
Relative cup products

In many contexts it is useful to have a slight refinement of the cup product described
above. Specifically, if A and B are both subspaces of X which satisfy some regularity
condition — for example, if both are open in X — then we shall define a relative cup
product

Hp(X,A;D)×Hq(X,B;D) −→ Hp+q(X,A ∪B;D)

which is a very slight modification of the definition given above.

Suppose first that A and B are open in X, and let F be the open covering of X given
by {A, B}. Let SF∗ (A∪B) be the subcomplex of F-small singular chains, let S∗F (A∪B) be
the associated cochain complex, and let S∗F (X,A∪B) be the kernel of the restriction map
from S∗(X) to S∗F (A ∪B). Equivalently, S∗F (X,A ∪B) is the cochain complex associated
to the quotient

S∗(X)/SF∗ (A ∪B) = S∗(X)/ (S∗(A) + S∗(B) )

and since A and B are open in X, it follows that S∗F (X,A ∪B) is a quotient of S∗(X,A)
such that the projection from S∗(X,A ∪ B) → S∗F (X,A ∪ B) induces isomorphisms in
cohomology.

Suppose now that we are given cochains f ∈ Sp(X,A) and g ∈ Sq(X,B); by con-
struction Sp(X,A) and Sq(X,B) are cochain subcomplexes of S∗(X), and therefore the
cup product construction defines a cochain f ∪ g : Sp+q(X) → D. We need to show that
this cochain actually lies inside S∗F (A ∪B), or equivalently that the restriction of f ∪ g to
SF∗ (A∪B) = S∗(A)+S∗(B) is trivial. This will follow if we can show that the restrictions
of f ∪ g to both S∗(A) and S∗(B) are zero, and thus it suffices to show that f ∪ g(T ) = 0
if T is a singular simplex in A or B.

Let T be a singular simplex in A or B; symmetry considerations show it suffices to
consider the first case (reverse the roles of the variables to get the other case). Then
f ∪ g(T ) = f(T1) · g(T2), where Ti is obtained by restricting T to a front or back face of
Δp+q. If the restriction of f to S∗(A) is zero, then it follows from the previous formula
that f ∪ g(T ) = 0. Similarly, if the restriction of g to S∗(B) is zero, then one obtains
the same conclusion. Therefore f ∪ g actually lies in S∗F (A ∪ B); the previous arguments
show that f ∪ g is a cocycle if f and g are cocycles and in this case the cohomology class
of f ∪ g depends only on the cohomology classes of f and g. This gives us a map from
Hp(X,A) ×Hq(X,B) to the cohomology of S∗F (X,A ∪ B), and since the surjection from
S∗(X,A ∪ B) to this group induces cohomology isomorphisms it follows that we obtain a
class in Hp+q(X,A∪B;D). This refined cup product has analogs of all the properties one
might expect to generalize from the case A = B; for example, it is associative.
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Simplicial cohomology

As before, let π be an abelian group.

Given a simplicial complex (P,K) and a subcomplex (Q,L), one can define the (un-
ordered) simplicial cochain complex C∗(K,L;π) to be Hom(C∗(K,L);π). These objects
are contravariantly functorial with respect to subcomplex inclusions, and as before one
obtains long exact cohomology sequences for pairs. Furthermore, if we apply Hom(...;π)
to the canonical natural maps λ : C∗(K,L)→ S∗(P,Q), then we obtain canonical natural
cochain complex maps

ψ : S∗(P,Q;π) −→ C∗(K,L;π)

and these in turn yield a commutative ladder diagram relating the long exact cohomol-
ogy sequences for (P,Q) and (K,L). Previous experience suggests that the associated
cohomology maps ψ∗ should be isomorphisms, and we shall prove this below.

PROPOSITION 5. The maps ψ∗ define isomorphisms relating the long exact coho-
mology sequences for (P,Q) and (K,L).

Proof. Consider the functorial chain maps λ as above; we known these maps define
isomorphisms in homology. By construction λ maps a free generator v0 · · · vq of Cq(K,L)
to an affine singular q-simplex T for (P,Q); therefore, if V∗(K,L) is the quotient of
S∗(P,Q) by the image of λ, then it follows that the chain group Vq(K,L) is free abelian
on a subset of free generators for Sq(P,Q), and by the long exact homology sequence for
the short exact sequence

0 → C∗ → S∗ → V∗ → 0

it follows that all homology groups of V∗(K,L) are zero. We can now use Proposition
VI.0 to conclude that V∗(K,L) has a contracting chain homotopy D∗, and we can use the
associated maps Hom(D∗, π) to conclude that for each π all the cohomology groups of the
cochain complex Hom(V∗, π) are also zero. If we now apply this observation to the long
exact cohomology sequence associated to

0 → Hom(V∗, π) → Hom(S∗, π) → Hom(C∗, π) → 0

we see that the map ψ : Hom(S∗, π) → Hom(C∗, π) must also induce isomorphisms in
cohomology.

Given a simplicial complex (P,K) and an ordering of its vertices, one can similarly
define an ordered cochain complex C∗(P,Kω) and canonical cochain complex maps

α : C∗(P,K) −→ C∗(P,Kω)

and an analog of the preceding argument then yields the following result:

COROLLARY 6. The associated maps in cohomology α∗ are isomorphisms.

CUP PRODUCTS. If D is a commuative ring with unit, then one can define cup
products on the cochain complexes C∗(K,D) using the same construction as in the singular
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case, and it is an elementary exercise to check that (a) this cup product has the previously
described properties of the singular cup product, (b) the cochain map ψ preserves cup
products at the cochain level (hence also in cohomology)(�).

Examples of cochains

Formally speaking, cochains are fairly arbitrary objects, so we shall describe some “toy
models” which reflect typical and important contexts in which concrete examples arise (also
see Exercise VI.2 in advnotesexercises.pdf). As usual, let (P,K) be a polyhedron in
R

n, and let f : P → R be a continuous function. We can then define a (simplicial) line
integral cochain Lf ∈ C1(K;R) on free generators v0v1 by the formula

Lf (v0v1) =

∫ 1

0

f
(
tv1 + (1− t)v0

) |v1 − v0| dt ∈ R .

By construction, this is just the scalar line integral of f along the directed straight line
curve from v0 to v1.

Similarly, if (P,K) is a polyhedron in R
3 and f : P → R is continuous, then we can

define a surface integral cochain Sf ∈ C2(K;R) by the standard surface integral formula
for scalar functions:

Sf (v0v1v2) =

∫ 1

0

∫ 1−t

0

f(sv1 + tv2) · |(v1 − v0)× (v2 − v0)| ds dt

In this formula “×” denotes the usual vector cross product. There are also versions of this
construction in higher dimensions which yield cochains of higher dimension, but we shall
not try to discuss them here.

Finally, given a field F we shall construct an explicit example of a cocycle in C1(∂Δω
2 ;F)

which is not a coboundary.

By construction C1(∂Δ
ω
2 ) is free abelian on free generators eiej , where 0 ≤ i < j ≤ 2.

Thus a 1-dimensional cochain f is determined by its three values at e0e1, e0e2, and e1e2,
each such cochain must be a cocycle because C2(∂Δω

2 ;F) is trivial (hence δ
1 = 0). Also, a

cochain f is a coboundary if and only if there is some 0-dimensional cochain g such that

f(eiej) = g(ei) − g(ej)

for all i and j such taht 0 ≤ i < j ≤ 2.

Now consider the cochain f with f(e0e1) = f(e0e2) = f(e1e2) = 1. We claim that f
cannot be a coboundary. If it were, then as above we could find integers xi = g(vi) such
that

x1 − x0 = x2 − x0 = x2 − x1 = 1 .

This is a system of three linear equations in three unknowns, but it has no solutions.
The nonexistence of solutions means that f cannot possibly be a coboundary. Similar
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considerations show that if k is an integer which is prime to the characteristic of F (in the
characteristic zero case this means k �= 0), then k ·f is a cocycle which is not a coboundary.

By the previous results on cohomology isomorphisms, it follows that the singular
cohomology H1(S1;F) and simplicial cohomology H1(∂Δ2;F) must also be nonzero.

RELATIVE CUP PRODUCTS. If (P,K) is a simplicial complex and we are given
two subcomplexes (Qi,Li) for i = 1, 2, then one can define relative cup products on the
simplicial cochain level

Ci(K,L1;D)× Cj(K,L2;D) −→ Ci+j(K,L1 ∪ L2;D)

in much the same way that one defines such products of singular cochains, and once again
these products pass to bilinear maps of cohomology groups

Hi(K,L1;D)×Hj(K,L2;D) −→ Hi+j(K,L1 ∪ L2;D) .

Specifically, if L1 and L2 are both subcomplexes of K and we are given cochains

f : Ci(K,L1;D)→ D , g : Cj(K,L2;D)

then the cochain level cup product

Ci(K,L1;D)× Cj(K,L2;D) −→ Ci+j(K,L1 ∪ L2;D)

sends (f, g) to the cochain f ∪ g whose value on a simplex generator T of Ci+j(K) is the
product of f evaluated on the front i-face of T and g evaluated on the back j-face of T .
Since f and g are cochains which vanish on Ci(L1) and Cj(L2) respectively, it follows that
f ∪ g vanishes on Ci+j(L1 ∪L2) and hence defines a relative cochain. One can then reason
exactly in the singular case to show that this cochain level cup product passes to a cup
product in simplicial cohomology, and once again this refined cup product has analogs of
all the properties one has in the singular case.

COMPATIBILITY OF THE SINGULAR AND SIMPLICIAL CUP PRODUCTS. Clearly
it would be very useful to know that the singular and simplicial cup products correspond
under the standard isomorphism from singular to simplicial cohomology. This is slightly
less trivial than one might initially expect, for the relative cup product in singular coho-
mology is defined for pairs (X,A) such that A is open in X and the corresponding product
in simplicial cohomology is defined for pairs (X,A) such that A is a closed subset of X.
We shall need the following result in order to prove compatibility:

Suppose that (P,K) is a simplicial complex and (Q,L) is a (Q1,L1) and (Q2,L2)
are subcomplex. Then there is an open neighborhood W of Q in P such that Q
is a deformation retract of W .

There is a proof of this result in Section II.9 of Eilenberg and Steenrod (and there are also
proofs in many other algebraic topology texts).
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Now suppose that (P,K) is a simplicial complex and that (Q1,L1) and (Q2,L2) are
subcomplexes. Let W1 and W2 be open subsets of P such that Qi is a deformation retract
of Wi for i = 1, 2. Then a Five Lemma argument implies that the restriction mappings
H∗(P,Wi) → H∗(P,Qi) are isomorphisms, and the following result relates the singular
and simplicial cup products:

THEOREM 7. In the setting of the preceding paragraph, we have the following
commutative diagram

Hs(P,W1;D)×Ht(P,W2;D)
∪−−−−−→ Hs+t(P,W1 ∪W2;D)⏐⏐�j∗1 × j∗2

⏐⏐�j∗
Hs(P,Q1;D)×Ht(P,Q2;D) Hs+t(P,Q1 ∪Q2;D)⏐⏐�θ∗ × θ∗

⏐⏐�θ∗
Hs(K,L1;D)×Ht(K,L2;D)

∪−−−−−→ Hs+t(K,L1 ∪ L2;D)

in which the terms are given as follows and have the specified properties:

(i) The horizontal arrows in the top and bottom row denote the singular and sim-
plicial cup products.

(ii) The the mappings j∗1 , j
∗
2 , and j

∗, are (restriction) maps induced by the appropri-
ate inclusions of pairs, and the first two maps (and hence also their product) are
isomorphisms.

(iii) The maps θ∗ are the usual natural isomorphisms from singular to simplicial co-
homology.

It follows that the horizontal arrow in the first column is an isomorphism, and in fact
a more precise application of the results from Eilenberg and Steenrod implies that we can
choose the neighborhoods Wi so that the horizontal arrow in the second column is also an
isomorphism, although this is not needed for many applications. Frequently we shall abuse
language and say that the bottom line is the relative cup product in singular cohomology.

Method of proof. The proof follows immediately from the definitions of the various
morphisms in the diagram (verify this!).
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