(K)) is called the derived complex of (P,K).
The barycentric subdivision construction can be iterated, and thus one obtains a sequence
of decompositions Br(K). The latter is often called the rth barycentric subdivision of K
and (P,Br(K)) is often called the rth derived complex of (P,K).

.
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Diameters of barycentric subdivisions

Given a metric space (X,d), its diameter is the least upper bound of the distances
d(y, z), where y, z ∈ X; if the set of distances is unbounded, we shall follow standard usage
and say that the diameter is infinite or equal to ∞.

PROPOSITION 5. Let A ⊂ R
n be an n-simplex with vertices v0, · · · ,vn. Then the

diameter of A is the maximum of the distances |vi − vj |, where 0 ≤ i, j ≤ n.

Proof. Let x,y ∈ A, and write these as convex combinations x =
∑

j tj vj and
y =

∑

j sj vj . Then

x− y =

(

∑

i

si

)

x −





∑

j

tj



 y =
∑

i,j

sitj vj −
∑

i,j

sitj vi .

Since 0 ≤ si, tj ≤ 1 for all i and j, we have 0 ≤ sitj ≤ 1 for all i and j, so that

d(x, y) = |x− y| ≤
∣

∣

∑

i,j

sitj (xj − xi)
∣

∣ ≤

∑

i,j

sitj |vi − vj | ≤
∑

i,j

sitj max |vk − v`| = max |vk − v`|

as required.

Definition. If K is a simplicial decomposition of a polyhedron P , then the mesh of K,
written µ(K), is the maximum diameter of the simplices in K.

PROPOSITION 6. In the preceding notation, the mesh of K is the maximum distance
|v −w|, where v and w are vertices of some simplex in K.

The main result in this discussion is a comparison of the mesh of K with the mesh of
B(K).

PROPOSITION 7. Suppose that (P,K) be a simplicial complex and that all simplices
of K have dimension ≤ n. Then

µ(B(K) ) ≤
n

n+ 1
· µ(K) .
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Before proving this result, we shall derive some of its consequences.

COROLLARY 8. In the preceding notation, if r ≥ 1 then

µ(Br(K) ) ≤

(

n

n+ 1

)r

· µ(K) .

COROLLARY 9. In the preceding notation, if ε > 0 then there exists an r0 such that
r ≥ r0 implies µ(Br(K) ) < ε.

Corollary 9 follows from Corollary 8 and the fact that

lim
r→∞

(

n

n+ 1

)r

= 0 .

Proof of Proposition 7. By Proposition 5 and the definition of barycentric subdivision
we know that µ(B(K) ) is the maximum of all distances |bA − bC |, where bA and bC are
barycenters of simplices A, C ∈ K such that A ⊂ C. Suppose that A is an a-simplex and
C is a c-simplex, so that 0 ≤ a < c ≤ n. We then have

|bA − bC | =

∣

∣

∣

∣

∣

1

a+ 1

∑

v∈A

v −
1

c+ 1

∑

w∈C

w

∣

∣

∣

∣

∣

and as in the proof of Proposition 5 we have

1

a+ 1

∑

v∈A

v −
1

c+ 1

∑

w∈C

w =
1

(a+ 1)(c+ 1)

∑

v,w

(v −w) .

There are (a+1) terms in this summation which vanish (namely, those for which w = v),
and therefore we have

|bA − bC | =

∣

∣

∣

∣

∣

∣

1

(a+ 1)(c+ 1)

∑

v 6=w

(v −w)

∣

∣

∣

∣

∣

∣

≤
1

(a+ 1)(c+ 1)

∑

v 6=w

|v −w| ≤

1

(a+ 1)(c+ 1)
·
(

maxv,w

)

|v −w| ·
[

(a+ 1)(c+ 1)− (a+ 1)
]

=

(

maxv,w |v −w|
)

·

(

1 −
1

c+ 1

)

≤

(

1 −
1

n+ 1

)

.

At the last step we use c ≤ n and the fact that the function 1 − (1/x) is an increasing
function of x if x > 1. The inequality in the corollary follows directly from the precedng
chain of inequalities.

One further consequence of Proposition 7 will be important for our purposes.
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COROLLARY 10. Let (P,K) be a simplicial complex, and let W be an open covering
of P . Then there is a positive integer r0 such that r ≥ r0 implies that every simplex of
µ(Br(K) ) is contained in an element of W.

Proof. By construction, P is a compact subset of a the metric space R
m. Therefore the

Lebesgue Covering Lemma implies the existence of a real number η > 0 such that every
subset of diameter < η is contained in an element of W. If we choose r0 > 0 such that
r ≥ r0 implies µ(Br(K) ) < η, then Br(K) will have the required properties.

Homology and barycentric subdivisions

We shall now use the preceding results to show that the homology groups of a barycen-
tric subdivision B(K) are isomorphic to the homology groups of the original complex K.
In this case the homology theories will be H∗(K

ω,Lω) and H∗

(

B(K)τ , B(L)τ
)

, and the
natural transformation will be associated to maps defined on the chain level. It will suffice
to define these chain maps for a simplex and to extend to arbitrary complexes and pairs
by putting things together in an obvious manner.

PROPOSITION 11. Given a nonnegative integer n, let ∂j : ∆n−1 → ∆n be the order
preserving affine map sending ∆n−1 to the face of ∆n opposite the j th vertex, and let
(δj)# generically denote an associated chain map. Then there are classes βn ∈ Cn(∆

ω
n)

such that β0 is just the standard generator and if n > 0 then

dn(βn) =

n
∑

j=0

(−1)j(∂j)#(βn−1) .

Proof. Since ∆n is acyclic, it suffices to show that the right hand side lies in the kernel
of dn−1 if n > 1 and in the kernel of ε if n = 1. Both of these are routine (but tedious)
calculations.

Using the chains βn one can piece together chain maps

C∗(K
ω,Lω) −→ C∗

(

B(K)τ , B(L)τ
)

.

We claim these define a natural transformation of homology theories, but in order to do this
we must first show thatH∗

(

B(K)τ , B(L)τ
)

actually defines a homology theory. Properties
(a), (c) and (e) follow directly from the construction. Property (b) follows because B(∆n)
is star shaped with respect to the vertex b given by the barycenter of ∆n. Thus it only
remains to verify property (d); in fact, direct inspection similar to an argument in the
proof of Theorem 1.6 shows that the map on the chain level is an isomorphism.

By Theorem 1.7, it suffices to check that the natural transformation of homology
theories is an isomorphism for a simplicial complex consisting of a single vertex; in fact,
for such complexes the map is already an isomorphism on the chain level. Therefore the
barycentric subdivision chain maps determine isomorphism of homology groups as asserted
in the proposition.
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