
IV. Singular Cohomology

Suppose that F is a field and (X,A) is a pair of topological spaces. One can then define
the q-dimensional cohomologyHq(X,A;F) to be the vector space dual HomF

(
Hq(X,A;F), F

)
,

and this construction extends to a contravariant functor on the category of pairs of spaces
and continuous maps. Similarly, by taking adjoint maps of dual spaces we obtain nat-
ural coboundary morphisms δ : Hq(A;F) → Hq+1(X,A;F) and long exact cohomology
sequences for pairs.

One natural question is why one would bother to do this, especially since it follows
that Hq(X;F) ∼= Hq(X;F) if X has the homotopy type of a finite cell complex (because
the homology is finite dimensional and is isomorphic to its vector space dual). There are
two related answers:

(1) Even when mathematical objects and their duals are equivalent, in many cases
it is more convenient to work with the dual object rather than the original one,
and vice versa. — For example, vector fields and differential 1-forms on a smooth
manifold are dual to each other, but they play markedly different roles in the
theory of smooth manifolds. In particular, vector fields are better for working
with differential equations, while differential forms provide a more convenient way
for manipulating expressions like line integrals.

(2) Frequently the dual objects have some extremely useful extra structure which is
not easily studied in the original objects. — To continue with our example of
vector fields and differential 1-forms, the latter have better functoriality proper-
ties, and the exterior derivative construction on differential forms does not have a
functorial counterpart for vector fields unless one adds some further structure like
a riemannian metric. On the other hand, there can also be some nice structure
on the original objects which is not on their duals; for example, the Lie bracket
construction on vector fields has no obvious counterpart on 1-forms unless one
adds some further structure.

In fact, it turns out that cohomology groups have a useful additional structure; namely,
there are natural bilinear cup product mappings

∪ : Hp(X,A;F)×Hq(X,A;F) −→ Hp+q(X,A;F)

which do not have comparably simple counterparts in homology. This illustrates the second
point about objects and their duals. Later in these notes we shall illustrate how the first
point manifests itself in homology and cohomology.

A useful result

At several points in this unit we shall need the following result on acyclic (no homol-
ogy) chain complexes.
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THEOREM 0. Let C∗ be a chain complex such that Ck = 0 for k < M for some integer
M and each Ck is free abelian on some set of generators Gk. Then H∗(C) = 0 in all
dimensions if and only if there is a contracting chain homotopy Dq : Cq → Cq+1 (for all
q) such that Dd+ dD = idC .

Proof. If D exists then clearly the homology is zero by the usual sort of argument.
Conversely, suppose that H∗(C) = 0, and let m be the first degree in which C is nonzero.
We may construct Dm as follows: If T ∈ Gm, then dT = 0 and hence T = du for some
u ∈ Cm+1. Define Dm(T ) = u and extend the map using the freeness property. Now
suppose by induction that we have defined Dk for k ≤ N − 1.

Let T be an element of the free generating set GN . Then we need to find an element
uT ∈ Cn+1 so that duT = T − DdT . Since the complex has no homology, such a class
exists if and only if the right hand side is a boundary. But now we have a familiar sort of
inductive calculation:

d(T−DdT ) = dT−dDdT = dT−(1−Dd)dT = dT−dT−DddT = −DddT = D0T = 0

Hence we can define D(T ) = uT and extend by freeness. This completes the inductive step
and proves the existence of the contracting chain homotopy.

REMARK ON THE EXPOSITION. Many of the arguments and constructions in the
remaining units of these notes are variations of ideas that were introduced earlier. Partly
for this reason, the proofs will often be less detailed than in previous units, with the details
left to the reader (also see the earlier quotation from Davis and Kirk on pages 18–19 of
these notes and the following quotation from page vii of Spanier: The reader is expected
to develop facility for the subject as he [or she] progresses, and accordingly, the further he [or
she] is in the book, the more he [or she] is called upon to fill in details of proofs).

IV.1 : The basic definitions

(Hatcher, §§ 3.1–3.2)

We begin by defining the singular cohomology of a space with coefficients in an ar-
bitrary D-module, where D is a commutative ring with unit (a setting broad enough to
contain coefficients in fields, the integers, and quotients of the latter). However, we shall
quickly specialize to the case of fields in order to minimize the amount of algebraic ma-
chinery that is needed.

Definition. Let (X,A) be a pair of topological spaces, and let π be a module over
the ring D as above. The singular cochain complex

(
S∗(X,A;π), δ

)
of (X,A) with

coefficients in π is defined with Sq(X,A) = Hom
(
Sq(X,A), π

)
and the coboundary

mapping
δq−1 : Sq−1(X,A;π) −→ Sq(X,A;π)
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given by the adjoint map Hom(dq, π).

Many basic properties of singular cochain complexes follow immediately from the
definitions, including the following:

PROPOSITION 1. (i) We have δq oδq−1 = 0.

(ii) The singular cochain complex is contravariantly functorial with respect to contin-
uous mappings on pairs of topological spaces.

The first of these follows because dq odq+1 = 0 and the functor Hom(−,−) is addi-
tive, while the second is basically just a consequence of the definition and the covariant
functoriality of the singular chain complex.

Before going further, we shall define the q-dimensional singular cohomologyHq(X,A;π)
of (X,A) with coefficients in π to be the kernel of δq modulo the image of δq−1. El-
ements of the kernel are usually called cocycles, and elements of the image are usually
called cobooundaries. As in the case of singular chain complexes, it follows that the map
of singular cochains

f# : S∗(Y,B;π) −→ S∗(X,A;π)

associated to a continuous map f : (X,A)→ (Y,B) will pass to a homomorphism

f∗ : H∗(Y,B;π) −→ H∗(X,A;π)

and this makes singular cohomology into a contravariant functor on pairs of spaces and
continuous maps.

If (X,A) is a pair of topological spaces, then for each q we know that Sq(X) ∼=
Sq(A) ⊕ Sq(X,A) as free abelian groups (but this is NOT an isomorphism of chain
complexes!), and from this it follows that for each q we have a split short exact sequence
of modules

0 −→ S∗(X,A;π)
j#−−−−−→S∗(X;π)

i#−−−−−→S∗(A;π) −→ 0

where j : X → (X,A) and i : A → X are the usual inclusions. As in the case of
singular chains, this leads to a natural long exact cohomology sequence; to simplify
the notation we shall omit the coefficient module π in the display below:

· · · Hk−1(A)
δ−→ Hk(X,A)

j∗−→ Hk(X)
i∗−→ Hk(A)

δ−→ Hk+1(X,A) · · ·

As in the case of homology, this sequence extends indefinitely to the left and right.

Notational convention. The contravariant algebraic maps induced by inclusions are
often called restriction maps; one motivation for this terminology is that a map like i#

restricts attention from objects defined for X to objects defined only for the subspace A
(for example, consider the restriction map from continuous real valued functions on X to
those defined on A, which is defined by composing a function f : X → R with the inclusion
mapping i).
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We can now proceed as in the study of singular homology to prove homotopy invari-
ance, excision, and Mayer-Vietoris theorems for singular cohomology; informally speaking,
one need only apply the functor Hom(−, π) to everything in sight, including chain homo-
topies. At some points one needs Theorem 0 to conclude that if C∗ is an acyclic, free
abelian chain complex, then it has a contracting chain homotopy and the latter implies
that Hom(C∗, π) has no nonzero cohomology (verify this!).

Cup products

We shall now assume that our coefficients π are a commutative ring with unit, which
we shall call D.

Definition. Let X be a space; then the augmentation mapping εX(D) = εX ∈ S0(X;D)
is the homomorphism from S0(X) to D which sends each singular 0-simplex T : Δ0 → X
to the unit element of D.

The following is an immediate consequence of the definitions.

PROPOSITION 2. If f : X → Y is continuous, then f#(εY ) = εX . Furthermore,
δ0(εX) = 0.

The augmentation plays a key role in the multiplicative structure mentioned earlier.
Before proceeding, we need some geometric definitions.

Definition. Let p and q be nonnegative integers, and as usual let Δp+q denote the
standard simplex. Then the front and back faces Frontp(Δp+q) and Backq(Δp+q) are the
p- and q-dimensional faces whose vertices are respectively the first (p+1) and last (q+1)
vertices of the original simplex. Note that these intersect in the pth vertex of Δp+q.

Definition. Given two cochains f ∈ Sp(X,A;D) and g ∈ Sq(X,A;D), their cup
product f ∪ g ∈ Sp+q(X,A;D) is given as follows: For each standard free generator of
Sp+q(X,A) — in other words, each singular simplex of X whose image is not entirely
contained in A — we define

f ∪ g(T ) = (f |Frontp) · (g|Backq) .

We then have the following:

PROPOSITION 3. The cup product is functorial for continuous maps of pairs. Fur-
thermore, it is bilinear and associative, and if A = ∅ then εX is a two sided multiplicative
identity.(�)

At this point we do not want to address questions about the possible commutativity
properties of the cup product. This is a decidedly nonelementary issue, and in several
respects it is a fundamental difficulty which has an enormous impact across most if not all
of algebraic topology.

Clearly one would hope the cup product will pass to cohomology, and the following
result guarantees this:
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