(= Reduced homology)
Relative Homology
Def. $P=$ one point space $\left\{p_{0}\right\}$. If X is an an hitraryspaces then there is a unique continuous (in fret, constant) map $a_{x}: X \rightarrow P$.
Suppose $X \neq \phi$. Then the reduced singular homology group $\tilde{H}_{q}(X)$ is the kernel of

$$
C_{x}: H_{q}(x) \rightarrow H_{q}(P)_{m}
$$

Proposition (1) If $x=P$, then $\tilde{H}_{q}(x)=0$ all.
(2) If $f: A \rightarrow B$ is continuous $+A, B \neq \phi$, the $f_{*}: H_{*}(A) \longrightarrow H_{*}(B)$ sands $\tilde{H}_{*}(A)$ to $\Pi_{*}(B)$.
(3) If $x \neq \phi$, then $H_{*}(x) \cong \tilde{H}_{*}(x) \oplus H_{*}(P)$.

Proof. (1) c_{p} is the identity map, so $e_{p_{*}}$ is an isomorphism and its kernel is 0 .
(2) Since $C_{A}+C_{B}$ are constant maps,

$$
\begin{aligned}
& C_{B} \circ f=c_{A} \text {, so } C_{A *}=c_{B_{*}} \circ f_{*} . \text { Hence } \\
& C_{A_{*}}(w)=0 \Rightarrow c_{B_{*}}\left(f_{*}\left(\left(_{u}\right)\right)=0 .\right.
\end{aligned}
$$

(3) Let $x_{0} \in X$, and let $r: P \rightarrow X$ be defined by $r\left(p_{0}\right)=x_{0}$. Then C_{x} or $=$ identity on P, so id $H_{\neq(P)}=$

$$
C_{x^{*}} \circ r_{*} \cdot \underline{\text { CLAIM }} H_{q}(X) \cong \tilde{H}_{q}(X) \oplus \operatorname{Im}_{q} r_{*}
$$

and r_{*} is H (hare the second sum and is is omerplia to $\left.H_{q}(P)\right)$.

The map r_{*} is $1-1$ beccark $C_{X_{*}}{ }^{\circ} r_{*}=$
identity. To see its mirage is a direct emmand, most char $H_{q}=\widetilde{H}_{q}+I m r_{*}$ and $O=\widetilde{H}_{q} \sim I_{m} r_{*}$.
If $u \in \mathrm{H}_{q}$, consider $v=u-v_{*} c_{*} w$; this hies in the carnal of c_{*}, for $c_{*}(u)=e_{*} r_{-\infty} c_{*}(n)$
which is 0 . If $u \in \hat{H}_{q} n$ Imit* inanity
then $u \in \widetilde{H}_{q} \Rightarrow c_{*} u=$, and $u=r_{* y} \Rightarrow$
$y=c_{*} r_{*} y=c_{*} w=0$, so that $w=r_{*} 0=0$.
Corollary $\tilde{H}_{q}(x) \cong H_{q}(x)$ if $q \neq 0$,

$$
\mathbb{R} \oplus \tilde{H}_{0}(x) \cong H_{0}(x)
$$

Another useful fact. $\quad A \subseteq B \quad i=$ uichsion

$$
\begin{aligned}
& \text { If } u \in H_{0}(A) \text { and } v_{*}(u)=0 \text {, then } \\
& u \in \widetilde{H}_{0}(A) \text {. }
\end{aligned}
$$

Proof $i_{*}(u)=0 \Rightarrow c_{B *} i_{*}(u)=\left(c_{B} \circ i\right)_{*}(u)$ $=C_{A *}(u)$.

Application to Mayer-Vietoris Sequences $X=U 0 V, U$ and V open in X. Then the singe of $\Delta: H_{1}(X) \rightarrow H_{0}\left(U_{n} V\right)$ is contained in $\tilde{H}_{0}(U \cap V)$.
Proof. By exactness, we meed only show that the kernel of $H_{0}(U \cap V) \xrightarrow{Q} H_{0}(U) \oplus H_{0}(N)$ hat this property, where $\varphi(y)=\left(i_{U *} y,-i_{V *} y\right)$.

But $O=\varphi(y) \Rightarrow i_{v_{*}} y=0$ and $-i_{v * y}=0$.
Hence we can appely the observation at the top of the page.

It fallows that the tail end of the MV sequance yeilds an eract sub-sequence

$$
H_{1}(X) \stackrel{\rightharpoonup}{\longrightarrow} \tilde{H}_{0}(U n v) \rightarrow \tilde{H}_{0}^{\oplus}(V) \rightarrow \tilde{H_{0}}(X) \rightarrow 0
$$

bec anse it is a straight formard exevoice now to check that

$$
\begin{aligned}
& \begin{aligned}
0 & \rightarrow \operatorname{Im} \Delta \\
& =\operatorname{Im} \Delta
\end{aligned} \stackrel{\operatorname{Kerc}_{j^{*}}}{\operatorname{Ker} C_{V *}} \rightarrow \operatorname{Ker}_{V_{X *}} \rightarrow 0 \\
& \text { is evact. Recall this is a } \\
& \text { Sut-sequarne } \\
& 0 \rightarrow \operatorname{Im} \Delta \rightarrow \underset{H_{0}(v)}{H_{0}(v)} \rightarrow H_{0}(x) \rightarrow 0 .
\end{aligned}
$$

