
PROPOSITION 3. Suppose that (P,K) and (Q,L) are simplicial complexes, and let
f : P → Q be continuous. Let r0(f) > 0 be the smallest value of r such that f is homotopic
to a simplicial map g : Br(K)→ L. Then the following hold:

(i) The number r0(f) depends only upon the homotopy class of f .

(ii) If the set of homotopy classes [P,Q] is infinite, then for each positive integer M
there are infinitely many homotopy classes [fn] such that r0(fn) > M .

Proof. The first part follows immediately from the definition, so we turn out attention
to the second. Recall that a simplicial map is completely determined by its values on the
vertices of the domain.

Suppose now that L has b vertices and Br(K) has ar. There are bar different ways of
mapping the vertices of Br(K) to those of L; although some of these might not arise from
a simplicial map, we can still use this to obtain a finite upper bound on the number of
simplicial maps from Br(K) to L, and we also have a finite upper bound on the number
of simplicial maps from Br(K) to L for all r ≤ M if M is any fixed positive integer. It
follows that there are only finitely many homotopy classes for which r0 ≤M .

In particular, by the results of Section V.1 we can apply this proposition to [P,Q]
where P and Q are both homeomorphic to Sn for some n ≥ 1.

III.4 : The Lefschetz Fixed Point Theorem

(Hatcher, § 2.C)

Once again the treatment in Hatcher is fairly standard, so we shall only concentrate
on a few issues.

The Euler characteristic

In algtop-notes.pdf we discussed the Euler characteristic of a regular cell complex;
our purpose here is prove extensions of the main results on Euler characteristics to finite cell
complexes as defined in Section I.3 of these notes, and the crucial result is Theorem I.3.9,
which shows that the singular homology of a cell complex is isomorphic to the homology
of a cellular chain complex whose q-dimensional group may be viewed as a free abelian
group on the set of q-cells.

Notation. Let (C, d) be a chain complex over the rationals such that only finitely many
chain groups Cq are nonzero and the nonzero groups are all finite-dimensional vector spaces
over the rationals.

(i) Set cq equal to the dimension of Cq.

(ii) Set bq equal to the rank of dq.
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(iii) Set zq equal to the dimension of the kernel of dq.

(iv) Set hq equal to the dimension of Hq(C).

It follows immediately that these numbers are defined for all q and are equal to zero for
all but finitely many a.

The equation involving the numbers of faces for a convex linear cell depends upon the
following algebraic result.

PROPOSITION 1. In the setting above we have

∑
q

(−1)qcq =
∑
q

(−1)qhq .

Proof. The main idea of the argument is given on pages 146 – 147 of Hatcher. In analogy
with the discussion there, we have cq − zq = bq and zq − bq+1 = hq, so that

∑
q

(−1)qhq =
∑
q

(−1)q(zq − bq+1) =
∑
q

(−1)qzq −
∑
q

(−1)qbq+1 =

∑
r

(−1)rzr +
∑
r

(−1)rbr =
∑
q

(−1)qcq

proving that the two sums in the proposition are equal.

COROLLARY 2. Suppose that (X, E) is a finite cell complex with cq cells in dimension
q ≥ 0, and suppose that Hq(X) is isomorphic to a direct sum of βq infinite cyclic groups
plus a finite group. Then we have

∑
q≥0

(−1)qcq =
∑
q≥0

(−1)qβq .

The statement regarding convex linear cells follows immediately from Corollary 11
and Proposition 5. — In general, the topologically invariant number on the right hand
side is called the Euler characteristic of X and is written χ(X).

Proof. Let A∗ be the chain complex over the rational numbers with Aq = Cq(X, E)(0) and
the differential given by rationalizing dq. It then follows that dimAq = cq and dimHq(A) =
βq. The corollary then follows by applying Proposition 1.

The Lefschetz number

From the viewpoint of these notes, the Lefschetz number is obtained using the traces
of various maps on rational chain groups or cohomology groups. The proof that the
alternating sum of traces is the same for simplicial chains and simplicial homology is a
special case of the following result:
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PROPOSITION 3. Suppose that C∗ is a chain complex of rational vector spaces such
that each Cq is finite-dimensional and only finitely many are nontrivial, and let T : C∗ → C∗
be a chain map. Then

∑
q

(−1)q traceTq =
∑
q

(−1)q trace (T∗)q .

The proof of this combines the method of Proposition 1 with the following result:

LEMMA 4. Let V be a finite-dimensional vector space over a field, let W be a vector
subspace, and suppose that T : V → V is a linear transformation such that T [W ] ⊂ W .
Let TW be the associated linear transformation from W to itself, and let TV/W denote the
linear transformation from V/W to itself which sends v +W to T (v) +W for all v ∈ V
(this is well-defined). Then trace (T ) = trace (TW ) + trace (TV/W ).

Proof of Lemma 4. Pick a basis w1, · · · ,wk for W and extend it to a basis for V by
adding vectors uk+1, · · · ,un. It follows that the vectors uk+1 +W, · · · ,un +W form a
basis for V/W . If we now let v denote either v or w and as usual write

T (vj) =
∑
i

ai,j vi

then the traces of T , TW and TV/W are given by the sums of the scalars ai,i from 1 to n
in the case of T , from 1 to k in the case of TW , and from k + 1 to n in the case of TV/W .

As noted above, Proposition 3 follows by applying the same method used in Propo-
sition 1 with the dimensions cq, zq, bq and hq replaced by the traces of the corresponding
linear transformations.

Vector fields on S2

We may think of a tangent vector field on the sphere S2 as a continuous map X :
S2 → R

3 such that X(u) is perpendicular to u for all u ∈ S2 (in other words, the value of
X at a point u in S2 is the tangent vector to a curve passing through u). One can use the
Lefschetz Fixed Point Theorem to prove the following fundamental result on such vector
fields.

THEOREM 5. If X is a tangent vector field on S2, then there is some u ∈ S2 such
that X(u) = 0.

Proof. Suppose that the vector field is everywhere nonzero. If we set

Y(u) = |X(u)|−1 ·X(u)

then Y is a continuous vector field such that |Y| is always equal to 1, so that Y defines
a continuous map from S2 to itself. By the perpendicularity condition we know that
Y(u) �= u for all u, and therefore by the Lefschetz Fixed Point Theorem we know that the
Lefschetz number of Y must be zero.
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We now claim that Y defines a continuous map from S2 to itself which is homotopic
to the identity. Specifically, take the homotopy

H(u, t) = cos

(
tπ

2

)
·Y(u) + sin

(
tπ

2

)
· u

which which moves u to Y(u) along a 90◦ great circle arc. Since Y is homotopic to the
identity, it follows that its Lefschetz number equals the Lefschetz number of the identity,
which is χ(S2) = 2. This contradicts the conclusion of the preceding paragraph; the source
of this contradiction was our assumption that X(u) �= 0 for all u, and therefore it follows
that there is some u0 ∈ S2 such that X(u0) = 0.

In fact, the same argument goes through virtually unchanged for all even-dimensional
spheres. On the other hand, every odd-dimensional sphere does admit a tangent vector
field which is everywhere nonzero. One quick way to construct an example is to take the
vector field on S2n+1 ⊂ R

2n+2 given by the formula

X(x1, x2, x3, x4, · · · , x2n+1, x2n+2) = (−x2, x1,−x4, x3, · · · ,−x2n+2, x2n+1) ;

if we view R
2n+2 as Cn+1, then the vector field sends a vector z = (z1, · · · , zn+1) to i z.

Geometric interpretation of the Lefschetz number. Suppose that P is a
polyhedron which is homeomorphic to a compact smooth manifold M (without boundary),
and let f : M → M be a smooth self-map. Basic results on approximating mappings on
smooth manifolds imply that f is homotopic to a smooth map g : M → M such that g
has only finitely many fixed points and for each fixed point x ∈ M the associated linear
map of the tangent space T (x) at x

Lf (x) = T(g)x : T (x) −→ T (x)

has the property that Lf (x)− idT (x) is an isomorphism (in such cases the fixed point set
is said to be isolated and nondegenerate). For each fixed point x one can define a local
fixed point index Λ(g)x to be the sign of the determinant of Lf (x) − idT (x). Under these
conditions the Lefschetz number of g turns out to be given by

Λ(g) =
∑

g(x)=x

Λ(g)x .

Proving this is beyond the scope of these notes and requires the notion of local fixed point
index. In the paper cited below, a set of axioms for fixed point indices of smooth maps
is given, and Chapter 7 of the text by Dold explains how such indices are related to the
Lefschetz number as described here:

M. Furi, M. P. Pera, and M. Spadini. On the uniqueness of the fixed point
index on differentiable manifolds. Fixed point theory and its applications 2004,
251–259.
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Generalizations of the Brouwer Fixed Point Theorem. One can view the
Brouwer Fixed Point Theorem as a special case of the Lefschetz Fixed Point Theorem in
which the polyhedron P is homeomorphic to a disk or simplex. More generally, we have
the following:

THEOREM 6. Suppose that P is a connected polyhedron such that Hi(P,Q) = 0 for
all i > 0, and let f : P → P be a continuous mapping. Then the Lefschetz number of f is
equal to 1 and hence f has a fixed point.

Proof. Since P is connected it follows that f induces the identity on H0(P ;Q) ∼= Q, and
since all higher dimensional rational homology groups vanish it follows that the Lefschetz
number must be 1. The conclusion regarding fixed points now follows from the Lefschetz
Fixed Point Theorem.

A very similar argument yields another generalization in a somewhat different direc-
tion.

THEOREM 7. Suppose that P is a connected polyhedron, and let f : P → P be a
nullhomotopic continuous mapping. Then the Lefschetz number of f is equal to 1 and
hence f has a fixed point.

Proof. Since P is connected it follows that f induces the identity on H0(P ;Q) ∼= Q, and
since f is nullhomotopic all self maps of higher dimensional (rational) homology groups
are trivial, so that the Lefschetz number of f must be 1. The conclusion regarding fixed
points now follows from the Lefschetz Fixed Point Theorem.

Finally, we should also mention an infinite-dimensional generalization of the Brouwer
Fixed Point Theorem.

THEOREM 8. (Schauder Fixed Point Theorem) Let C be a closed convex subset of
the Banach space X, and suppose that f : C → C is a continuous self-map Which is also
compact (i.e., the image of a bounded subset in C has compact closure). Then f has a
fixed point in C.

Here is an online reference for a proof of this result:

http://www.math.unl.edu/∼s-bbockel1/933-notes/node5.html

III.5 : Dimension theory

(Munkres, § 50)

In this section, we are interested in the following basic question:

Is there some purely topological way to describe the intuitive notion of n−dimensionality,
at least for spaces that are relatively well-behaved?
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