
II . Construction and uniqueness of singular homology

This unit proves the existence of a homology theory which satisfies nearly all the
conditions formulated in Unit VI of algtop-notes.tex. The following summarizing table
provides more precise references:

Axiom Type Axiom Numbers Pages

Primitive Data (T.1)–(T.5) 74–75
Functoriality and naturality (A.1)–(A.6) 75–77

Exactness (B.1)–(B.3) 77–78
Homotopy Invariance (C.1) 79

Compact/Polyhedral Generation (C.2)–(C.3) 79–80
Normalization (D.1)–(D.5) 80–81
Excision (E.1)–(E.2) 82

Mayer-Vietoris Sequences (E.3)–(E.4) 82–83

The basic idea of the existence proof is very simple: We modify the construction of simpli-
cial chain complexes to obtain a new functor from the category of topological spaces to the
category of chain complexes, and we take the homology groups of these chain complexes.
By functoriality, such groups will automatically be topologically invariant. Many steps in
verifying the axioms will be fairly straightforward, but there are two crucial pieces of input
from Unit I of these notes that will be needed:

(1) In Section I.5 we constructed a chain Pq+1 ∈ Cq+1(∆q × [0, 1]) which was an
integral linear combination of all the simplices in ∆q × [0, 1] with coefficients
± 1. This chain will be used to show that homotopic maps of spaces define chain
homotopic maps of chain complexes, which will imply that the homotopic maps
induce the same mappings in homology.

(2) Given an open covering U of a space X, it is sometimes necessary to know that
we can somehow replace an algebraic chain for X by another chain whose pieces
are so small that each one lies inside a set in the open covering. If we are dealing
with simplicial chains over a simplicial complex, this can be done using iterated
barycentric subdivisions. Historically speaking, one of the most important steps
in the development of singular homology theory was to “leverage” barycentric
subdivision into a construction for singular homology.

In the final section of this unit we shall prove uniqueness theorems for constructions sat-
isfying all the axioms for singular homology described in Unit VI of algtop-notes.tex
except for (D.5), which relates the fundamental group of an arcwise connected space to its
1-dimensional homology; the statement of this axiom assumes the existence of certain natu-
ral transformations relating fundamental groups and homology, and the uniqueness results
do not require any of this structure. In Unit III we shall construct these natural transfor-
mations from the fundamental group functor to the singular homology theory constructed
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here, and we shall verify the axiom relating the fundamental group to 1-dimensional ho-
mology.

It took about a half century for mathematicians to come up with the formulation
that is now standard, starting with Poincaré’s initial papers on topology (which he called
analysis situs) at the end of the 19th century and culminating with the definition of singular
homology by S. Eilenberg and N. Steenrod in the nineteen forties (with many important
contributions by others along the way).

Some books start directly with singular homology and do not bother to develop sim-
plicial homology. The reason for considering the latter here is that it is in some sense a
“toy model” of singular homology for which many basic ideas appear in a more simplified
framework.

II.1 : Basic definitions and properties

(Hatcher, §§ 2.1, 2.3)

As before, let ∆q be the standard q-simplex in R
q+1 whose vertices are the standard

unit vectors e0, · · · , eq. If (P,K) is a simplicial complex, then for each free generator
v0 · · · vq of Cq(P,K) there is a unique affine (hence continuous) map T : ∆q → P which
sends a point (t0, · · · , tq) ∈ ∆q+1 to

∑

j tj vj ∈ P . One can think of these as linear
simplices in P . The idea of singular homology is to consider more general continuous
mappings from ∆q to a space X, viewing them as simplices with possible singularities or
singular simplices in the space.

Definition. Let X be a topological space. A singular q-simplex in X is a continuous
mapping T : ∆q → X, and the abelian group of singular q-chains Sq(X) is defined to be
the free abelian group on the set of singular q-simplices.

If we let ∂j : ∆q−1 → ∆q be the affine map which sends ∆q−1 to the face opposite the
vertex ej and is order preserving on the vertices, then as in the case of simplicial chains
we have boundary homomorphisms dq : Sq(X) → Sq−1(X) given on generators by the
standard formula:

dq(T ) =

n
∑

j=0

(−1)i∂i(T ) =

n
∑

j=0

(−1)iT o∂i

Likewise, there are augmentation maps ε : S0(X) → Z which send each free generator
T : ∆0 → X to 1 ∈ Z.

We then have the following results:

PROPOSITION 1. The homomorphisms dq make S∗(X) into a chain complex, and
if (P,K) is a simplicial complex, then the affine map construction makes C∗(P,K) into a
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chain subcomplex of Sq(P ), and the inclusion is augmentation preserving. Furthermore, if
A is a subset of X, then S∗(A) is canonically identified with a subcomplex of S∗(X) by the
map taking T : ∆q → X into i oT : ∆q → X, where i : A→ X is the inclusion mapping.

PROPOSITION 2. Let X and Y be topological spaces, and let f : X → Y be a
continuous map. Then there is a chain map f# from S∗(X) to S∗(Y ) such that for each
singular q-simplex T the value f#(T ) is given by f oT . This construction transforms the
singular chain complex construction into a covariant functor from topological spaces and
continuous maps to chain complexes (and chain maps). Furthermore, passage to quotients
yields a covariant functor from pairs of topological spaces and continuous maps of pairs to
chain complexes and chain maps.

This is essentially an elementary verification, and probably the most noteworthy part
is the need to verify that f# is a chain map. Details are left to the reader.(?)

Predictably, the homology groups we want are the homology groups of the singular
chain complexes.

Definition. If X is a topological space, then the singular homology groups H∗(X)
are the corresponding homology groups of the chain complex defined by S∗(X). More
generally, if A is a subset of X, then the relative chain complex S∗(X,A) is defined to be
S∗(X)/S∗(A), and the relative singular homology groups H∗(X,A) are the corresponding
homology groups of that quotient complex. Note that if (K,L) is a pair consisting of a
simplicial complex and a subcomplex with underlying space pair (P,Q), then Proposition 1
generalizes to yield a chain map from θ# : C∗(K,L) to S∗(P,Q). — Note that the relative
groups (both singular and simplicial) do not have augmentation homomorphisms if A or
L is nonempty.

It is not difficult to show that the singular homology groups of homeomorphic spaces
are isomorphic, and in fact it is an immediate consequence of the following results:

PROPOSITION 3. The homology groupsH∗(X,A) and homomorphisms f∗;H∗(X,A)→
H∗(Y,B) define a covariant functor from the category of pairs of topological spaces to the
category of abelian groups and homomorphisms. Furthermore, if (K,L) is a pair consist-
ing of a simplicial complex and a subcomplex with underlying space pair (P,Q), then the
chain map θ# induces a natural transformation of functors θ∗ : H∗(K,L)→ H∗(P,Q).

This proposition shows that we have data types (T.3) and (T.5) in our axiomatic
description of singular homology, and it also verifies axioms (A.1) and (A.2), which involve
functoriality and naturality with respect to simplicial homology.

Since functors send isomorphisms in source category to isomorphisms in the target, the
topological invariance of singular homology groups is a trivial consequence of Proposition
3.

COROLLARY 4. If X and Y are topological spaces and f : X → Y is a homeo-
morphism, then the associated homomorphism of graded homology groups f∗ : H∗(X)→
H∗(Y ) is an isomorphism.
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By Corollary 3, the simplicial homology groups of homeomorphic polyhedra will be
isomorphic if we can give an affirmative answer to the following question for all simplicial
complexes (P,K):

PROBLEM. If (P,K) is a simplicial complex and λ : C∗(K) → S∗(P ) is the associated
chain map, does θ∗ : H∗(K)→ H∗(P ) define an isomorphism of homology groups?

We shall prove this later. For the time being we note that the map λ is a chain level
isomorphism if K is given by a single vertex (in this case each of the groups Sq(X) is
cyclic, and it is generated by the constant map from ∆q to X).

The simplest normalization properties of homology groups

It will be convenient to go through the verifications roughly in order of increasing
complexity rather than to follow the ordering given in algtop-notes.pdf. From this
viewpoint, the next axioms to consider are the normalization axioms (D.2)–(D.4); it is
mildly ironic that (D.1) will be one of the last axioms to be verified.

The verification of (D.4), which states that negative-dimensional homology groups are
zero, is particularly tirival; the simplicial chain groups Sq(X,A) vanish by construction if
q < 0, and since the homology groups are subquotients of the chain groups they must also
vanish.

If X is a topological space and T : ∆q → X is a singular simplex, then the image of T
lies entirely in a single path component of X. Therefore the next result, whose conclusion
includes the statement of (D.2), follows immediately.

PROPOSITION 5. If X is a topological space and its path components are the
subspaces Xα, then the maps S∗(Xα) to S∗(X) induced by inclusion define an isomorphism
of chain complexes

⊕

S∗(Xα) → S∗(X) and hence also a homology isomorphism from
⊕

H∗(Xα) to H∗(X).

The preceding results lead directly to a verification of (D.3).

COROLLARY 6. In the setting above, H0(X) is isomorphic to the free abelian group
on the set of path components of X.

A proof of this result is given on pages 109 – 110 of Hatcher.

One immediate consequence of the preceding observations is that the map from C∗(K)
to S∗(P ) is an isomorphism if (P,K) is 0-dimensional, and similarly for the map from
H∗(K) to H∗(P ).

Although we are far from ready to verify (D.1) in complete generality, we can do so
for the very simplest examples.

PROPOSITION 7. (The Eilenberg-Steenrod Dimension Axiom) If X = {x} consists
of a single point, then Hq(X) = 0 if q 6= 0, and H0(X) ∼= Z with the isomorphism given
by the augmentation map.
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Proof. Suppose first that x ∈ R
n for some n, so that {x} is naturally a 0-dimensional

polyhedron. We have already noted that the simplicial and singular chains on X are
isomorphic. Since the conclusion of the proposition holds for (unordered) simplicial chains
by the results of the preceding unit, it follows that the same holds for singular chains. To
prove the general case, note that if {x} is an arbitrary space consisting of a single point
and 0 ∈ R

n, then {0} is homeomorphic to {x} and in this case the conclusion follows from
the special case because homeomorphic spaces have isomorphic homology groups.

The compact supports property

Our next result verifies (C.2) and is often summarized with the phrase, singular homol-
ogy is compactly supported. This was not one of the original Eilenberg-Steenrod axioms,
but its importance for using singular homology was already clear when Eilenberg and
Steenrod developed singular homology.

THEOREM 8. Let X be a topological space, and let u ∈ Hq(X). Then there is a
compact subspace A ⊂ X such that u lies in the image of the associated map from Hq(A)
to Hq(X). Furthermore, if A is a compact subset of X and u, v ∈ Hq(A) are two classes
with the same image in Hq(X), then there is a compact subset B satisfying A ⊂ B ⊂ X
such that the images of u and v are equal in Hq(B).

Proof. If c is a singular q-chain and

c =
∑

j

nj Tj

define the support of c, written Supp (c), to be the compact set ∪j Tj(∆q). Note that this
subset is compact.

If u ∈ Hq(X) is represented by the chain z and if A = Supp (z), then since S∗(A) →
S∗(X) is 1–1 it follows that z represents a cycle in A and hence u lies in the image of
Hq(A)→ Hq(X).

Suppose now that A is a compact subset of X and u, v ∈ Hq(A) are two classes with
the same image inHq(X). Let z and w be chains in Sq(A) representing u and v respectively,
and let b ∈ Sq+1(X) be such that d(b) = i#(z)− i#(w). If we set B = A ∪ Supp (b), then
it follows that the images of z −w bounds in Sq(B), and therefore it follows that u and v
have the same image in Hq(B).

II.2 : Exactness and homotopy invariance

(Hatcher, §§ 2.1, 2.3)

We have seen that long exact sequences and homotopy invariance yield a great deal
of information about homology groups. The next step is to verify some of the properties
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for singular homology and their compatibility with the analogous properties for simplicial
homology.

The exact sequence of a pair

In 205B the long exact sequence of a pair in simplicial homology turned out to be a
direct consequence of the corresponding long exact homology sequence for a short exact
sequence of chain complexes. In view of our definitions, it is not surprising that the same
considerations yield long exact sequences of pairs in singular homology.

THEOREM 1. (Long Exact Homology Sequence Theorem — Singular Homology
Version). Let (X,A) be a pair of topological spaces where A is a subspace of X. Then
there is a long exact sequence of homology groups as follows:

· · · Hk+1(X,A)
∂
−→ Hk(A)

i∗−→ Hk(X)
j∗
−→ Hk(X,A)

∂
−→ Hk−1(A) · · ·

This sequence extends indefinitely to the left and right. Furthermore, if we are given
another pair of spaces (Y,B) and a continuous map of pairs f : (X,A)→ (Y,B) such that
f : X → Y is continuous and f [A] ⊂ B, then we have the following commutative diagram
in which the two rows are exact:

· · · Hk+1(X,A)
∂
−→ Hk(A)

i∗−→ Hk(X)
j∗
−→ Hk(X,A)

∂
−→ Hk−1(A) · · ·

· · ·




yf∗





yf∗





yf∗





yf∗





yf∗

· · · Hk+1(Y,B)
∂′

−→ Hk(B)
i′
∗−→ Hk(Y )

j′
∗−→ Hk(Y,B)

∂′

−→ Hk−1(B) · · ·

This follows immediately from the algebraic theorem on long exact homology se-
quences and the definitions of the various homology groups in terms of a short exact
sequence of chain complexes.

There is also a map of long exact sequences relating simplicial and singular homology
for simplicial complexes. This is not one of the Eilenberg-Steenrod properties, but logically
it fits naturally into the discussion here.

THEOREM 2. Let (X,K) be a simplicial complex, and let (A,L) determine a subcom-
plex. Then there is a commutative ladder as below in which the horizontal lines represent
the long exact homology sequences of pairs and the vertical maps are the natural trans-
formations from simplicial to singular homology.

· · · Hk+1(K,L)
∂
−→ Hk(L)

i∗−→ Hk(K)
j∗
−→ Hk(K,L)

∂
−→ Hk−1(L) · · ·

· · ·




yλ∗





yλ∗





yλ∗





yλ∗





yλ∗

· · · Hk+1(X,A)
∂
−→ Hk(A)

i∗−→ Hk(X)
j∗
−→ Hk(X,A)

∂
−→ Hk−1(A) · · ·

The results follow directly from the Five Lemma and the fact that the previously
defined chain maps λ pass to morphisms of quotient complexes of relative chains from
C∗(K,L) to S∗(X,A).
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Theorems 1 and 2 combine to show that our construction has several of the necessary
properties for an abstract singular homology theory; namely, it yields data types (T.2)
and (T.5) and axioms (A.2)–(A.3), (A.5) and (B-1)–(B.3). The remainder of this section is
devoted to verifying axiom (C.1), and thus the results of this section reduce the verification
of singular homology axioms to the following:

(1) Construction of data type (T.2).

(2) Verification of axioms (A.4), (D.1) and (E.1)–(E.4).

(3) Construction of data type (T.4), and verification of axioms (A.6), (C.3) and (D.5).

We shall take care of the first two points in Sections II.3 and II.4. This will prove
that one has a theory with all the properties needed to derive the applications in Unit
VII in algtop-notes.pdf. Axiom (C.3) will be needed to prove the uniqueness results for
axiomatic singular homology in Section II.5, and a reader who wishes to skip this may do
so without loss of continuity. Finally, data type (T.4), and axioms (A.6) and (D.5) are not
needed to prove uniqueness, and we are postponing the discussion of these features until
the next unit.

Homotopy invariance

By definition, two maps of topological space pairs f, g : (X,A)→ (Y,B) are homotopic
as maps of pairs if there is a homotopy H : (X × [0, 1], A× [0, 1]) → (Y,B) such that the
restriction of H to (X × {0}, A × {0}) and (X × {1}, A × {1}) are given by f and g
respectively

The discussion of chain homotopies in Section I.5 suggests the following question: If
f and g are homotopic maps from (X,A) to (Y,B), will the associated chain maps from
Sq(X,A) to Sq(Y,B) be chain homotopic?

An affirmative answer to this question implies axiom (C.1), which states that homo-
topic maps of pairs induce the same homomorphisms in singular homology. The next result
confirms that the answer to the preceding question is yes.

THEOREM 3. (Homotopy invariance of singular homology) Suppose that f, g :
(X,A) → (Y,B) are homotopic as maps of pairs. Then the associated chain maps
f#, g# : S∗(X,A) → s∗(Y,B) are chain homotopic, and the associated homology ho-
momorphisms f∗, g∗ : H∗(X,A)→ H∗(Y,B) are equal.

Before proving this result, we shall state three important consequences.

COROLLARY 4. If f : X → Y is a homotopy equivalence, then the associated
homology maps f∗ : H∗(X)→ H∗(Y ) are isomorphisms.

Proof. Let g : Y → X be a homotopy inverse to f . Since g of is homotopic to the
identity on X and g og is homotopic to the identity on Y , it follows that the composites of
the homology maps g∗ of∗ and f∗ og∗ are equal to the identity maps on H∗(X) and H∗(Y )
respectively, and therefore f∗ and g∗ are isomorphisms.
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COROLLARY 5. If X is a contractible space and there is a contracting homotopy
from the identity to the constant map whose value is given by y ∈ X, then the inclusion
of {y} in X defines an isomorphism of singular homology groups.

Proof. Let i : {y} → X be the inclusion map, and let r : X → {y} be the constant
map, so that r oi is the identity. The contracting homotopy is in fact a homotopy from
the identity to the reverse composite i or, and therefore {y} is a deformation retract of X.
By the preceding corollary, it follows that i∗ defines an isomorphism of singular homology
groups.

COROLLARY 6. If f : (X,A) → (Y,B) is a continuous map of pairs such that the
associated maps X → Y and A→ B are homotopy equivalences, then the homology maps
f∗ from H∗(X,A) to H∗(Y,B) all isomorphisms.

Proof. In this case we have a commutative ladder as in Theorem 1, in which the
horizontal lines represent the exact homology sequences of (X,A) and (Y,B), while the
vertical arrows represent the homology maps defined by the mapping f . Since the mappings
from X to Y and from A to B are homotopy equivalences, it follows that all the vertical
maps except possibly those involvingH∗(X,A)→ H∗(Y,B) are isomorphisms; one can now
use the Five Lemma to prove that these remaining vertical maps are also isomorphisms.

The following simple observation will be useful in the proof of Theorem 3:

LEMMA 7. For each t ∈ [0, 1] let it : X → X × [0, 1] denote the slice inclusion
it(x) = (x, t), Then i0 and i1 are homotopic.

Proof. The identity map on X × [0, 1] defines a homotopy from i0 to i1.

Proof of Theorem 3. We shall first show that it suffices to prove the theorem for
the mappings i0 and i1 described in Lemma 7. For suppose we have continuous mappings
f, g : X → Y and a homotopy H : X × [0, 1] → Y such that H oi0 = f and H oi1 = g.
Then we also have

f∗ = (H oi0)∗ = H∗
o(i0)∗ = H∗

o(i1)∗ = (H oi1)∗ = g∗

showing that f and g define the same maps in homology.

To prove the result for the mappings in Lemma 7 we shall in fact prove that the chain
maps (i0)# and (i1)# from S∗(X) to S∗(X × [0, 1]) are chain homotopic. — The results
of Section I.5 will then imply that the homology maps (i0)∗ and (i1)∗ are equal.

In Section I.5 we noted the existence of simplicial chains Pq+1 ∈ Cq+1(∆q × [0, 1])
such that P0 = 0, P1 = y0x0 and more generally

dPq+1 = (i1)#1q − (i0)#1q −
∑

j

(−1)j(∂j × 1)#Pq

where 1q = e0 · · · eq ∈ Cq(∆q), the map ∂j = ∂
[q]
j : ∆q−1 → ∆q is affine linear onto the

face opposite ej , and (−)# generically denotes an associated chain map. Recall that the
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existence of the chains Pq+1 was proved inductively, the key point being that since ∆q × I

is acyclic, such a chain exists if the boundary of

(i1)#1q − (i0)#1q −
∑

j

(−1)j(∂j × 1)#Pq

is equal to zero.

To construct the chain homotopy K : Sq(X)→ Sq+1(X × [0, 1], let T : ∆q → X be a
free generator of Sq(X) and set K(T ) = (T × id[0,1])#Pq+1. We then have

dK(T ) = d o(T × id[0,1])#Pq+1 = (T × id[0,1])# od(Pq+1) =

(T × 1)# o(i1)#1q − (T × 1)# o(i0)#1q −
∑

j

(−1)jd o(T o∂j × 1)#Pq =

(i1)# oT#(1q) − (i0)# oT#(1q) −
∑

j

(−1)j(T o∂j × 1)#d(Pq) =

(i1)#(T ) − (i0)#(T ) − K od(T ) .

Therefore K defines a chain homotopy between (i1)# and (i0)# as required.

II.3 : Excision and Mayer-Vietoris sequences

(Hatcher, §§ 2.1 – 2.3)

The final Eilenberg-Steenrod axiom, called excision, is the most complicated to state
and to prove, and the crucial steps in the argument trace back to the proofs of the following
two results in simplicial homology theory:

(1) If the polyhedron P is obtained from the polyhedron Q by adjoining a single
simplex S (whose boundary must lie in Q), then the inclusion from (S, ∂S) to
(P,Q) defines an isomorphism in simplicial homology. More generally, if P1 and
P2 correspond to subcomplexes of P in some simplicial decomposition and P =
P1 ∪ P2, then the inclusion map from (P1, P1 ∩ P2) to (P = P1 ∪ P2, P2) defines
isomorphisms in homology.

(2) For every simplicial complex (P,K), the homology groups of (P,K) and its
barycentric subdivision

(

P,B(K)
)

are naturally isomorphic (with respect to sub-
complex inclusions).

In particular, the excision axioms are essentially abstract, highly generalized versions of
statement (1), both in terms of their formulations and their proofs. Usually the following
restatement of (E.2) is taken to be the main version of excision.
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THEOREM 1. Suppose that (X,A) is a topological space and that U is a subset of X
such that U ⊂ U ⊂ Interior(A). Then the inclusion map from (X − U,A− U) to (X,A)
determines isomorphisms in homology.

Here is the analogous restatement of (E.1).

THEOREM 2. Suppose that the space X can be written as a union of subsets A ∪ B
such that the interiors of A and B form an open covering of X. Then the inclusion of pairs
from (B,A ∩B) to (X = A ∪B,A) induces isomorphisms in homology.

In particular, the conclusion of Theorem 2 is valid if both A and B are open subsets
of X.

One can derive Theorem 1 as a consequence of Theorem 2 by taking B = X−U (note
that the open set X − U is contained in X − U).

There is an obvious formal similarity involving the most general statement in (1), the
statement of (E.1) in Theorem 2, and the standard module isomorphism

M/M ∩N ∼= M +N/N x (where M and N are submodules of some module L)

and we shall see that the similarities are more than just a coincidence.

Barycentric subdivision and small singular chains

Using the acyclicity of C∗(∆q) we may inductively construct chains βq ∈ Cq

(

B(∆q)
)

(simplicial chains on the barycentric subdivision) such that β0 = 10 and

d(βq) =
∑

j

(−1)j (∂j)#βq−1

for q ≥ 0. If X is a topological space, then we may define a graded homomorphism β :
S∗(X)→ S∗(X) such that for each singular simplex T : ∆q → X we have β(T ) = T#(βq).

LEMMA 3. The graded homomorphism β is a map of chain complexes. Furthermore,
if A is a subspace of X then β maps S∗(A) into itself.

Proof. We have d oβ(T ) = d oT#(βq) = T#
od(βq), and the last term is equal to

T#





∑

j

(−1)j (∂j)#βq−1



 =
∑

j

(−1)j (T o∂j)#βq−1

which in turn is equal to β
(

d(T )
)

.

The significance of the barycentric subdivision chain map is that it takes a chain in a
given homology class and replaces it by a chain which is in the same homology class but
is composed of smaller pieces; in fact, if one applies barycentric subdivision sufficiently
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many times, it is possible to find a chain representing the same homology class such that
its chain are arbitrarily small. Justifications of these assertions will require several steps.

The first objective is to prove that the barycentric subdivision map is chain homotopic
to the identity. As in previous constructions, this begins with the description of some
universal examples.

PROPOSITION 4. There are singular chains Lq+1 ∈ Sq+1(∆n) such that L1 = 0 and
d(Lq+1) = βq − 1q −

∑

j (−1)
j(∂j)#(Lq).

By convention we take L0 = 0.

Sketch of proof. Once again, the idea is to construct the chains recursively. Since ∆q

is acyclic, we can find a chain with the desired properties provided the difference

βq − 1q −
∑

j

(−1)j(∂j)#(Lq)

is a cycle. One can prove this chain lies in the kernel of dq by using the recursive formulas
for dq(βq), dq(1q), and dq(Lq).

(?)

PROPOSITION 5. If X is a topological space and A ⊂ X is a subspace, then the
identity and the barycentric subdivision maps on S∗(X,A) are chain homotopic.

Proof. It will suffice to construct a chain homotopy on S∗(X) that sends the subcomplex
S∗(A) to itself, for one can then obtain the relative statement by passage to quotients.

Define homomorphisms W : Sq(X) → Sq+1(X) on the standard free generators T :
∆q → X by the formula

W (T ) = T#Lq+1 .

By construction, if T ∈ Sq(A) then W (T ) ∈ Sq+1(A). The proof that W is a chain
homotopy uses the recursive formula for Lq+1 and is entirely analogous to the proof that
the map K in the proof of Theorem ????? is a chain homotopy.

Small singular chains

We have noted that barycentric subdivision takes a cycle and replaces it by a homol-
ogous cycle composed of smaller pieces and that if one iterates this procedure then one
obtains a chain whose pieces are arbitrarily small. Not surprisingly, we need to formulate
this more precisely.

Definition. Let X be a topological space, and let F be a family of subsets whose interiors
form an open covering of X. A singular chain

∑

i ni Ti ∈ Sq(X) is said to be F-small if for
each i the image Ti(∆q) lies in a member of F . Denote the subgroup of F-small singular
chains by SF

∗ (X). It follows immediately that the latter is a chain subcomplex of SF
∗ (X);

furthermore, if A ⊂ X and we define SF
∗ (A) to be the intersection of S

F
∗ (X) and SF

∗ (A),
then we may define relative F-small chain groups of the form

SF

∗ (X,A) = SF

∗ (X)/SF

∗ (A) .

58



Note further that the barycentric subdivision maps send F-small chains into F-small
chains.

THEOREM 6. For all (X,A) and F , the inclusion mappings SF
∗ (X,A) → S∗(X,A)

define isomorphisms in homology.

Proof. It is a straightforward algebraic exercise to prove that if L is a chain homotopy
from the barycentric subdivision map β to the identity, then for each r ≥ 1 the map
(1 + · · · + βr−1) oL defines a chain homotopy from βr to the identity.

Let U be the open covering of X obtained by taking the interiors of the sets in F .

Suppose first that we have u ∈ H∗(X,A) and u is represented by the cycle z ∈
S∗(X,A). Write z =

∑

i niTi and construct open coverings Wi of ∆q by Wi = T−1
i (∆q).

Then by the Lebesgue Covering Lemma there is a positive integer r such that for each i,
every simplex in the rth barycentric subdivision of ∆q lies in a member of Wi. It follows
immediately that βr(z) is F-small. Since βr is a chain map, it follows that βr(z) is also a
cycle in both S∗(X,A) and the subcomplex SF

∗ (X,A), and since β is chain homotopic to
the identity it follows that

u = β∗(u) = · · · = (β∗)
r(u) = (βr)∗(u)

and hence u lies in the image of the homology of the small singular chain group.

To complete the proof we must show that if two cycles in SF
∗ (X,A) are homologous

in S∗(X,A) then they are also homologous in SF
∗ (X,A). Let z1 and z2 be the cycles, and

let dw = z2 − z1 in S∗(X,A). As in the preceding paragraph there is some t such that
βt(w) ∈ SF

∗ (X,A). Since βt is a chain map and is chain homotopic to the identity, it
follows that we have

[z2] = (βt)∗[z2] = [βt(z2)] = [βt(z1)] = (βt)∗[z1] = [z1]

in the F-small homologyHF
∗ (X,A). Therefore we have shown that the map fromHF

∗ (X,A)
to H∗(X,A) is also injective, and hence it must be an isomorphism.
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Application to Excision

We recall the hypotheses of the Excision Property: A pair of topological spaces (X,A)
is given, and we have an open subset U ⊂ X such that U ⊂ Int(A). Excision then states
that the inclusion map of pairs from (X − U,A − U) to (X,A) defines isomorphisms of
singular homology groups.

Predictably, we shall use the previous results on small chains. Let F be the family of
subsets given by A and X −U . Then by the hypotheses we know that the interiors of the
sets in F form an open covering of X, and by definition the subcomplex SF

∗ (X) is equal
to S∗(A) + S∗(X −U). Therefore the chain level inclusion map from S∗(X −U,A−U) to
S∗(X,A) may be factored as follows:

S∗(X−U,A−U) = S∗(X−U)/S∗(A−U) = S∗(X−U)/ (S∗(A) ∩ S∗(X − U) ) −→

(S∗(A) + S∗(X − U) ) /S∗(A) = SF

∗ (X,A) ⊂ S∗(X,A)

Standard results in group theory imply that the last morphism on the top line is an
isomorphism, and the preceding theorem shows that the last morphism on the second line
is an isomorphism. Therefore if we pass to homology we obtain an isomorphism from
H∗(X−U,A−U) to H∗(X,A), which is precisely the statement of the Excision Property.

The same methods also yield the following result:

PROPOSITION 7. If U and V are open subsets of a topological space, then the maps
in singular homology induced by the inclusions (U,U ∩V ) ⊂ (U ∪V, V ) are isomorphisms.

Axioms (E.1) and (E.2) follow immediately from the preceding discussion.

Mayer-Vietoris sequences

One of the most useful results for computing fundamental groups is the Seifert-van
Kampen Theorem. There is a similar principle that can be applied to find the homology
groups of a space X presented as the union of two open subsets U and V ; in fact, the
result in homology does not require any connectedness hypotheses on the intersection.

THEOREM 8. (Mayer-Vietoris Sequence for open sets in singular homology.) Let X
be a topological space, and let U and V be open subsets such that X = U ∪V . Denote the
inclusions of U and V in X by iU and iv respectively, and denote the inclusions of U ∩ V
in U and V by gU and gV respectively. Then there is a long exact sequence

· · · → Hq+1(X)→ Hq(U ∩ V )→ Hq(U)⊕Hq(V )→ Hq(X)→ · · ·

in which the map from H∗(U)⊕H∗(V ) to H∗(X) is given on the summands by (iU )∗ and
(iV )∗ respectively, and the map from H∗(U ∩V ) to H∗(U)⊕H∗(V ) is given on the factors
by −(gU )∗ and (gV )∗ respectively (note the signs!!).

Theorem 8 yields data type (T.2) and axiom (E.3) for singular homology.
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Proof. Let U be the open covering of X whose sets are U and V , and let SU
∗ (X) be the

chain complex of all U -small chains in S∗(X). Then we have

SU

∗ (X) = S∗(U) + S∗(V ) ⊂ S∗(X)

(note that the sum is not direct) and hence we also have the following short exact sequence
of chain complexes, in which the injection is given by the chain map whose coordinates are
−(gU )# and (gV )# and the surjection is given on the respective summands by (iU )# and
(iV )#:

0 −→ S∗(U ∩ V ) −→ S∗(U)⊕ S∗(V ) −→ SU

∗ (X) −→ 0

The Mayer-Vietoris sequence is the long exact homology sequence associated to this short
exact sequence of chain complexes combined with the isomorphism HU

∗ (X) ∼= H∗(X).

We have noted that one also has a Mayer-Vietoris sequences in simplicial homology,
but for much different types of subspaces (in particular, the assumption is that a poly-
hedron is the union of two subcomplexes, and every subcomplex is closed and usually
not open in P ). Specifically, if K1 and K2 are subcomplexes of some K, where (P,K)
is a simplicial complex, then the corresponding Mayer-Vietoris sequence has the following
form:

· · · → Hq+1(K)→ Hq(K1 ∩K2)→ Hq(K1)⊕Hq(K2)→ Hq(K)→ · · ·

It is possible to construct a unified framework that will include both of these exact se-
quences, but we shall not do so here because it involves numerous further results about
simplicial complexes. However, it is important to note that in general one does NOT have
a Mayer-Vietoris sequence in singular homology for presentations of a space X as a union
of two closed subsets, and this even fails for compact subsets of the 2-sphere.

Example. Let P ⊂ R
2 be the Polish circle constructed in polishcircle.pdf and

polishcircleA.pdf, which is the union of the graph of sin(1/x) for 0 < |x|1 and the three
closed line segments joining (0, 1) to (0,−2), (0,−2) to (1,−2), and (1,−2) to (1, sin 1);
there is a sketch of P in polishcircleA.pdf. By the discussion in the two references, P
is a compact arcwise connected subset of the plane, and one can use the same argument
as in Proposition 2 and Corollary 3 of polishcircle.pdf to prove that if K is compact
and locally connected and h : K → P is continuous, then h[K] lies in a contractible open
subset of P and hence Hq(P ) = 0 if q 6= 0 (by arcwise connectedness we have H0(Γ) ∼= Z).
Now let B be the set of points (x, y) in R

2 satisfying

0 ≤ x ≤ 1 and either

−2 ≤ y ≤ sin(1/x) if x 6= 0 or − 2 ≤ y ≤ 1 if x = 0 .

In the drawing on the first page of polishcircleA.pdf, B corresponds to the “closed
bounded region whose boundary is P ,” and it follows immediately that B = Interior(B)∪P ,
where the two subsets on the right hand side are disjoint, and that B is the closure of
Interior(B). It is straightforward to show that the closed line segment [0, 1] × {− 3

2} is a
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strong deformation retract of B; specifically, the retraction r sends (x, y) to (x,− 3
2 ) and

the homotopy is given by t · r(x, y) + (1− t) · (x, y). Therefore we know that the singular
homology groups of both P and B are zero in all positive dimensions.

Viewing R
2 ⊂ S2 in the usual way, let A = S2− Interior(B); then the observations in

the preceding paragraph imply that A ∩B = P .

If there was an exact Mayer-Vietoris sequence in singular homology of the form

· · · → Hq(P )→ Hq(A)⊕Hq(B)→ Hq(S
2)→ Hq−1(P ) · · ·

then the results of the preceding paragraph would imply that Hq(A) ∼= Hq(S
2) for all

q ≥ 2, and in particular that the map H2(A) → H2(S
2) is nontrivial. Now A is a proper

subset of S2, and it is elementary to prove the following result:

LEMMA 9. If n > 0 and A is a proper subset of Sn, then the inclusion map induces
the trivial homomorphism from Hn(A) to Hn(S

n) ∼= Z.

Proof of Lemma 9. If p is a point of Sn that does not lie in A, then the homology
map defined by inclusion factors as a composite

Hn(A)→ Hn(S
n − {p})→ Hn(S

n)

and this map is trivial because the complement of p is homeomorphic to R
n and the

n-dimensional homology of the latter is trivial.

This result and the discussion in the paragraphs preceding the lemma yield a contra-
diction; the source of this contradiction is our assumption that there is an exact Mayer-
Vietoris sequence for S2 = A ∪B, and therefore no such sequence can exist.

WHAT GOES WRONG IN THE EXAMPLE? In order to obtain an exact Mayer-
Vietoris sequence for closed subsets, one generally needs an extra condition on the reg-
ularity of the inclusion maps. One standard type of condition on the closed subsets is
that one can find arbitrarily small open neighborhoods such that the subsets are defor-
mation retracts of these neighborhoods. This definitely fails for P ⊂ R

2. In fact, one
can use the methods of polishcircle.pdf and polishcircleA.pdf to show that P has
a cofinal system of decreasing open neighborhoods {Wm} such that Wm+1 ⊂Wm is a ho-
motopy equivalence for all m and each neighborhood is homotopy equivalent to S1. Since
H1(P ) = 0, there cannot be arbitrarily small open neighborhoods V ⊃ P such that P is
a deformation retract of V (if, say, V ⊂ W1 and we choose n such that Wn ⊂ V , then
the nontriviality of H1(Wn)→ H1(W1) implies the nontriviality of H1(Wn)→ H1(V ) and
hence V cannot be contractible).

A more refined analysis yields axiom (E.4).

THEOREM 10. (Naturality of Mayer-Vietoris sequences) In the setting of Theorem
5, assume we are given a map of triads f from (X1;U1, V1) to (X2;U2, v2). Then there
for all integers q there is a commutative ladder as below in which the horizontal lines
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represent the long exact Mayer-Vietoris sequences of Theorem 5 and the vertical maps are
all induced by f :

· · · → Hq+1(X1) → Hq(U1 ∩ V1) → Hq(U1)⊕Hq(V1) → Hq(X1) → · · ·
↓ ↓ ↓ ↓

· · · → Hq+1(X2) → Hq(U2 ∩ V2) → Hq(U2)⊕Hq(V2) → Hq(X2) → · · ·

Proof. For i = 1, 2 let F(i) denote the open covering of Xi by Ui and Vi. Then we
have the following commutative diagram of chain complexes whose rows are short exact
sequences:

0 → S∗(U1) ∩ S∗(V1) → S∗(U1)⊕ S∗(V1) → S
F(1)
∗ (X1) → 0

↓ ↓ ↓

0 → S∗(U2) ∩ S∗(V2) → S∗(U2)⊕ S∗(V2) → S
F(2)
∗ (X2) → 0

The theorem follows by taking the long exact commutative ladder associated to this
diagram.

For the sake of completeness, we note that our work thus far yields the following
conclusion, which corresponds to one of the axioms for a simplicial homology theory.

THEOREM 11. Suppose that the pair (X,A) is obtained by regularly attaching a k-cell
to A, and let D ⊂ X denote the image f [Dk], and let S ⊂ X denote the image f [Sk−1].
Then the inclusion of (D,S) in (X,A) induces isomorphisms of singular homology groups
from H∗(D,S) to H∗(X,A).

Proof. In algtop-notes.tex this statement appeared as Theorem VII.6.1 and was
derived as a consequence of axioms (A.1)–(A.5), (B.1)–(B.3), (C.1), (D.1)–(D.4) and (E.1)–
(E.4). Since we have shown all of these hold for our construction of singular homology, the
proof in the cited reference applies directly to yield the stated result.

II.4 : Equivalence of simplicial and singular homology

(Hatcher, §§ 2.1 – 2.3)

We now have all the tools we need for verifying axiom (D.1), and as noted before this
completes the justification of the applications in Unit VII of algtop-notes.pdf.

THEOREM 1. Let (X,K) be a simplicial complex, let (A,L) determine a subcomplex,
and let θ∗ : H∗(K,L)→ H∗(X,A) be the natural transformation from simplicial to singular
homology that was described previously. Then θ∗ is an isomorphism.

Proof. The idea is to apply Theorem I.1.8 on natural transformations of homology
theories on simplicial complex pairs. In order to do this, we must check that singular
homology for simplicial complexes satisfies the five properties (a)−(e) listed shortly before
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