
IV.2 : A weak Universal Coefficient Theorem

(Hatcher, § 3.1)

We have already asserted the q-dimensional cohomology of a space is the dual space of
the q-dimensional homology if we take coefficients in a field. However, our basic definition
is somewhat different from this, so the next step is to verify the assertion at the beginning
of this unit. Hatcher formulates and proves more general results (for example, see Theorem
3.2 on page 195). In this course we do not have enough time to develop the homological
algebra necessary to prove such a result, and in any case the results for fields are strong
enough to yield some important insights; one slogan might be that our setting only requires
linear algebra and not the full force of homological algebra. However, if one goes deeper
into the subject then it is necessary to work in the category of modules over arbitrary
principal ideal domains.

The Kronecker Index

As usual let D be a commutative ring with unit, let C∗ be a chain complex of D-
modules, and define an associated cochain complex by Cq = HomD(Cq,D), with a cobound-
ary map dq = Hom(dq+1,D) analogous to the construction for singular cochains. Then
evaluation defines a bilinear map Cq×Cq → D which is called the Kronecker index pairing
and its value at f ∈ Cq and x ∈ Cq is usually written as 〈f, x〉.
LEMMA 1. Suppose that f, f ′ ∈ Cq are cocycles and x, x′ ∈ Cq are cycles such that
f − f ′ = δa and x− x′ = db. Then 〈f, x〉 = 〈f ′, x′〉.
Proof. For an arbitrary cochain g and chain y it follows immediately that 〈δg, y〉 = 〈g, dy〉.
Therefore we have

〈f, x− x′〉 = 〈f, db〉 = 〈δf, b〉 = 〈0, b〉 = 0

and similarly

〈f − f ′, x′〉 = 〈δa, x′〉 = 〈a, dx′〉 = 〈a, 0〉 = 0

which combine to show that 〈f, x〉 = 〈f ′, x′〉.
COROLLARY 2. The chain/cochain level Kronecker index pairing passes to a well-
defined bilinear pairing from Hq(C)×Hq(C) to D.

Manipulations with dual vector spaces

We now assume that F is a field. If V is a vector space over F and U is a subspace of
V , then we have a short exact sequence of vector spaces

0 → U → V → V/U → 0
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and applying the dual space functor we obtain the following short exact sequence of dual
spaces because V is isomorphic to the direct sum U ⊕ (V/U):

0 → (V/U)∗ → V ∗ → U∗ → 0

The image of the map from (V/U)∗ to V ∗ is the annihilator of U , which consists of all

linear functionals which vanish on U and will be denoted by U†.
Suppose now that V1 and V2 are vector spaces over F and T : V1 → V2 is a linear

transformation. Then we can factor T into a composite

V1 → J1 ∼= J2 ⊂ V2

where J1 is the quotient of V1 by the kernel of T , the map from J1 to J2 is an isomorphism,
and J2 is the image of T . There is also a corresponding factorization for the induced map
of dual spaces

V ∗2 → J∗2 ∼= J∗1 ⊂ V ∗1

These factorizations will be useful in proving the following abstract version of a key result
in linear algebra:

PROPOSITION 3. In the notation above, let T ∗ : V ∗2 → V ∗1 be the associated map of

dual spaces. Then we have (Kernel T )† = Image T∗ ⊂ V ∗1 and (Image T )† = Kernel T ∗ ⊂
V ∗2 .

Proof. By our previous observations we know that (Kernel T )† corresponds to J∗1 = J∗2 ,
and since J2 is the image of T , we have the asserted relationship. Similarly, we know that

(ImageT )† corresponds to (V2/J2)
∗, and one can check directly that this corresponds to

all linear functionals f on V2 such that 0 = f oT = T ∗(f).

We now have enough machinery to derive the relationship between homology and
cohomology over a field.

PROPOSITION 4. Let C∗ be a chain complex over a field F, and let C∗ be the dual
cochain complex. Then for each q there is a natural isomorphism from Hq(C) to Hq(C)∗.

Proof. We shall focus on verifying the assertion about the isomorphism first. By
definition we know that

Hq ∼= (Kernel δq)/(Image δq−1) .

Using the relationship δ = d∗ we may rewrite the right hand side in the form

(Image dq+1)
†/(Kernel dq)

†

and conclude by noting that the latter subquotient of C∗q corresponds to

H∗
q
∼=

(
(Kernel dq)/(Image dq+1)

)∗
.
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Under these correspondences and the defining isomorphism

Hq
∼=

(
(Kernel dq)/(Image dq+1)

)

all the standard pairings which evaluate linear functionals at vectors are preserved. In
particular, this means that the isomorphism is given by the pairing described in Corollary
2. Now this pairing is natural by construction, and therefore our isomorphism is also
natural.

Only a little more work is needed to derive the description of singular cohomology
that we want.

COROLLARY 5. If (X,A) is a topological space and F is a field, then for each q there
is a natural isomorphism from Hq(X,A;F) to the dual space Hq(X,A;F)∗.

Proof. At this point all we need to do is describe a natural isomorphism

S∗(X,A;F) ∼= Hom(S∗(X,A),F) −→ HomF (S∗(X,A)⊗ F,F)

because the latter is the cochain complex to which Proposition 4 applies. However, the
isomorphism in question is given directly by the universal properties of the tensor product
construction sending the chain groups Sq(X,A) to Sq(X,A) ⊗ F; in other words, there
is a 1–1 correspondence between abelian group homomorphisms from Sq(X,A) to F and
F-linear maps from Sq(X,A)⊗ F to F.

If (X,A) is a pair of topological spaces, then similar considerations show that under
this isomorphism the connecting morphism in cohomology

δ∗ : Hp(A;F) −→ Hp+1(X,A;F)

corresponds to the map HomF (∂,F), where ∂ : Hp+1(X, ;F)→ Hp(A;F) is the connecting
morphism in homology. This reflects the fact that chain complex boundaries and cochain
complex coboundaries are adjoint to each other with respect to the Kronecker index pairing;
details of the verification are left to the reader(�).
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