
VII. Some elementary applications

The motivation for developing delicate and abstract topological machinery like singular homol-
ogy is that such constructions are useful for answering mathematical questions that were interesting
but difficult to handle with previously existing tools. One of the most obvious examples is the Jor-
dan Curve Theorem, which states that the complement of a simple closed curve in the plane has
two connected components, and the curve is the boundary of each component. Experience strongly
suggests that such a result is true, but even in simple cases like regular smooth curves the proof is
challenging (for example, see the proof in M. do Carmo, Differential Geometry of Curves and Sur-
faces, Prentice-Hall, 1976). There is a proof of this result in Munkres which does not use homology
theory, but it is long and delicate. We shall use homology theory to give a fairly short proof of
the Jordan Curve Theorem and its higher dimensional generalizations; one needs the full force of
homology theory for the latter, for they cannot be proved using the concepts in Munkres’ book.

Likewise, homology theory provides a very simple proof that the coordinate spaces Rm and
Rn are not homeomorphic if m �= n. Once again, the material in Munkres yields these results if
n = 1 or 2 but cannot be used to draw any conclusions if m,n ≥ 3. We shall also use homology
theory to give alternate proofs for two results of Munkres about graphs which are not topologically
embeddable in R2 (although we know that all graphs are nicely embeddable in R3). Finally, if time
permits we shall use homology theory to derive a classical formula of R. Descartes and L. Euler
relating the numbers of edges, vertices and faces in a polyhedron which bounds a convex linear cell
in R3:

E + 2 = V + F

Many additional uses of homology theory are mentioned very briefly in morgan-lamberson.pdf.

VII.1 : Consequences of the axioms

(H, §§2.1–2.3, 2.B)

Our first objective is to show that the coordinate spaces R
n and R

m are not homeomorphic if
m �= n. For the sake of clarity and convenience we begin by showing that certain convex sets in
Rn are homeomorphic. We have already stated more general results and referred to files for their
proofs, but it seems worthwhile to give direct, simple proofs for the specific examples of interest to
us here.

Semi-explicit homeomorphisms of various convex sets

The sets of interest to us are the n-simplex En in Rn given by the inequalities

xi ≥ 0 ,
∑

i

xi ≥ 1

the hypercubes [a, b]n which are homeomorphic to each other because all closed intervals in R are
homeomorphic, and the usual unit disk Dn.
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THEOREM 1. All of the sets listed above are homeomorphic such that interior points of one
correspond to interior points of the other and boundary points of one correspond to boundary
points of the other.

Proof. We begin with the easiest pair; namely, the disk and the hypercube [−1, 1]n. Given a
vector x ∈ Rn, let |x|2 denote its length with respect to the usual inner product and let |x|∞ be the
maximum of the absolute values of the coordinates (= maxi |xi|). Both of these define norms on
Rn, and the unit disks with respect to these norms are Dn and [−1, 1]n respectively. If one defines
a map f of Rn to itself by f(0) = 0 and by

f(x) =
|x|∞
|x|2 · x

if x �= 0, then it follows that f is 1–1 onto and a homeomorphism except possibly at 0, and that
for each r > 0 the map f sends points satisfying |x|2 = r to points satisfying |x|∞ = r; one can
check continuity of f and its inverse at 0 using the elementary inequalities

|x|∞ ≤ |x|2 ≤ n · |x|∞ .

It follows that f defines a homeomorphism from Dn to [−1, 1]n.

Since all n-dimensional hypercubes are homeomorphic, it will suffice to show that En is home-
omorphic to the hypercube [0, 1]n such that their boundaries correspond. For this we need the
“taxicab norm” |x|1 =

∑
i |xi|. Let Fn be the unit disk with respect to this norm. Then En and

[0, 1]n are the intersections of the unit disks Fn and [−1, 1]n with the closed first orthant in Rn

defined by the inequalities xn ≥ 0. In analogy with the previous paragraph define a mapping g by
g(0) = 0 and

g(x) =
|x|∞
|x|1 · x

if x �= 0. Then g has similar properties to f , with continuity at 0 is true because of the inequalities

|x|∞ ≤ |x|1 ≤ n · |x|∞ .

By construction, both f and g map the first orthant into itself such that the boundary points (those
for which some coordinate xi = 0) are sent to themselves. The boundaries of En and [0, 1]n are
given by their intersections with the orthants and their intersections with the sets |x|p = 1 where
p = 1 and ∞ respectively, and therefore it follows that g defines the desired homeomorphism from
En to [0, 1]n.

Some nonhomeomorphic spaces

THEOREM 2. If m and n are distinct positive integers, then Sm and Sn are not homeomorphic,
and similarly Rm and Rn are not homeomorphic.

Proof. By Theorem 1 we know that Sk is homeomorphic to the boundary of the simplex Ek+1,
and hence Hq(S

k) = Z if q = 0, k and zero otherwise. In particular, this means that the homology
groups of Sm and Sn are not isomorphic if m �= n, so the spaces cannot be homeomorphic.

If Rm and Rn were homeomorphic, then it follows that their one point compactifications would
also be homeomorphic (verify this as a general statement about locally compact Hausdorff spaces!).
Since these one point compactificatons are homeomorphic to Sm and Sn respectively, it follows that
Rm and Rn cannot be homeomorphic if m �= n.
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