
COROLLARY 6. Suppose that X and Y are as in the theorem and Y is contractible.

Then every continuous mapping f : X → Y has a continuous extension to X.

Proof. It will suffice to prove that an arbitrary continuous mapping f : A → Y

is homotopic to a constant. We know that 1Y is homotopic to a constant map k, and
therefore f = 1Y of is homotopic to the constant map k of .

I.5 : Chain homotopies

(Hatcher, § 2.1)

In this section we shall generalize a key step in the proof of that starshaped complexes
have acyclic homology. The main feature of the proof is that it constructs an algebraic
analog of the straight line contracting homotopy from the identity to the constant map
whose value is v.

Definition. Let (A, d) and (B, e) be chain complexes, and let f and g be chain maps
from A to B. A chain homotopy from f to g is a sequence of mappings dk : Ak → Bk+1

satisfying the following condition for all integers k:

dBk+1
oDk + Dk−1

odAk = gk − fk

Two chain mappings f, g from A to B are said to be chain homotopic if there is a chain
homotopy from the first to the second, and this is often written f ' g.

The proof of the following result is an elementary exercise:

PROPOSITION 1. The relation ' is an equivalence relation on chain maps from one

chain complex (A, d) to another (B, e). Furthermore, if f and g are chain homotopic chain

maps from (A, d) to (B, e), and h and k are chain homotopic chain maps from (B, e) to

(C, θ), then the composites h of and k og are also chain homotopic. Finally, if f, g, h, k are

chain maps from A to B and r ∈ R, then f ' g and h ' k imply f + h ' g + k and

rf ' rg.

Proof. For the first part of the proof let f , g and h be chain maps from (A, d) to
(B, e). The zero homomorphisms define a chain homotopy from f to itself. If D is a chain
homotopy from f to g then −D is a chain homotopy from g to f . Finally, if D is a chain
homotopy from f to g and E is a chain homotopy from g to h, then D + E is a chain
homotopy from f to h.

To prove the assertion in the second sentence, let D be a chain homotopy from f to
g and let E be a chain homotopy from g to h. Then one can check directly that

h oD + E og
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defines a chain homotopy from h of to k og.(?) The proof of the final assertion is also
elementary and is left to the reader.

Chain homotopies are useful and important because of the following result:

PROPOSITION 2. If f and g are chain homotopic chain maps from one chain complex

(A, d) to another complex (B, e), then the associated homology mappings f∗ and g∗ are

equal.

Proof. Suppose that u ∈ Hk(A) and x ∈ Ak is a cycle representing u, so that dk(a) = 0.
If D is a chain homotopy from f to gh, then by definition we have

dBk+1
oDk(x) + Dk−1

odAk (x) = gk(x) − fk(x)

and since dAk (x) = 0 it follows that the expression above is a boundary. Therefore g∗(u)−
f∗(u) must be the zero element of Hk(B).

An important example

The following basic construction gives an explicit connection between the topological
notion of homotopy and the algebraic notion of chain homotopy. Let n ≥ 0, and let Pn+1

denote the standard (n+1)-dimensional prism ∆n×[0, 1] with the simplicial decomposition
given in Unit II. As in that unit, label the vertices of this prism decomposition by xj =
(ej , 0) and yj = (ej , 1).

PROPOSITION 3. The simplicial chain complexes C∗(P
ω
n+1) and C∗(Pn+1) are

acyclic.

Proof. These follow from the isomorphism theorem and the fact that Pn+1 is star shaped
with respect to yn.

For each integer j satisfying 0 ≤ j ≤ n, let ∂j : ∆n−1 → ∆n be the affine map which
sends ∆n−1 to the face opposite the vertex ej and is order preserving on the vertices, and
let ∂j × I denote the product of the map ∂j with the identity on [0, 1]. It then follows
immediately that we have associated injections of simplicial chain groups

(∂j)# : Cj(∆n−1) −→ Cj(∆n) , (∂j × I)# : C∗(Pn−1) −→ C∗(Pn)

and these are chain maps. Furthermore, these chain maps send ordered chains to ordered
chains.

Similarly, for t = 0, 1 we also have injections of simplicial chain groups

(it)# : C∗(∆n) −→ C∗(Pn)

which send a free generator v0 · · · vq to it(v0) · · · it(vq), where it(v) = (v, t).

We then have the following result:
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THEOREM 4. For all n ≥ 0 there are chains Pn+1 ∈ Cn+1(P
ω
n) such that

dn+1(Pn+1) = y0 · · · yn − x0 · · · xn −
∑

j

(−1)j (∂j × I)#(Pn−1) .

Sketch of proof. Not surprisingly, the construction is inductive, with P0 = 0. Suppose
we have constructed the chains Pj for j ≤ n. There is a chain Pn+1 with the required
properties if and only if the expression on the right hand side of the equation is a cycle, so
we need to show that the right hand side vanishes if we apply dn. This is a straightforward
but messy calculation like several previous ones. Some key details are worked out in the
bottom half of page 112 of Hatcher.

The preceding result implies that the inclusion mappings it, which are topologically
homotopic, determine algebraic chain maps that are chain homotopic. Specifically, if we
are given a free generator v0 · · · vq of Cq(∆n) then we may form a chain

Dq(v0 · · · vq) ∈ Cq+1(∆n × I)

by substituting i0(v) for x and i1(v) for y. In fact, one can carry out all of this for an
arbitrary simplicial complex (P,K), and one has the following conclusion.

PROPOSITION 5. In the setting above the maps (i0)# and (i1)# from C∗(K) to

C∗(K× I) are chain homotopic, and hence the associated homology maps

(i0)∗, (i1)∗ : H∗(K) −→ H∗(K× I)

are equal.

I.6 : Cones and suspensions

(Hatcher, Ch. 0)

These two basic constructions are described on pages 8–9 of Hatcher. We shall say a
little more about them and apply them to construct a homeomorphism from the standard
n-disk and (n− 1)-sphere to the standard n-simplex and its boundary.

The constructions and their properties

Definition. Let X be a topological space. The cone on X, usually written C(X), is the
quotient of X× [0, 1] modulo the equivalence relation whose equivalence classes are all one
point subsets of the form { (x, t) }, where t 6= 0, and the subset X × {0}.

The first result explains the motivation for the name.
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