
.

If f [D − ∂D] were contained in W1 then we would have Sn − f [∂D] ⊂ W1 ⊂ Sn − f [∂D] so that
the two sets would be equal, contradicting the fact that Sn − f [∂D] is disconnected. Therefore
f [D − ∂D] must be contained in W2. This gives us the chain of inclusions

(Sn − f [D]) ∪ (Sn − f [D − ∂D]) ⊂ W1 ∪W2 ⊂ Sn − f [∂D] , where

(Sn − f [D]) ∩ (Sn − f [D − ∂D]) = ∅ = W1 ∩W2 .

Since Sn−f [D] ⊂ W1 and Sn−f [D−∂D] ⊂ W2, the set-theoretic relations combine to imply that
Sn − f [D] = W1 and Sn − f [D − ∂D] = W2. This proves that f [D − ∂D] is an open subset of Rn

(hence also of U), by the statement at the beginning of the proof this also completes the proof of
the theorem.

We shall limit ourselves to one simple consequence.

COROLLARY 6. If Rn
+ is defined to be the set of all points whose last coordinate is nonnegative,

then R
n
+ is not homeomorphic to R

m for any positive integer m.

Proof. We first consider the cases where n ≤ m. In these cases the sets cannot be homeomorphic
by Invariance of Domain because R

n
+ is not an open subset of Rm (as usual, we identify R

n with
the set of all points in R

m whose last m− n coordinates are all zero).

Suppose now there is a homomorphism f from R
m to R

n
+ where m < n. If H is the hyperplane

in R
n of all points whose last coordinate is zero and W = R

m − f−1[H], then f defines a homeo-
morphism from W to R

n
+ −H ∼= R

n. This is impossible by invariance of dimension, and therefore
R

n
+ cannot be homeomorphic to R

m if m < n.

VII.4 : Nonplanar graphs

(M, §64)

We have already seen that every graph has a nice rectilinear embedding in R
3. In this section

we shall use homology theory to prove that some graphs do not admit any topological embeddings
into R

2. We shall treat two examples, and at the end of this section we shall explain why they are
particularly important. The approach in this section is close to that in Munkres, the main difference
being that we use homology theory to give simpler proofs of some key steps in the arguments.

96



The utilities network

This is a fairly well-known example with three vertices a, b, c representing houses and another
three vertices g, w, e representing gas, water and electricity utilities. There are nine edges which
they join the individual houses to each of the three utilities, and the question is whether this can
be done on a flat surface with none of the lines crossing over or under each other.

This graph is often called K3,3. In mathematical terms, here is what we what to prove:

THEOREM 1. The utilities network K3,3 is not homeomorphic to a subset of S2.

In fact, one has the same conclusion if S2 is replaced by R
2 because K3,3 and S2 are not

homeomorphic — the quickest way to see this is to note that H2(K3,3) = 0 for dimensional reasons
but H2(S

2) ∼= Z.

As suggested by the figure below, it is fairly easy to embed the subgraph of K3,3 by removing
one edge; the point of the proof is that there cannot be some clever way of inserting the remaining
edge.

The proof of Theorem 1 involves separation theorems that are similar to the Jordan Curve Theorem
but are somewhat more complicated to state and prove. The first of these involves theta spaces
which can be expressed as unions of three subsets E1, E2, E3 which are all homeomorphic to [0, 1]
and whose intersections are given by their endpoints.
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We want to prove that every theta space in S2 has the separation properties which are apparent
in the figure. This can be stated formally as follows:

PROPOSITION 2. If X ⊂ S2 is a theta space with edges E1, E2, E3 meeting at the common
endpoints {A,B}, then S2 −X has three connected components U, V,W such that

the boundary of U is E1 ∪ E2,

the boundary of V is E2 ∪ E3,

the boundary of U is E1 ∪ E3.

Note that we can make X into a graph by taking the derived decomposition that we defined
in graphs.pdf.

Proof. There are three main steps. First, we prove that S2 −X has exactly three components.
Next, we prove that E1 ∪E3 is the boundary of one of these components. Finally, we use the same
sort of argument to obtain similar conclusions for E2 ∪ E3 and E1 ∪ E2. Since the simple closed
curves given by E1 ∪ E2, E2 ∪ E3, are distinct, it follows that they bound distinct components
of S2 − X, and since there are exactly three components in the latter, it follows that each is the
boundary of one of the given simple closed curves.

By the preceding discussion, we need only show the assertions that S2−X has three components
and one component of S2 − X has E1 ∪ E3 as its boundary. We shall begin by proving the first
statement, and it will be convenient to introduce some notation for certain open subsets of S2. For
i = 1, 2, 3 let Ui = S2 − Ei and if i �= j let Ui,j be

S2 − (Ei ∪ Ej) = Ui ∩ Uj .

Finally, let U1,2,3 be S
2 −X and note that the latter is equal to U1 ∩U2 ∩U3. Consider the Mayer-

Vietoris exact sequence associated to the decomposition U3 = U1,3 ∪ U2,3, noting that U1,2,3 =
U1,3 ∩ U2,3. Since U3 has the homology of a point by Proposition 1 of the preceding section, the
final nontrival terms in the Mayer-Vietoris sequence are given as follows:

0 = H1(U3)→ H0(U1,2,3)→ H0(U1,2)⊕H0(U2,3)→ H0(U3) ∼= Z

By the Jordan Curve Theorem the direct sum isomorphic to Z
4, and the axiom regarding 0-

dimensional homology implies that the standard free generators for this direct sum all map to the
standard free generator of H0(U3) ∼= Z. Therefore the kernel of the map from the direct sum into
H0(U3) is isomorphic to a free abelian group on three generators, and by exactness this group is
isomorphic to the image of the map ϕ from H0(U1,2,3) to H0(U1,2)⊕H0(U2,3). Since H1(U3) = 0 it
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also follows that ϕ is 1–1, and therefore we have shown that H0(U1,2,3 = S2 −X) is a free abelian
group on three generators. This computation implies that the open set U1,2,3 has exactly three
components, so we have completed the first step of the proof.

The only point remaining is to prove that E1∪E3 is the boundary of one component in S2−X.
By the Jordan Curve Theorem, the set U1,3 = S2 − (E1 ∪ E3) has two components and E1 ∪ E2

is the boundary of each one. Denote these components by V and W , and notice that one of them
must contain the connected set E2 − {A,B}. Without loss of generality, we may assume that this
component is W (if not, reverse the roles of V and W in the discussion which follows). We then
have

U1,2,3 = V ∪ (W − (E2 − {A,B}) ) .

Each of the summands on the right is an open and closed subset of U1,2,3, and therefore each
component of U1,2,3 is contained in V or W . Now we know that V ⊂ U1,2,3, and V must be a
component of U1,2,3 because V is a maximal connected subset of U1,3, which contains U1,2,3, and
hence V is also a maximal connected subset of U1,2,3. By construction the boundary of V is E1∪E3,
and thus we have shown that the latter bounds one component of U1,2,3 = S2 −X. Since we have
already noted that this assertion (plus the one about three components) imply the conclusion of
the proposition, this completes the proof.

At a later point we shall also need information about the higher homology groups of the
(components of the) space S2 −X when X is a theta space. The result is analogous to Corollary
VII.3.4.

COROLLARY 3. If X ⊂ S2 is a theta space and U is a component of S2 −X, then Hi(U) = 0
for all i > 0, and likewise for Hi(S

2 −X).

Proof. The proof of the proposition shows that the boundary of each component is a simple closed
curve, and thus we can apply Corollary VII.3.4 directly to find the higher dimensional homology of
U . The statement about S2 −X follows because this space is locally arcwise connected and hence
its homology is the direct sum of the homology of its components.

We are now ready to prove that the graph K3,3 is not topologically embeddable in R
2.

Proof of Theorem 1. We shall assume that there is a topological embedding of the graph in S2

and derive a contradiction. It may be worthwhile to look at the figure belowin order to visualize
the steps in the argument.

Let X be a graph, and let X0 ⊂ X be the subgraph consisting of all edges that do not have e as a
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vertex. If p and q are vertices which are endpoints of some edge, denote that edge by Epq. Then
X0 is a theta space with edges

L1 = Eag ∪ Eaw , L2 = Ebg ∪ Ebw , L3 = Ecg ∪ Ecw .

Then Proposition 2 implies that Sn −X0 has three components, and the remaining vertex e ∈ X
must lie in one of them, say U . It follows that each of the half-open intervals

Eae − {a} , Ebe − {b} , Ece − {c}

must be contained in the component U because each is connected and contains e. Therefore each
of a, b, c must lie in the closure U of U .

Trial and error suggests that the conclusion of the preceding sentence is impossible, and we
shall now give mathematical reasons for this. The endpoints of L1, L2 and L3 are g and w, and we
also know that a ∈ L1, b ∈ L2 and c ∈ L3 but none of these points can be endpoints of an edge Li.
Proposition 2 implies that the boundary of U is the union of exactly two of these edges, so only two
of the points in {a, b, c} can lie in U , and thus we have derived a contradiction. The source of this
contradiction was the assumption that X could be topologically embedded in S2, and therefore we
know this assumption is false. As noted earlier, this suffices to complete the proof of the theorem.

The complete graph on 5 vertices

We now proceed to the next example. Recall that the complete graph on n vertices is a graph
with n vertices such that for each pair of vertices {p, q} there is an edge whose endpoints are p and
q.

THEOREM 3. The complete graph on 5 vertices is not homeomorphic to a subset of S2.

We have already noted that the complete graph on 4 vertices can be embedded in S2, and the
standard embedding is given below.

The vertices of this graph are denoted byA,B,C,D, and the 6 edges will be labeled lexicographically
(alphabetical order) as follows:

E1 = AB , E2 = AC , E3 = AD , E4 = BC , E5 = BD , E6 = CD

The first step in the proof of Theorem 3 is to prove that an arbitrary topological embedding of
the complete graph on 4 vertices into S2 has the same separation properties that evidently hold in
previous drawing:
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THEOREM 4. Let X ⊂ §2 be homeomorphic to the graph described above, and label its edges
and vertices as in the preceding discussion. Then S2−X has four components U, V,W,O such that

the boundary of U is E1, E3 and E5,

the boundary of V is E2, E3 and E6,

the boundary of W is E4, E5 and E6,

the boundary of O is E1, E2 and E4.

Proof of Theorem 4. The strategy is similar to the method for proving Proposition 2:

(1) Prove that S2 −X has four components.

(2) Prove that Γ = E1 ∪ E2 ∪ E4 is the boundary of one component.

(3) Use similar arguments to show that the other three triangular graphs in the theorem
statement bound components of S2 − X. As before, each of the four triangular graphs
bounds a component, and since there are exactly four components it follows that each
component is the boundary of one such graph,

To prove the first step, let X0 be obtained from X by deleting the interior points of the edge
E4 (see Figure 5 in graphpix4.pdf), and let X1 be the triangle graph whose edges are E4, E5 and
E6. Then X0 ∪X1 = X and X0 ∩X1 = E5 ∪E6; note that the latter is homeomorphic to a closed
interval. Consider the Mayer-Vietoris exact sequence for the decomposition

S2 − (E5 ∪ E6) = (S2 −X0) ∪ (S2 −X1) , S2 −X = (S2 −X0) ∩ (S2 −X1) .

By construction X0 is a theta space and X1 is a simple closed curve, so the homology groups of
S2 − X0 and S2 − X1 are known (and likewise for the homology groups of S2 − (E5 ∪ E6) by
Proposition VII.3.2). If we feed this into the long exact Mayer-Vietoris sequence, we find that the
final nontrivial terms of the Mayer-Vietoris sequence are given as follows:

0 = H1(S
2 − (E5 ∪E6))→ H0(S

2 −X)→ H0(S
2 −X0)⊕H0(S

2 −X1)→ H0(S
2 − (E5 ∪E6)) = Z

The results of this section and the preceding ones imply that the direct sum is isomorphic to
Z
3 ⊕ Z

2 ∼= Z
5; furthermore, the standard free generators of this group map to the standard free

generator of H0(S
2 − (E5 ∪E6)) = Z. As before, it follows that H0(S

2 −X) is a free abelian group
on 4 generators, which means that S2 −X has four components, completing the proof of the first
step.

In the second step we are interested in the complement of the triangular subgraph Γ = E1 ∪
E2 ∪ E4. By the Jordan Curve Theorem S2 − Γ has two components, say G and H. One of these
components contains the remaining vertex D; as before, without loss of generality we might as well
assume that D ∈ H.

The half open intervals E3 − {A}, E5 − {B}, E6 − {C} are all connected, disjoint from Γ, and
contain D, so they are all contained in H. Then we have

S2 − X = G ∪ (H − (E1 ∪ E2 ∪ E3) )

where G and (H − (E1 ∪ E2 ∪ E3) ) are nonempty, open and disjoint (hence both are also closed
in S2 −X).
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Let Q1, Q2, Q3, Q4 be the components of S
2 −X, and number them such that G ⊂ Q1. Since

G is open and closed in S2 − X, every connected subset of the latter is either contained in G or
disjoint from it. In particular, since G is contained in Q1 we know that these two sets are not
disjoint and hence the connected component Q1 must be contained in G, so that the two sets are
equal. Since the boundary of G is E1 ∪E2 ∪E4, this proves the statement needed to complete the
second step of the argument. As noted at the beginning of this proof, the third step follows once
we have completed the first two, and therefore we have completed the proof of the theorem.

Proof of Theorem 3. Assume that the complete graph on 5 vertices is homeomorphic to some
subset Y ⊂ S2, and let a, b, c, d, e be its vertices. Let X ⊂ Y be the subgraph of all edges which
do not have e as an endpoint, so that X is homeomorphic to a complete graph on 4 vertices. We
shall now use Theorem 4 to analyze S2 −X.

Let Euv be the edge joining the vertices u and v in Y . Without loss of generality, we can
assume that e lies in the component of S2 −X whose boundary is Eab ∪ Ebc ∪ Eac. In any case,
the vertex e lies in one component of S2 −X, and we can treat the other cases by permuting the
roles of a, b, c, d. Note that d does not lie in the closure U of U by the proof of Theorem 4.

Now each of the sets (Exe − {x}) — where x = a, b, c, d — is connected and contains e, so
each of these connected sets must be contained in U . This implies that each boundary endpoint x
of Exe − {x} must be contained in U . However, we have already observed that d does not lie in
this subset, and therefore we have a contradiction. The problem arises from our assumption that
Y ⊂ S2 is homeomorphic to a complete graph on 5 vertices, and consequently no such subset can
exist.

Kuratowski’s Theorem

The results of this section lead to the more general question of determining which connected
graphs are not topologically embeddable in R

2. Clearly a graph which contains a subgraph iso-
morphic to the utilities network or the complete graph on 5 vertices cannot be homeomorphic to
a subset of R2. The end of Section 64 in Munkres mentions a remarkable converse to this result
attributed to C. Kuratowski (1896–1980): Every graph which is not homeomorphic to subset of R2

must contain a subgraph homeomorphic to either the utilities network or the complete graph on
five vertices. Here is an online reference for the proof:

http://cs.princeton.edu/∼ymakaryc/papers/kuratowski.pdf
The file kuratowski.pdf contains clickable links to other proofs and further information,

including independent discoveries of this result by others.
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