
IV.3 : Künneth formulas

(Hatcher, §§ 3.2, 3.B)

One obvious point about the preceding discussion is that we have not yet produced
examples for which the cup product of two positive-dimensional cohomology classes is
nontrivial. Our next order of business is to find classes of examples with this property.
The first step is to prove purely algebraic versions of the results we want.

Algebraic cross products

The proof of the topological result in the preceding paragraph depends on finding
a suitable chain complex for computing the homology of a product space X × Y ; more
precisely, we want this to be an algebraic construction on the singular chain complexes of
X and Y which is somehow an algebraic product of S∗(X) and S∗(Y ). The correct model
is given by a tensor product construction.

Definition. Let (A∗, dA∗ ) and (B∗, dB∗ ) be chain complexes over a principal ideal domain
D such that the chain groups in negative dimensions are zero. Then the tensor product
(A∗, dA∗ )⊗D (B∗, dB∗ ) has chain groups

(A⊗B)n =

n⊕
p=0

Ap ⊗Bn−p

and the differential is given on Ap ⊗Bq by the formula

dA⊗B(x⊗ y) = dA(x)⊗ y + (−1)px⊗ dB(y) .

The sign is needed to ensure that dA⊗B odA⊗B = 0 so that we actually get a chain complex;
proving this algebraic identity is a fairly straightforward (and not too messy) exercise. It
is also fairly straightforward to verify that this construction is covariantly functorial in A
and B.(�)

If we are simply given graded modules A∗ and B∗ (which may be viewed as chain
complexes with zero differentials), then the preceding also yields a definition of the tensor
product A∗ ⊗B∗.

We shall need the following elementary observation, whose proof is left to the reader(�).

PROPOSITION 1. If B∗ is a graded module which is free in all gradings (each Bk is
free) and we are given a short exact sequence 0→ K∗ → A∗ → C∗ → 0 of graded modules,
then the tensor product

0 −→ K∗ ⊗D B∗ −→ A∗ ⊗D B∗ −→ C∗ ⊗D B∗ → 0
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is also a short exact sequence of graded modules. A similar conclusion holds for all B∗
provided each of the graded modules K∗, A∗, C∗ is free.

One important consequence of the definition for tensor products of chain complexes
is the following method of constructing classes in H∗(A ⊗ B) from classes in H∗(A) and
H∗(B).

PROPOSITION 2. In the setting above, there are bilinear mappings

× : Hp(A;D) ⊗ Hq(B;D) −→ Hp+q(A⊗B;D)

with the following property: If x ∈ Ap is a cycle representing u and y ∈ Bq is a cycle
representing v, then x⊗ y is a cycle representing u× v.

This construction is called the external homology cross product.

Proof. We shall only sketch the main steps and leave the details to the reader(�). First
of all, if x and y are cycles, then the definitions imply that x ⊗ y is also a cycle, and if
x = dw or y = dz then x ⊗ y is a boundary. Bilinearity follows from the definition, and
this plus the preceding sentence imply that the bilinear map is well defined.

Our next result states that these products are maximally nontrivial if D is a field.

THEOREM 3. (The algebraic Künneth Theorem) If F is a field, then the external
homology cross product defines an isomorphism

n⊕
p=0

Hp(A;F)⊗Hn−p(B;F) −→ Hn(A⊗B;F)

for all n ≥ 0.

Proof. In the argument below, all tensor products are taken over the field F.

For each integer k let z(Aq) ⊂ Aq be the subspace of cycles; if we define a chain
complex structure on z(A∗) by setting all boundary homomorphisms equal to zero, then
z(A∗) is a chain subcomplex of A∗, and the quotient complex

q(A∗) = A∗/z(A∗)

also has a trivial differential because q(Ak) ∼= d[Ak] ⊂ Ak−1 and d od = 0.

Since we are working over a field F, all modules are free, and hence if we apply
Proposition 3 to the previous short exact sequence we obtain a short exact sequence of
chain complexes

0 −→ z(A∗)⊗F B∗ −→ A∗ ⊗F B∗ −→ q(A∗)⊗F B∗ −→ 0

which of course has an associated long exact homology sequence. Since the differentials in
z(A∗) and q(A∗) are trivial, this long exact sequence has the form

· · · [z(A)∗ ⊗H∗(B)]k → Hk((A⊗B) → [q(A)∗ ⊗H∗(B)]k → [z(A)∗ ⊗H∗(B)]k−1 · · ·
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and the definitions of the connecting homomorphisms imply that the right hand arrow ∂k
is given by d̃∗ ⊗ id [H∗(B)], where

d̃m : q(A)m −→ z(A)m−1

is the composite
d̃m : q(A)m ∼= dm[Am] ⊂ z(A)m−1 .

This implies that the map d̃m is injective, and since the tensor product functor over a field
preserves short exact sequences it follows that the connecting homomorphisms ∂k are also
injective. Therefore the maps

Hk((A⊗B) → [q(A)∗ ⊗H∗(B)]k

are zero, so by exactness it follows that Hk(A⊗B) is isomorphic to the quotient

[z(A)∗ ⊗H∗(B)]k / [q(A)∗ ⊗H∗(B)]k
∼= [H∗(A)∗ ⊗H∗(B)]k

and a check of the definitions shows that the isomorphism is induced by the homology
cross product.

There is also a dual cross product in cohomology. If g : Ap → F and h : Bq → F

are cochains, then we define a cross product cochain g × h : [A ⊗ B]p+q → F such that
the restriction to Ar ⊗Bp+q−r is zero if r �= p and the restriction to Ap ⊗Bq satisfies the
identity

g × h(x⊗ y) = g(x) · h(y) , (x ∈ Ap , y ∈ Bq) .

The coboundary of g × h is given by the following identity:

LEMMA 4. In the setting above we have

δ(g × h) = δg × h + (−1)p g × δh .

In particular, if g and h are cocycles then so is g×h, and if in addition one of g and h is a
coboundary then so is g × h, so that the cross product passes to a bilinear mapping from
Hp(A)⊗Hq(B)→ Hp+q(A⊗B).

Sketch of proof. By definition we have

δ(g × h) = (g × h) od = (g × h) o
(
dA ⊗ id + (−1)pid⊗ dB )

and if we apply the right hand expression to a typical generator z⊗w ∈ Am⊗Bp+q−m−1 we
see that the value equals the value of the right hand side in the displayed expression of the
lemma. The second sentence in the lemma follows by adding the conditions δg = δh = 0
for the first assertion, and adding one of the additional conditions g = δg′ or h = δh′ in the
second. The third sentence follows immediately from these and the fact that the cochain
cross product is bilinear.
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It is now very easy to show that the cross product of two nontrivial cohomology classes
is nonzero.

COROLLARY 5. If α ∈ Hp(A) and β ∈ Hq(B) are nonzero, then so is α× β.
Proof. By the Weak Universal Coefficient Theorem there are homology classes u ∈ Hp(A)
and v ∈ Hq(B) such that the Kronecker indices α(u) and β(v) are nonzero elements of F.
Since the Kronecker index of the cohomology cross product satisfies

〈α× β, u× v〉 = α(u) · β(v)

and the right hand side is nonzero (it is a product of two nonzero elements in F), it follows
that α× β is also nonzero.

Topological cross products

We can define the cross product of two singular cochains by a variant of the cup
product definition. If D is a commutative ring with unit and we are given two singular
cochains f : Sp(X,D)→ D and g : Sq(Y,D)→ D, then their cross product

f × g : Sp+q(X × Y ;D) −→ D

is defined on a singular simplex T = (TX , TY ) : Δp+q → X × Y by the formula

f × g(T ) = f (Frontp(TX) ) · g (Backq(TY ) ) .

The usual bilinearity and associativity properties follow directly from the definition (details
are left to the reader). We also have the following identities showing that each of the cup
and cross products can be easily described in terms of the other:

PROPOSITION 6. In the setting above we have the following identities, whose
verifications are left to the reader:

(i) If πX : X × Y → X and πY : X × Y → Y are coordinate projections with

associated singular cochain homomorphisms π#
X and π#

Y , then f × g = π#
X(f) ∪

π#
Y (g).

(ii) If X = Y and ΔX : X → X ×X is the diagonal map, then f ∪ g = Δ#
X(f × g).

The singular cohomology cross product also satisfies analogs of the basic properties
for cohomology products in Lemma 4;

LEMMA 7. In the setting above we have

δ(f × g) = δf × g + (−1)p f × δg .

In particular, if f and g are cocycles then so is f × g, and if in addition one of f and g is a
coboundary then so is f × g, so that the cross product passes to a bilinear mapping from
Hp(X;D)⊗Hq(Y ;D)→ Hp+q(X × Y ;D).
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The Topological Künneth Theorem

At this point we need a result relating the singular homology relating the singular
homology of X × Y to the singular homology of the factors X and Y ; to shorten the dis-
cussion, we restrict ourselves to field coefficients in these notes. Some of the earliest general
results of this type were due to H. Künneth in the early 1920s, and in singular homology
this relationship follows from a general method of acyclic models due to Eilenberg and
J. A. Zilber. We shall not formulate this method abstractly, but the reader may be able
to see the general pattern emerge.

THEOREM 8. (Eilenberg-Zilber) If D is a principal ideal domain and X and Y are
topological spaces, then there are functorial chain homotopy equivalences

ψX,Y : S∗(X×Y ;D) → S∗(X;D)⊗DS∗(Y ;D) , ϕX,Y : S∗(X;D)⊗DS∗(Y ;D) → S∗(X×Y ;D)

with the following properties:

(i) The composites ϕ oψ and ψ oϕ are naturally chain homotopic to the identity.

(ii) In degree 0 the map ψ takes a singular 0-simplex T = (TX , TY ) to TX ⊗ TY , and
ϕ is inverse to ψ.

We shall describe an explicit choice for ψX,Y known as the Alexander-Whitney map.

Before proving Theorem 8, we shall list some of its consequences:

THEOREM 9. (Classical Künneth Formula for field coefficients) Let X and Y be
topological spaces, and let F be a field. Then the composite of the homology cross product
and induced mapping ψ∗ in homology defines isomorphisms of singular homology groups

n⊕
p=0

Hp(X;F)⊗F Hn−p(Y ;F) −→ Hn(X × Y ;F)

for all n ≥ 0.

This result follows directly from Theorem 8 and the Algebraic Künneth Formula
(Theorem 3).

THEOREM 10. (Cohomological Künneth Formula) Let X and Y be topological spaces,
let F be a field, and assume that the homology groups Hp(X;F) and Hq(Y ;F) are finite
for all p.q ≥ 0. Then the cohomology cross product map defines isomorphisms of singular
homology groups

n⊕
p=0

Hp(X;F)⊗F H
n−p(Y ;F) −→ Hn(X × Y ;F)

for all n ≥ 0.

Sketch of the proof that Theorem 9 implies Theorem 10. This is a consequence
of the following observations:
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(1) The Universal Coefficient isomorphism from the finite dimensional vector space
Hk(W ;F) to the dual space of Hk(W ;F), where W = X or Y and k ≥ 0.

(2) The natural isomorphism (V1⊕V2)∗ ∼= V ∗1 ⊕V ∗2 , where V ∗ denotes the dual space
and V1 and V2 are vector spaces over F.

(3) The natural isomorphism (V1 ⊗F V2)∗ ∼= V ∗1 ⊗F V
∗
2 , where V

∗ denotes the dual
space and V1 and V2 are finite dimensional vector spaces over F. In fact, the
conclusion of the theorem is generally false if the finite dimensionality conditions
do not hold, but there still is a natural monomorphism from V ∗1 ⊗F V

∗
2 to (V1⊗F

V2)
∗).

Note that under these isomorphisms the homology and cohomology cross products corre-
spond; namely, if fi ∈ V ∗i and xi ∈ Vi then f1 ⊗ f2(x1 ⊗ x2) = f1(x1) · f2(x2).

The first step in proving Theorem 7 is to consider the special case where X = Y = Δn

for some n.

LEMMA 11. Let D be a commutative ring with unit. If p, q ≥ 0 and an augmentation
is defined on S∗(Δn;D)⊗ S∗(Δn;D) using the multiplication and tensor product maps

S0(Δn : D)⊗D S0(Δn : D) → D⊗ D → D

then S∗(Δp;D)⊗D S∗(Δq;D) is acyclic.

Proof of Lemma 11. Let C∗(D) be the ordered simplicial chain complex C∗({e}ω0 ;D),
where e}0 is a standard vertex of Δn, let η : C∗(D) → S∗(Δp;D) be the augmentation-
preserving inclusion determined by viewing the generator of C0(D) as the singular 0-simplex
sending the unique point in Δ0 to the vertex e}0 ∈ Δp, and note that the augmentation
map ε on S∗(Δp) can be viewed as a chain map from the latter to C∗(D). Then the proof
of homotopy invariance for singular homology implies that η[C∗(D)] is a chain homotopy
deformation retract of S∗(Δp;D). We can then construct the tensor product of a con-
tracting chain homotopy with the identity on S∗(Δq;D), and it follows immediately that
S∗(Δq;D) ∼= C∗(D)⊗⊗DS∗(Δq;D) is a chain deformation retract of S∗(Δp;D)⊗DS∗(Δq;D).
Since the smaller chain complex is acyclic, it follows that the larger chain complex is also
acyclic.

SIMPLICIAL ANALOGS OF LEMMA 11. Similar results hold for the ordered and
unordered simplicial chain complexes of Δ−n. The proofs are straightforward adaptations
of the proof in the singular case and are left to the reader.

Proof of Theorem 8. The Alexander-Whitney map ψX,Y is just a formalization of
earlier constructions, Specifically, if T = (TX , TY ) : Δn : X ×Y is a singular simplex given
by the coordinate projections TX and TY , then

ψX,Y (T ) =

n∑
p=0

Frontp(TX)⊗Backn−p(TY ) .

It is a routine exercise to check that this construction defines a natural chain map(�).
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The idea behind constructing ϕ and the chain homotopies is to look at universal
examples and extend to the general case by naturality. The chain groups

[S∗(X;D)⊗ S∗(Y ;D)]n

are free modules, and explicit free generators are given by all objects of the form FX⊗BY ,
where FX : Δp → X and BY : Δn−p → Y are singular simplices and 0 ≤ p ≤ n. We shall
define ϕ on such objects recursively with respect to n. The stated conditions define ϕ in
degree 0. Once we are given ϕ in degrees ≤ n− 1, we shall define ϕ first on the universal
class

id[Δp]⊗ id[Δn−p] ∈ Sp(Δp;D)⊗D Sn−p(Δn−p;D)

and then we shall define ϕ(FX ⊗BY ) by the naturality condition

ϕ(FX ⊗BY ) = FX# (id[Δp])⊗BY# (id[Δn−p]) .

It is a straightforward exercise to verify that this construction defines a chain map in degree
n, and this completes the inductive step(�).

By the preceding discussion, the construction of ϕ reduces to finding a choice W (p, q)
for ϕ(id[Δp]⊗ id[Δp]) which satisfies the chain map condition

dW (p, q) = ϕ od (id[Δp]⊗ id[Δp]) .

Since S∗(Δp×Δn−p;D) is acyclic, such a class exists if and only if the right hand side is a
cycle, so everything comes down to computing the boundary map on the right hand side.
By the induction hypothesis, we know that ϕ is a chain map in degree n−1, and therefore
the boundary of the right hand side is given by

d (ϕ od (id[Δp]⊗ id[Δp]) ) = (ϕ od) od (id[Δp]⊗ id[Δp])

which vanishes because d od = 0 as required. This completes the inductive step and the
construction of ϕ.

The chain homotopies from ϕ oψ and ψ oϕ to the respective identity maps are also
constructed using universal examples. We shall start by constructing the chain homotopy
ϕ oψ � id. Since ϕ0

oψ0 is the identity map, we can take D0 = 0. Assume that se have
defined Dk for k < n; as before, we first define Dn on the diagonal map Diagn : Δn →
Δn ×Δn and then we extend by naturality. The classes

θn+1 = Dn (Diagn) ∈ Sn+1(Δn ×Δn)

are required to satisfy the identity

dθn = Diagn − ϕψ (Diagn) − Dn−1
odn (Diagn)
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for all n > 0. Once again, everything reduces to showing that the right hand side is a cycle
because S∗(Δn ×Δn;D) is acyclic. Much as before, one can use the inductive hypothesis

ϕn−1
oψn−1 − identity = Dn−2

odn−1 + dn oDn−1

and d od = 0 to prove that Diagn − ϕψ (Diagn) − Dn−1
odn (Diagn) is a cycle. As before,

one extends by naturality, and it is another formal exercise to check that the construction
defines a natural chain homotopy from ϕ oψ to the identity.

Similar considerations yield the chain homotopy E : ψ oϕ � id. In this case we must
use the free generators of S∗(X;D) ⊗ S∗(Y ;D) described above, and we need Lemma 10
for the fact that S∗(Δp;D)⊗D S∗(Δq;D) is acyclic.

The next result, which yields many examples of nontrivial cross products in singular
homology and cohomology, is an immediate consequence of the results in this section.

COROLLARY 12. Let X and Y be nonempty topological spaces, and let F be a field.

(i) If u ∈ Hp(X;F) and v ∈ Hq(Y ;F) are nonzero, then so is u× v.
(ii) If α ∈ Hp(X;F) and β ∈ Hq(Y ;F) are nonzero, then so is α× β.

Products in relative homology groups

We would also like to have a version of Corollary 11 for cross products in relative ho-
mology and cohomology. There are a few complications, but one can develop a reasonably
good theory in this case. The first step is a generalization of the Eilenberg-Zilber Theorem.
For the rest of this section we shall assume that all coefficients lie in some commutative
ring with unit D which is suppressed from the notation.

THEOREM 13. Suppose that (X,A) and (Y,B) are pairs of spaces such that A and B
are open in X and Y respectively. Then there is a relative cross product on the cochain
level

Sp(X,A)⊗ Sq(Y,B) −→ Sp+q(X × Y,A× Y ∪X ×B)

which is compatible with the absolute cross product defined in this unit. This product sat-
isfies analogs of the coboundary formulas in the absolute case and passes to a cohomology
cross product which is also compatible with the previous construction when A = B = ∅.
Furthermore, if the coefficients lie in a field F and all the cohomology groups Hp(X,A)
and Hq(Y,B) are finite dimensional vector spaces, then the cross product defines an iso-
morphism from H∗(X,A)⊗H∗(Y,B) to H∗(X × Y,A× Y ∪X ×B).

Proof. Let U be the open covering of A × Y ∪ X × B given by {A × Y,X × B}.
Then one can check directly that the composite of the cochain level cross product from
Sp(X,A)⊗ Sq(Y,B) to Sp+q(X × Y ) with the restriction mapping

Sp+q(X × Y ) → Sp+q
U (A× Y ∪X ×B) = HomD(Sp+q(A× Y ) + Sp+q(X ×B),D)

is trivial; in other words, if f is a cochain on Sp(X) which vanishes on Sp(A) and g is a
cochain on Sq(Y ) which vanishes on Sq(B), then f×g vanishes on Sp+q(A×Y )+Sp+q(X×
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B) = SUp+q(A×Y ∪X×B). The Leibniz Formula for the coboundary of a cross product is
an immediate consequence of the construction and known results when A = B = ∅ (recall
that the relative cochain groups S∗(Z,C) are contained in the absolute groups S∗(Z) as
the subgroups of cochains whose restrictions to S∗(C) are zero). It follows that the cochain
level cross product passes to cohomology mappings

Hp(X,A)⊗Hq(Y,B) → Hp+q (S∗(X × Y )/S∗U (A× Y ∪X ×B) )

and since the inclusion of the latter in Sp+q(A×Y ∪X×B) is a chain homotopy equivalence
by the proof of excision we get the desired map from Hp(X,A)⊗Hq(Y,B) to Hp+q(X ×
Y,A×Y ∪X ×B). This completes the derivation of the construction, We must now prove
the relative Künneth Formula in the final sentence of the theorem.

Consider first the case where B = ∅. Since the short exact sequences of singular chain
complexes for the pair (X,A) is split in each degree (the standard free generators of Sk(A)
are a subset of the standard free generators for Sk(X)), we have the following commutative
diagram in which the vertical maps are Alexander-Whitney maps and the rows are short
exact sequences; all tensor products are taken with respect to the field F.

0 → S∗(A× Y ) → S∗(X × Y ) → S∗(X × Y,A× Y ) → 0⏐⏐�ψ
⏐⏐�ψ

⏐⏐�ψ
0 → S∗(A)⊗ S∗(Y ) → S∗(X)⊗ S∗(Y ) → S∗(X,A)⊗ S∗(Y ) → 0

Since the vertical maps on the left and center induce isomorphisms in homology, it follows
that the vertical map on the right also induces isomorphisms in homology; in fact, this
part of the argument does not require A to be an open subset of X.

Now consider the following commutative diagram, in which the second and third rows
are short exact sequences of chain complexes and the maps denoted by ψ are Alexander-
Whitney maps:

S∗(X ×B,A×B)

∼=
SU∗ (A× Y ∪X ×B,A× Y )⏐⏐�⊂
S∗(A× Y ∪X ×B,A× Y ) → S∗(X × Y,A× Y ) → S∗(X × Y,A× Y ∪X ×B)⏐⏐�?

⏐⏐�ψ
⏐⏐�ψ

S∗(X,A)⊗ S∗(B) → S∗(X,A)⊗ S∗(Y ) → S∗(X,A)⊗ S∗(Y,B)

The question mark represents the following claim: There is a chain map ψ′ from S∗(A×
Y ∪ X × B,A × Y ) to S∗(X,A) ⊗ S∗(B) whose restriction to the subcomplex S∗(x ×
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B,A × B) ∼= SU∗ (A × Y ∪ X × B,A × Y ) is the usual Alexander-Whitney map. The
existence of ψ′ follows from the commutativity of the right hand square, for the latter
implies that ψ : S∗(X × Y,A× Y )→ S∗(X,A)⊗ S∗(Y ) maps the kernel of the surjection
from S∗(X×Y,A×Y ) to the kernel of the surjection from S∗(X,A)⊗S∗(Y ). Furthermore,
the commutativity of the diagram

S∗(X ×B,A×B) → S∗(X × Y,A× Y )⏐⏐�ψ
⏐⏐�ψ

S∗(X,A)⊗ S∗(B) → S∗(X,A)⊗ S∗(Y )

implies that ψ′ extends the Alexander-Whitney map ψ on S∗(X,A)⊗ S∗(B).

By earlier discussion of special cases, which applies to the pair (X × B,A × B) by
interchanging the roles of the first and second factors, we know that the Alexander-Whitney
map on S∗(X,A) ⊗ S∗(B) induces isomorphisms in singular homology, and by the proof
of excision we know that the inclusion of S∗(X ×B,A×B) in S∗(A×Y ∪X ×B) induces
isomorphisms in singular homology, and it follows immediately that the mapping ψ′ also
induces isomorphisms in singular homology. We have already shown that the Alexander-
Whitney map from S∗(X × Y,A× Y ) induces an isomorphism in homology, and therefore
the Five Lemma implies that the Alexander-Whitney map from S∗(X×Y,A×Y ∪X×B)
also induces isomorphisms in homology.

If we now take coefficients in a field and assume all homology and cohomology groups
are finite dimensional, then the weak Universal Coefficient Theorem implies that the dual
cochain complex maps

S∗(X,A;F)⊗F S
∗(Y,B;F) → S∗(X × Y,A× Y ∪X ×B;F)

induce isomorphisms in cohomology from H∗(X,A;F) ⊗F H
∗(Y,B;F) to H∗(X × Y,A ×

Y ∪X ×B;F).

In particular, just as before we know that if the homology groups of (X,A) and (Y,B)
are finite dimensional over F in each dimension, then the cross product of a nontrivial
cohomology class α ∈ H∗(X,A;F) and a nontrivial cohomology class β ∈ H∗(Y,B;F) will
always be nontrivial.

CORRESPONDING RESULTS FOR CLOSED SUBSETS. Frequently we want versions
of the preceding when A and B are closed subsets rather than open subsets. As in earlier
discussions, analogous results hold if we assume that A and B are deformation retracts of
open neighborhoods A ⊂ U ⊂ X and B ⊂ V ⊂ Y (details are left to the reader(�) — the
crucial point is that pairs like (X,A) and (X,U) have isomorphic homology), and in many
(most?) situations of interest in algebraic and geometric topology this sort of condition is
satisfied. For example, this is the case if X is a polyhedron and A is a subpolyhedron.
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Cap products

Although the homology groups of a space do not have a ring structure, it turns out that
the graded object H∗(X,D) is a graded module over the cohomology ring if one multiply
cohomology degrees by (−1).
Definition. Let X be a space, and let A1 and A2 be open subsets of X. The
chain/cochain level cap product

∩ : Sp(X,A1;D)⊗D Sn(X;D)/[Sn(A1;D) + Sn(A2;D)] −→ Sn−p(X,A2;D)

is defined as follows: Given g : Sp(X,A1) → D and a singular simplex T : Δn → X, the
cochain g∩T is given by g

(
Frontp(T )

)·Backn−p(T ). Strictly speaking this construction is
defined on Sp(X,A1;D)⊗Sn(X;D), but it factors through the displayed quotient because
g ∩ T is trival on all singular simplices in Sn(A1;D) + Sn(A2;D) ⊂ Sn(X;D); if the image
of T lies in A2, then the image is trivial by the definition of Sn−p(X,A2;D), and if the
image of T lies in A1 then triviality follows because f |Sp(X,A1;D) is zero. If c is a p-chain
in Sp(X,A1;D), then one has the usual sort of graded Leibniz rule for computing d(g ∩ c),
and it follows that (1) g∩c is a cycle if g is a cocycle and c is a cycle, (2) g∩c is a boundary
if either g is a coboundary or c is a boundary. Since A1 and A2 are open subsets of X, the
proof of excision implies that the chain complex inclusion

S∗(A1;D) + S∗(A2;D) ⊂ S∗(A1 ∪A2;D)

induces isomorphisms in homology, it follows that the chain/cochain level cap product
induces a map in homology/cohomology

∩ : Hp(X,A1;D)⊗D Hn(X,A1 ∪A2;D) −→ Sn−p(X,A2;D) .

The cap product map is D-bilinear, and it also has the following formal properties:

PROPOSITION 14. Let X be a space. Then the cap product has the following
properties:

(i) If εX : S0(X) → D is the augmentation and [εX ] ∈ H0(X;D) is its cohomology
class, then cap product with [εX ] induces the identity on H∗(X;D).

(ii) The cap and cup product satisfy a mixed associative law: If u ∈ Hq(X;D),
v ∈ Hp(X;D), and z ∈ Hn(X;D), then (u ∪ v) ∩ z = u ∩ (v ∩ z).

(iii) If f : X → Y is continuous with u ∈ Hp(Y ;D) and z ∈ Hn(x;D), then f∗( f∗u ∩
z) = u ∩ f∗(z).

In each case, one can verify that the corresponding identities hold at the chain/cochain
level; details are left to the reader(�).
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