
VII.3 : Separation and invariance theorems

(H, §2.B; M, §63)

Most of this has become standard in algebraic topology texts, and we shall quote Hatcher as
appropriate. The following result corresponds to the first half of Proposition 2B.1 on page 169 of
that reference.

PROPOSITION 1. If n > 0 and A ⊂ Sn is homeomorphic to Dk for some k < n, then the
Hi(S

n −A) is infinite cyclic if i = 0 and trivial otherwise.

Note. The hypotheses imply that A must be a proper subset of Rn because the homology
groups of A and Sn are not isomorphic (Hn(A) = 0 if n > 1).

Proof. The proof proceeds by induction on k. If k = 0 then Sn −A is homeomorphic to R
n and

the conclusion in this case follows immediately. Assume now that the result is known whenever a
subset A is homeomorphic to Dk−1 for some k satisfying 1 ≤ k ≤ n, and assume now that A ⊂ Sn

is homeomorphic to Dk.

The homeomorphisms of Section VII.1 imply that Dn is homeomorphic to Dn−1 × [0, 1]. If
t ∈ [0, 1] let At ⊂ A correspond to Dn−1×{t} under some fixed homeomorphism A ∼= Dn−1× [0, 1],
and if a < b let A[a, b] ⊂ A correspond to Dn−1 × [a+, b−], where a+ is the larger of a and 0, and
b− is the smaller of b and 1.

Suppose now that u ∈ Hq(S
n −A) lies in the kernel of the homomorphism c∗ : Hq(S

n −A)→
Hq(P ), where P is a one point space and c : Sn − A → P is the constant map. We want to show
that u = 0; the compact supports property implies the existence of a compact subset L ⊂ Sn − A
such that u lies in the image of the map Hq(L) → Hq(A) induced by inclusion; let u′ be a class
which maps to u in this fashion. If

jt : S
n −A −→ Sn −At

is the inclusion mapping, then the inductive hypothesis implies that jt∗(u) = 0 for each t ∈ [0, 1].

By the compact supports property, for each t there is some compact subset Kt such that
L ⊂ Kt ⊂ Sn − At such that u maps to zero under the homology map associated to the inclusion
Hq(L) → Hq(Kt). Since At and Kt are disjoint compact subsets of Sn, there is some ε(t) > 0
such that Kt and A[t−ε(t),t+ε(t)] are disjoint. It follows that the image of u in the homology of
Hq(A[t− ε(t), t+ ε(t)]) is zero.

The open or half open intervals (t − ε(t), tε(t)) ∩ [0, 1] form an open covering of [0, 1], so by
the Lebesgue Covering Lemma there is some M > 0 such that every closed interval of length
≤ 1/M lies in some subset of this open covering. It follows that u maps to zero in each of the sets
Hq(S

n − A[j − 1/M, j/M ]) where j = 1, ...,M . The next objective is to show by induction on j
that u maps to zero in Hq(S

n − A[0, j/M ]); the case j = 1 is known by the preceding discussion,
and when j = M the set A[0, j/M ] is all of A.

Assume now that u maps to zero in Hq(S
n − A[0, j/M ]) where 1 ≤ j ≤ M − 1. Then the

identities

A[0, (j+1)/M ] = A[0, j/M ]∪A[j/M, (j+1)/M ] , Aj/M = A[0, j/M ]∩A[j/M, (j+1)/M ]
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and their complementary analogs

Sn −A[0, (j + 1)/M ] = (Sn −A[0, j/M ]) ∩ (Sn −A[j/M, (j + 1)/M ])

Sn −Aj/M = (Sn −A[0, j/M ]) ∪ (Sn −A[j/M, (j + 1)/M ])

and the latter determine a long exact Mayer-Vietoris sequence. Consider the following piece of that
sequence:

Hq+1(S
n−Aj/M )→ Hq(S

n−A[0, (j+1)/M ])→ Hq(S
n−A[0, j/M ])⊕Hq(S

n−A[j/M, (j+1)/M ])

If u′ ∈ Hq(S
n − A[0, (j + 1)/M ]) is the image of u under the map induced by the inclusion

Sn − A ⊂ Sn − A[0, (j + 1)/M ], then the inductive hypotheses and the previous arguments show
that u′ maps to zero in each of the groups Hq(S

n − A[0, j/M ]) and Hq(S
n − A[j/M, (j + 1)/M ]).

Therefore by exactness u′ lies in the image of Hq+1(S
n−Aj/M ). Since the latter group vanishes, it

follows that u′ must be zero, completing the inductive argument with respect to j. As noted in the
preceding paragraph, this implies that u = 0 and completes the inductive argument with respect
to the dimension k such that A ∼= Dk.

The Jordan-Brouwer Separation Theorem

If we remove a circle from the plane, we obtain two connected regions — an interior and an
exterior region — and mathematically these regions are defined by the inequalities |x− a| < r and
|x − a| > r, where a is the center of the circle and r is its radius. Similarly, if we are given a
relatively simple example of a simple closed curve in the plane, it is generally easy to see that the
complement is a union of two disjoint connected components, and it is natural to conjecture that
the same is true for an arbitrary simple closed curve in the plane. However, as curves become more
complicated it becomes increasingly difficult to verify this explicitly for examples like the maze in
the drawing below.

The online article

http://en.wikipedia.org/wiki/Jordan curve theorem

discusses the history of this result fairly extensively (and corrects some widely circulated misinfor-
mation), and the article is definitely worth reading. Everyday experience with geometric objects
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in 3-space strongly suggests that there are analogous results for suitably defined closed surfaces
in R

3 which include subsets homeomorphic to S2, and the Jordan-Brouwer Separation Theorem
generalizes the Jordan Curve Theorem to subsets of Rn which are homeomorphic to Sn−1 for all
values of n.

Our statement the Jordan-Brouwer Theorem contains a somewhat stronger conclusion than
the version in Hatcher; the case n = 2 is the classical Jordan Curve Theorem.

THEOREM 2. (Jordan-Brouwer Separation Theorem. ) Let n ≥ 2, and suppose that A ⊂ Sn

is homeomorphic to Sn−1. Then Sn − A contains two components, and A is the frontier of each
component.

Note. In the discussion preceding the statement of this theorem we have considered compact
subsets A ⊂ R

n which are homeomorphic to Sn−1, and in fact the analogous conclusion for subsets
of Rn follows from the theorem by passing to one point compactifications. In fact, one can say
slightly more; namely, exactly one of the components of Rn − A must be a bounded open subset
(specifically, the component not containing the point at infinity in the one point compactification
of Rn under the identification of the latter with Sn).

It is natural to ask if one also has similar results if A is homeomorphic to some other closed
surface such as the torus Tn−1, and the answer is that similar conclusions hold more generally.
In particular this follows from results on the homology of compact manifolds and the Alexander
Duality Theorem in Section 3.3 of Hatcher.

The standard textbook proof of the Jordan-Brouwer Separation Theorem involves proving
the following complementary result on the homology of subsets of Sn which are homeomorphic to
spheres of dimension ≤ n− 2.

PROPOSITION 3. Let A ⊂ Sn be homeomorphic to Sk where 0 ≤ k ≤ n − 2. Then the
homology groups of Sn −A are homeomorphic to the homology groups of Sn−k−1.

It is important to note that the complement does not necessarily have the homotopy type of
Sn−k−1. In particular, there are simple closed (knotted) curves K in R

3 and S3 for which the
fundamental group is nonabelian and hence not isomorphic to π1(S

1); there is an extensive theory
of knotted curves in 3-space which goes far beyond the scope of this course, and currently there is
a high level of activity aimed at answering many open questions about such curves.

On the other hand, for the standard linear embedding of Sk in Sn corresponding to

Sk ⊂ R
k+1 = R

k+1 × {0} ⊂ R
k+1 × R

n−k ∼= R
n+1

(note that the image is contained in Sn), the complement is homeomorphic to Sn−k−1 × R
k+1

such that Sn−k−1 × {0} corresponds to the unit sphere in {0} × R
n−k. See the file sphere-

complements.pdf for a proof of this fact.

Proof of Proposition 3. The proof proceeds by induction on k, so we need to start by verifying
the result in that case, in which A consists of two points. Since Sn is highly symmetric we can
assume that one of the points is the unit vector en+1 ∈ R

n+1, which implies that if one point of
A is removed the complement is homeomorphic to R

n. If we now remove the second point we are
left with a subset homeomorphic R

n − {p}, and since the latter is homeomorphic to Sn−1 × R the
conclusion about homology groups in this case follows immediately.

Suppose now that the result is known for subsets homeomorphic to Sk−1, where 1 ≤ k ≤ n−2.
Let A be a subset which is homeomorphic to Sn, and let A± ⊂ A be the subspace corresponding to
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the hemisphere Dn
± ⊂ Sn defined by the coordinate inequalities xn+1 ≥ 0 (for Dn

+) and xn+1 ≤ 0
(for Dn

−). Let A0 = A+ ∩ A−, so that A0 is homeomorphic to Sk−1. Consider now the Mayer-
Vietoris sequence for the decomposition

Sn −A0 = (Sn −A+) ∪ (Sn −A−) , where Sn −A = (Sn −A+) ∩ (Sn −A−) .

We are particularly interested in the following pieces of this exact sequence:

Hq+1(S
n−A+)⊕Hq+1(S

n−A−)→ Hq+1(S
n−A0)→ Hq(S

n−A)→ Hq(S
n−A+)⊕Hq(S

n−A−)

If q > 0 then the first and last terms of this exact sequence are zero by Proposition 1, and hence the
map from the second term to the third is an isomorphism. By induction we know thatHq+1(S

n−A0)
is trivial for all q ≥ 1 except q+1 = n−(k−1)−1 and is infinite cyclic in the latter case. Therefore
we have Hq(S

n−A) = 0 if q > 0 and q �= n−k− 1, and in the latter case we have Hq(S
n−a) ∼= Z.

Suppose now that q = 0 in the displayed exact sequence. Then we have H1(S
n −A0) = 0 and

H0(S
n −A0) = Z because k − 2 ≤ n, and therefore the extended Mayer-Vietoris sequence reduces

to

0 = H1(S
n −A0)→ H0(S

n −A)→ H0(S
n −A+)⊕H0(S

n −A−) ∼= Z⊕ Z→ H0(S
n −A0) = Z

where the map at the right is surjective, so that its kernel is isomorphic to Z. By exactness this
kernel is the image of H0(S

n −A), and the mapping from the latter onto the kernel is 1–1, so that
we have H0(S

n −A) ∼= Z. This completes the proof of the inductive step.

Proof of the Jordan-Brouwer Separation Theorem. The first step is to prove that the
complement has exactly two components. Let A± and A0 be defined as in the preceding proposition
and consider the corresponding Mayer-Vietoris sequence; in particular, we are interested in the
following piece:

0 = H1(S
n −A+)⊕H1(S

n −A−)→ H1(S
n −A0)→ H0(S

n −A)→ (next line)

H0(S
n −A+)⊕H0(S

n −A−) ∼= Z⊕ Z→ H0(S
n −A0) = Z

In this case we know that H1(S
n−A0) ∼= Z and hence the latter maps injectively into H0(S

n−A).
Furthermore, we can use the same argument as in Proposition 3 to conclude that the image of
H0(S

n − A) in the direct sum is also isomorphic to Z, and therefore by exactness we must have
H0(S

n −A) ∼= Z⊕ Z, so that Sn −A has exactly two components.

It remains to prove that points of A are limit points of each component. Suppose that Sn−A
is the union of the two open, connected, disjoint subsets U and V .

Assume that not every point of A is a limit point of both U and V . Without loss of generality,
it is enough to consider the case where x ∈ A is not a limit point of V . Since x �∈ V , it follows that
there is some open set W0 in Sn such that x ∈W0 and W0 ∩ V = ∅.

Consider the open set W0 ∩ A in A; since the latter is homeomorphic to Sn−1, it follows that
there is a subneighborhood of the form A−E, where E ⊂ A is homeomorphic to a closed (n− 1)-
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disk and A−E is homeomorphic to an open (n− 1)-disk centered at x. If W = W0 ∩Sn−E, then
W is still open in Sn and we still have x ∈W and W ∩ V = ∅.

By construction we have Sn − E = U ∪ A − E ∪ V where the pieces are pairwise disjoint.
Furthermore, we have A−E ⊂W and hence U ∪W is an open set of Sn−E which is disjoint from
V and contains U and A−E. Therefore it follows that Sn−E is a union of the nonempty disjoint
open sets U ∪W and V and hence is disconnected. On the other hand, since E is homeomorphic
to a closed disk we know that Sn −E is connected, so we have a contradiction. The source of this
contradiction was our assumption that x was not a limit point of V , and hence this must be false.
Therefore x must be a limit point of V , and as noted above it follows that every point of A is a
limit point of both U and V .

The Mayer-Vietoris sequence in Theorem 2 also has the following implication; details of the
proof are left to the reader (remember that the homology groups of Sn−A± and Sn−A0 in positive
dimensions are known to vanish except for H1(S

n −A0)):

COROLLARY 4. In the setting of Theorem 2 the homology groups of each component of Sn−A
are zero in every positive dimension.

If n = 2 a remarkable theorem of A. Schönflies yields a much stronger conclusion: If U is a
component of S2 − A then its closure U is homeomorphic to D2 such that A corresponds to S1

(it is also possible to use results from complex variable theory to prove the weaker result that the
open set U is simply connected). On the other hand, if n ≥ 3 then a component U of Sn − A
need not even be simply connected. The standard example when n = 3 is the Alexander Horned
Sphere discussed in Example 2.B.2 on pages 170–172 of Hatcher. The following online site has an
interesting video showing the recursive construction of the Alexander sphere:

http://www.youtube.com/watch?v=Pe2mnrLUYFU

With the preceding results at our disposal, we can prove the following basic result exactly as
in Hatcher:

THEOREM 5. (Invariance of Domain, Brouwer) Let U be an open subset of Rn for some n ≥ 2,
and let h : U → R

n be continuous and 1 − 1. Then h is an open mapping, the image h[U ] is an
open subset of Rn, and h maps U homeomorphically onto h[U ].

The name for the result reflects the following equivalent statement: If a subset V ⊂ R
n is

homeomorphic to an open subset of Rn, then it must also be an open subset of Rn.

Proof. It will suffice to prove that h is an open mapping, and to prove the latter it will suffice
to show that if D ⊂ U is an ordinary closed disk of some radius about a point of U and ∂D is the
boundary sphere of D, then f [D − ∂D] is an open subset of Rn (since every open subset of U is a
union of open disks that are interiors of closed disks). Since f is 1–1 it follows that f maps D and
∂D homeomorphically onto their images.

As usual, view R
n as Sn−{p} via one point compactification. Then the preceding results imply

that Sn− f [D] is a connected open subset and Sn− f [∂D] is an open subset with two components,
say W1 and W2; label these so that Sn − f [D] ⊂W1. Now we also have

Sn − f [∂D] = (Sn − f [D]) ∪ (Sn − f [D − ∂D])

and the subsets on the right hand side are disjoint; since f [D− ∂D] is connected it is contained in
one of the components W1,W2.
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.

If f [D − ∂D] were contained in W1 then we would have Sn − f [∂D] ⊂ W1 ⊂ Sn − f [∂D] so that
the two sets would be equal, contradicting the fact that Sn − f [∂D] is disconnected. Therefore
f [D − ∂D] must be contained in W2. This gives us the chain of inclusions

(Sn − f [D]) ∪ (Sn − f [D − ∂D]) ⊂ W1 ∪W2 ⊂ Sn − f [∂D] , where

(Sn − f [D]) ∩ (Sn − f [D − ∂D]) = ∅ = W1 ∩W2 .

Since Sn−f [D] ⊂W1 and Sn−f [D−∂D] ⊂W2, the set-theoretic relations combine to imply that
Sn − f [D] = W1 and Sn − f [D − ∂D] = W2. This proves that f [D − ∂D] is an open subset of Rn

(hence also of U), by the statement at the beginning of the proof this also completes the proof of
the theorem.

We shall limit ourselves to one simple consequence.

COROLLARY 6. If Rn
+ is defined to be the set of all points whose last coordinate is nonnegative,

then R
n
+ is not homeomorphic to R

m for any positive integer m.

Proof. We first consider the cases where n ≤ m. In these cases the sets cannot be homeomorphic
by Invariance of Domain because R

n
+ is not an open subset of Rm (as usual, we identify R

n with
the set of all points in R

m whose last m− n coordinates are all zero).

Suppose now there is a homomorphism f from R
m to R

n
+ where m < n. If H is the hyperplane

in R
n of all points whose last coordinate is zero and W = R

m − f−1[H], then f defines a homeo-
morphism from W to R

n
+ −H ∼= R

n. This is impossible by invariance of dimension, and therefore
R

n
+ cannot be homeomorphic to R

m if m < n.

VII.4 : Nonplanar graphs

(M, §64)

We have already seen that every graph has a nice rectilinear embedding in R
3. In this section

we shall use homology theory to prove that some graphs do not admit any topological embeddings
into R

2. We shall treat two examples, and at the end of this section we shall explain why they are
particularly important. The approach in this section is close to that in Munkres, the main difference
being that we use homology theory to give simpler proofs of some key steps in the arguments.
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