
III.1 : Homology and the fundamental group

(Hatcher, §§ 2.A, 3.G)

Axiom (D.5) formulates a simple but important relationship between the fundamental
group π1(X,x) of a pointed arcwise connected space and the homology group H1(X) ∼=
H1(X, {x}).

Definition. Let [S1] ∈ H1(S
1) be the homology class represented by the singular

1-simplex
T (1− s, s) =

(

cos 2πs, sin 2πs
)

so that T corresponds to the standard counterclockwise parametrization of the unit circle
under the identification of [0, 1] with the 1-simplex whose vertices are (1, 0) and (0, 1). The
Hurewicz (hoo-RAY-vich) map h : π1(X,x) → H1(X) is given by taking a representative
f of α ∈ π1(X,x) and setting h(α) = f∗([S

1]). By homotopy invariance, this class does
not depend upon the choice of a representative, and it is natural with respect to basepoint
preserving continuous maps.

PROPOSITION 1. The Hurewicz map h is a group homomorphism.

Proof. The discussion on pages 166–167 of Hatcher provides a good conceptual summary
of the proof. For the sake of completeness we shall add a few details.

Let p : ∆2 → [0, 1] be the map sending (t0, t1, t2) ∈ ∆2 to t2 +
1
2 t1 ∈ [0.1]. Geo-

metrically, p is the composite of the perpendicular projection from ∆2 onto the edge e0e2
followed by the linear homeomorphism from the latter to [0, 1] sending e0 to 0 and e2 to 1.
Represent u, v ∈ π1(X,x) by f, g : [0, 1] → X, and let c : [0, 1] → X be the concatenation
f + g. If α is the linear homeomorphism from ∆1 to [0, 1] sending vertex et to t (where
t = 0, 1), then direct calculation yields the identities

∂2 op oh = f oα, ∂0 op oh = g oα, ∂1 op oh = c oα

(compare the drawing on page 166 of Hatcher) so that we have

d2(p oh) = f oα+ g oα− c oα ∈ S1(X, {x}) .

By construction, the images of the three summands on the right hand side of this equation
are h(u), h(v) and −h(uv) respectively, and since the left hand side is a boundary it follows
that h(u) + h(v)− h(uv) = 0, which is what we wanted to prove.

The preceding discussion and the theorem below show that the standard construction
for singular homology has extra data type (T.2) and satisfies axioms (A.6) and (D.4); by
the uniqueness result in the preceding unit, the same conclusions are true for an arbitrary
axiomatic singular homology theory.

THEOREM 2. IfX is arcwise connected, then h is onto and its kernel is the commutator
subgroup of π1(X,x).
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The assertion in the first sentence of the theorem is verified on page 167 of Hatcher;
the proof of the assertion in the second sentence will take the remainder of this section.

Suppose that (X,x) is a pointed space such thatX is arcwise connected. The Eilenberg
subcomplex S∗ (X) ⊂ S∗(X) is the chain subcomplex generated by all singular simplices
T : ∆q → X which send each vertex of ∆q to the chosen basepoint x.

PROPOSITION 3. Under the conditions given above, the inclusion of the Eilenberg
subcomplex defines an isomorphism in singular homology.

Sketch of proof. For each y ∈ X there is a continuous curve joining y to x, and hence
for each singular 0-simplex given by a point y there is a singular 1-simplex P (y) such that
P (y) o∂1 is the constant function with value x and P (y) o∂0 is the constant function with
value y; clearly it is possible to choose P (x) to be the constant function, and we shall
do so. Starting from this, we claim by induction on q that for each singular q-simplex
T : ∆q → X there is a continuous map

P (T ) : ∆q × [0, 1] −→ X

with the following properties:

(i) The restriction of P (T ) to ∆q ×{0} is given by T , and the restriction of P (T ) to
∆q × {1} is given by a singular simplex in the Eilenberg subcomplex.

(ii) If T lies in the Eilenberg subcomplex, then P (T ) is equal to T × id[0,1].

(iii) For each face map ∂i : ∆q−1 → ∆q we have P (T o∂i) = P (T ) o(∂i × id[0,1]).

To complete the inductive step, one uses (iii) and the first property in (i) to define P (T )
on ∆q × {0} ∪ ∂∆q × [0, 1], and then one extends this to all of ∆q × [0, 1] using the
Homotopy Extension Property.

Let i denote the inclusion of the Eilenberg subcomplex, and define a map ρ from S∗(X)
to the Eilenberg subcomplex by taking ρ(T ) to be the restriction of P (T ) to ∆q×{1}. The
property (iii) ensures that ρ is a chain map, and we also know that ρ oi is the identity on
the Eilenberg subcomplex. The proof of the proposition will be complete if we can show
that i oρ is chain homotopic to the identity. The proof of this is very similar to the proof
of homotopy invariance. Let Pq+1 ∈ Sq+1(δq × [0, 1]) be the standard chain used in that
proof, and define

E(T ) =
(

P (T )
)

#
Pq+1 .

Then the properties of Pq+1 and its boundary imply this defines a chain homotopy from
the identity to i oρ.

Conclusion of the proof of Theorem 2. We shall use the following commutative
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diagram:
F2(X,x)

abel
−−−−−→ S2 (X)

=
−−−−−→ S2 (X)





yδ




yd2





yd2

F1(X,x)
abel

−−−−−→ S1 (X)
=

−−−−−→ S1 (X)




y
can





ycan′




yclass

π1(X,x)
abel

−−−−−→ πab

1 (X,x)
h′

−−−−−→ H1(X)

Many items in this diagram need to be explained. On the bottom line, πab

1 denotes the
abelianization of the fundamental group formed by factoring out the (normal) commutator
subgroup, and the Hurewicz map has a unique factorization as h′ oabel, where abel refers
to the canonical surjection from π1 to its quotient modulo the commutator subgroup. The
groups Fj(X,x) are the free groups on the free generators for the Eilenberg subcomplexes
S∗ (X), and abel generically denotes the passage from free groups to the corresponding
free abelian groups. The maps d2 and class are merely the relevant maps for the Eilenberg
subcomplex, the map can ′” is the abelianization of the map can taking a free generator
T : ∆1 → X, which is merely a closed curve in X based at x, to its homotopy class in the
fundamental group. Finally, δ is a nonabelian boundary map defined on free generators by

δ(T ) = [T o∂2] · [T o∂0] · [T o∂1]
−1 .

Observe that the composite can oδ is trivial and hence its abelianization can′ od2 is also
trivial.

Proof that the Hurewicz map is onto. Suppose we are given a cycle z =
∑

i niTi

in the Eilenberg subcomplex. and we let γ(Ti) ∈ F1(X,x) denote the free generator
corresponding to Ti. Then it follows immediately from the commutative diagram that the
homology class u represented by z satisfies

u = h(α) , where α =
∏

i

[

can
(

γ(Ti)
)]ni

.

Proof that the reduced Hurewicz map (i.e., its factorization through the abelianization of
the fundamental group) is injective. Suppose that h(α) = 0 and that the free generator
y ∈ F1(X,x) represents α. Then it follows that abel(y) = d2(w) for some 2-chain w, and
if w′ ∈ F2(X,x) projects to w then y = δ(w) · v, where v lies in the commutator subgroup
of F1(X,x). Since can oδ is trivial, it follows that the image of y in πabel

1 is trivial. Finally,
since the image of y in π1 is α, it also follows that the image of α in πabel

1 is trivial, or
equivalently that α lies in the commutator subgroup.

The results of this section and the normalization axioms for singular homology theories
imply a strong converse to the Seifert-van Kampen Theorem for describing the fundamental
group of a spaceX which is the union of arcwise connected open subset U and V . Namely, if
the images of π1(U) and π1(V ) generate π1(X), then the intersection is arcwise connected.
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PROPOSITION 4. Suppose that X is a topological space which is the union of arcwise
connected open subsets U and V (such that the base point lies in U ∩ V ), and assume
that U ∩ V is not arcwise connected, and let Γ ⊂ π1(X) be the subgroup generated by the
images of π1(U) and π1(V ). Then Γ has infinite index in π1(X).

Since one of the simplest examples for Theorem 3 is the circle expressed as a union of
two open arcs whose intersections are two small closed arcs, the conclusion of Theorem 3
is obvious in this special case and thus the theorem shows that something similar happens
in every other example.

Proof. By Theorem 1, it will suffice to show that the image of Γ in H1(X) has infinite
index in the latter group, for if a subgroup K ⊂ G has finite index, then its image in the
abelianization G/[G,G] will also have finite index (verify this; it is an elementary exercise
in group theory(?)).

Theorem 1 implies that the image of Γ in H1(X) is equal to the image of the inclusion
induced homomorphism

H1(U) ⊕ H1(V ) −→ H1(X)

in the Mayer-Vietoris exact sequence associated to the decomposition X = U ∪ V :

H1(U)⊕H1(V )→→ H1(X)→ H0(U ∩ V )→ H0(U)⊕H0(V )→ H0(X) ∼= Z→ 0

Since 0-dimensional homology groups are free abelian on their sets of arc components, this
sequence is given more concretely as follows, in which Π denotes the set of arc components
of U∩V , the maps from Z

Π to the two Z factors are given up to sign by adding coordinates,
and the map from Z⊕ Z is also addition:

H1(U)⊕H1(V )→ H1(X)→ Z
Π → Z⊕ Z→ H0(X) ∼= Z→ 0

Since we are assuming that Π contains at least two elements, it follows that the map
Z
Π → Z ⊕ Z has a nontrivial kernel and hence by exactness the map H1(X) → Z

Π has
an infinite image. One more application of exactness implies that the image of the map
H1(U)⊕H1(V )→ H1(X) must have infinite index, and by the remarks at the beginning of
this paragraph the same is true for the image of the subgroup Γ ⊂ π1(X). As noted in the
first paragraph of the proof, this means that Γ must have infinite index in the fundamental
group of X.
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