
IV.4 : Grade-commutativity and examples

(Hatcher, §§ 3.2, 3.B)

DEFAULT HYPOTHESES. Unless explicitly stated otherwise, througout this section
D will denote a commutative ring with unit, all chain complexes will be assumed to be
modules over D, and tensor products will be assumed to be given over D.

It was fairly easy to prove that the cup product on cohomology is associative, and in
fact this is also true on the cochain level. Furthermore, it was even easier to prove that
the augmentation cocycle ε : S∗(X)→ D is a two sided identity in the absolute case (pairs
where the subspace is empty). We shall now consider commutativity properties of cup
products, both at the cohomology level and at the cochain level.

One can do direct calculations to show that the cup product is usually not commutative
in the standard sense. For example, one can check this in the simplicial cohomology of
complexes homeomorphic to T 2 = S1 × S1. Our results contain both good news and bad
news:

Good news. On the cohomology level the cup product is grade-commutative
in the sense that if α ∈ Hp(X,D) and β ∈ Hq(Y,D), then β ∪ α = (−1)pqα ∪ β.
Bad news. On the cochain level the cup product is usually not even grade-
commutative, although it is so up to a system of higher chain homotopies (how-
ever, we shall only show commutativity up to an ordinary chain homotopy).

In particular, it turns out that the Steenrod squares and reduced powers in Section 4.L of
Hatcher are defined using such higher chain homotopies and in fact imply the impossibility
of constructing a grade-commutative cup product on the cochain level for coefficients in
a field F of finite characteristic. On a more positive note, relatively recent results of M.
Mandell show that if X is reasonably nice — for example, if X is a polyhedron — then
the homotopy type of X is determined by the singular chain complex together with the
a suitably defined structure of higher chain homotopies for cup product commutativity.
Here is the reference:

M. A. Mandell. Cochains and homotopy type, Publ. Math. Inst. Hautes
Études Sci. 103 (2006), 213–246.

In contrast, if we work over a field F of characteristic zero, then it is possible to define
cohomology groups using cochain constructions that are grade commutative (on the cochain
level). There is a more extensive discussion of commutative cochains on pages 110–111 of
the following book:

P. A. Griffiths and J. W. Morgan. Rational homotopy theory and differ-
ential forms, Progress in Mathematics Vol. 16. Birkhäuser, Boston, MA, 1981.

In the next unit we shall discuss some fundamental constructions which are closely related
to the topics covered in this book.
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Coalgebraic structures on simplicial chain complexes

Since homology and cohomology are essentially dual to each other, the existence of
a product structure in the latter but not the former may seem puzzling. However, it
turns out that one can resolve this by a more systematic approach to dualization. One
can view a multiplicative structure on a (graded) algebraic object as a (grade-preserving0
homomorphism μ : A⊗A→ A; dually, one can define a COMULTIPLICATIVE structure as
a homomorphism ψ : A→ A⊗A; such a structure can also be called a coproduct. Every
concept that is meaningful for an algebra or product has a natural dual concept which is
meaningful for a coalgebra or coproduct. For example, just as an algebra is associative if
and only if the diagram

A⊗A⊗A μ⊗1−→ A⊗A⏐⏐�1⊗ μ ⏐⏐�μ
A⊗A μ−→ A

commutes, we can say that an algebra is coassociative if the diagram

A
ψ−→ A⊗A⏐⏐�ψ ⏐⏐�1⊗ ψ

A⊗A ψ⊗1−→ A⊗A⊗A

commutes. All of this is intrinsically formal, but the next result shows that such structures
actually arise in concrete situations.

PROPOSITION 1. If X is a topological space, let ΔX be the diagonal and let ψX,X be
the Alexander-Whitney map for X ×X. Then the chain map ΨX = ψX,X oΔX# defines
a coassociative comultiplication on S∗(X). Furthermore, if f : X → Y is a continuous
mapping, then the induced map of singular chain complexes is a morphism of coalgebras.

This follows directly from the definition of the Alexander-Whitney map (details are
left to the reader(�)).

COROLLARY 2. If our underlying commutative ring with unit is a field F, then the
chain level comultiplication induces a comultiplication in homology, and this comultiplica-
tion is functorial and coassociative.

The conceptual point of the proposition and corollary is that one can view the mul-
tiplicative structure in cohomology as the dual of the given comultiplicative structure in
homology.

We can view a two-sided identity in an algebra as a homomorphism from D→ A such
that the composites

A ∼= D⊗A→ A⊗A→ A , A ∼= A⊗ D→ A⊗A→ A
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are the identity mapping (in the graded case, we assume D is contained in degree zero).
The dual notion is basically just an augmentation A→ D, and of course it is supposed to
satisfy the dual conditions that the composite mappings

A→ A⊗A→ D⊗A ∼= A , A→ A⊗A→ A⊗ D ∼= A

are the identity. It is routine to verify that the standard augmentation maps on singular
chain complexes have this property, so in fact the singular chain complex may be viewed
as a functor from spaces to coassociative coalgebra chain complexes with augmentations.

Algebraic and topological twist maps

The preceding discussion indicates that grade-commutativity properties of cup prod-
ucts should be dual to grade-cocommutativity properties of the functorial comultiplication
on singular chain complexes. At this point we need to introduce some algebra.

Definition. Suppose that A∗ and B∗ are chain complexes over D. The transposition or
twist isomorphism

τA,B : A∗ ⊗B∗ −→ B∗ ⊗A∗
is determined by the identity τA,B(ap⊗ bq) = (−1)pq(bq⊗ap), where ap ∈ Ap and bq ∈ Bq.

It follows immediately that τ is a functorial chain map and τB,A oτA,B is the identity(�).

One motivation for this construction is the following result:

THEOREM 3. Let X and Y be topological spaces, and let T : X × Y → Y ×X be the
map T (x, y) = (y, x) which transposes coordinates. Then there is a commutative diagram
up to natural chain homotopy

S∗(X × Y )
ψ−→ S∗(X)⊗ S∗(Y )⏐⏐�T# ⏐⏐�τ

S∗(X × Y )
ψ−→ S∗(X)⊗ S∗(Y )

in which the horizontal maps are Alexander-Whitney maps and τ is the algebraic trans-
position map on S∗(X)⊗ S∗(Y ).

Proof. The first things to observe is that all maps of chain complexes are augmentation
preserving and the diagram commutes in degree zero. Assume inductively that the diagram
commutes up to natural chain homotopy through dimension n − 1 ≥ 0. We shall use the
method of acyclic models to construct the chain homotopy in degree n for the universal
example of the diagonal singular simplex Diagn : Δn → Δn × Δn and extend it to all
singular simplices by naturality.

To construct the chain homotopy on the universal example in degree n, we need to
find some ϕn ∈ [S∗(Δn)⊗ S∗(Δn)]n+1 such that

dϕn = ψ oT# (Diagn) − τ oψ (Diagn) − D od (Diagn) .
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Since S∗(Δn)⊗S∗(Δn) is acyclic, we can find a suitable element ϕn if and only if the right
hand side is a cycle. As in previous examples, this can be shown using the facts that ψ, T
and τ are chain maps, the chain complex identity d od = 0, and the fact that D is a chain
homotopy through degree n− 1; details are left to the reader.

We are now ready to state the grade-commutativity properties of the cross product
and their implications for grade-commutativity of the cup product.

THEOREM 4. Let X and Y be topological spaces, let u ∈ Hp(X) and v ∈ Hq(Y ) be
cohomology classes, and let T : X×Y → Y ×X denote the transposition homeomorphism.
Then the cohomology cross product satisfies u× v = (−1)pqT ∗(v × u).
COROLLARY 5. If X is a space with u ∈ Hp(X) and v ∈ Hq(X), then u ∪ v =
(−1)pqv ∪ u.
Proof of Corollary 5. If ΔX : X → X ×X is the diagonal, then u ∪ v = Δ∗X(u × v),
and if T : X × X → X × X transposes coordinates, then T oΔX = ΔX . Therefore by
Theorem 5 we have

u∪v = Δ∗X(u×v) = (T oΔX)∗(u×v) = Δ∗X oT ∗(u×v) = Δ∗X ( (−1)pqv × u) = (−1)pqv∪u

which is what we wanted to prove.

Proof of Theorem 4. Choose cocycles f and g representing u and v respectively, and
let ψX,Y and ψY,X be the Alexander-Whitney maps for X × Y and Y ×X. Then we have
the following diagram in which the right hand square commutes and the left hand square
commutes up to chain homotopy:

Sp+q(X × Y )
proj(p,q)ψ−→ Sp(X)⊗ Sq(Y )

f⊗g−→ D⊗ D ∼= D⏐⏐�T# ⏐⏐�τ ⏐⏐�=
Sp+q(Y ×X)

proj(p,q)ψ−→ Sp(X)⊗ Sq(Y )
(−1)pqg⊗f−→ D⊗ D ∼= D

The map proj(p, q) is projection onto the direct summand Sp(X) ⊗ Sq(Y ) in [S∗(X) ⊗
S∗(Y )]p+q, while the top row is a cochain level representative for u × v and the bottom
row is a cochain level representative for (−1)pqu× v.

Let E be the chain homotopy relating ψY,X oT# and τ oψX,Y . Then we have

f×g = (f⊗g) oψX,Y = (−1)pq(g⊗f) oτ oψX,Y = (−1)pq(g⊗f) o (ψY,X oT# + dE + Ed) =

T# ( (−1)pq(g ⊗ f) oψY,X) + (−1)pqδ(g × f) oE + δU

where δ is the coboundary map and U is some cochain whose precise value is unimportant
because it disappears when we take cohomology classes. The term δ(g×f) vanishes because
f and g are cocycles, and therefore the displayed identities show that the cohomology
classes represented by f × g and (−1)pq(g × f) — namely, u× v and (−1)pqT ∗(v × u) —
must be equal.

131



Some examples

The results of this and the previous section yield complete information on the cup
product structure for a product of spheres with coefficients in a field. This can be done in-
ductively using the theorem stated below. Before stating this result, we need the following
construction:

Definition. Let A∗ and B∗ be graded algebras over D with multiplication maps μA and
μB respectively. Then the tensor product A∗ ⊗B∗ has a multiplication given by

(A∗ ⊗B∗)⊗ (A∗ ⊗B∗)→ A∗ ⊗A∗ ⊗B∗ ⊗B∗ → A∗ ⊗B∗
where the first map is the middle four interchange

xp ⊗ yq ⊗ zr ⊗ ws −→ (−1)qr xp ⊗ zr ⊗ yq ⊗ ws
and the second map is μA ⊗ μB .
THEOREM 6. Let n be a positive integer, let F be a field, and let X be a space such
that Hk(X;F) is finite dimensional for all k. Then the cohomology algebra H∗(Sn×X;F)
is isomorphic to the tensor product algebra H∗(Sn)⊗F H

∗(X).

This result is an immediate consequence of the cohomological Künneth Theorem;
details are again left to the reader.

The preceding theorem and induction yield the computation for the cohomology of a
product

r∏
k=1

Sn(k)

where each n(k) is positive.

COROLLARY 7. In the setting above we have

H∗
(∏r

k=1 S
n(k);F

) ∼=
r⊗

k=1

H∗
(
Sn(k);F

)
.

The following results are immediate consequences of this corollary:

COROLLARY 8. In the setting above, assume that for each k the cohomology class uk
is the image of a generator for Hn(k)(Sn(k);F) under the map induced by the coordinate
projection pk onto the kth factor. Then∏

k

uk �= 0 .

This is merely an iteration of the fact that the cross product of two nontrivial coho-
mology classes is always nontrivial.
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COROLLARY 9. In the setting above, assume that the dimensions n(k) are all even
and equal to some fixed integer n (hence the cup product is commutative in the usual
sense), and assume further that for each k the cohomology class uk is the image of a
generator for H(Sn;F) under the map induced by the coordinate projection pk onto the
kth factor. Then (∑

k

uk

)r

�= 0 .

This reduces to a purely algebraic computation, which shows that the class in question
is equal to n! ·∏k uk (the details are again left as an exercise(�)).
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IV.5 : Two applications

(Hatcher, §§ 3.2, 4.2)

Although we have only obtained relatively weak versions of the basic results on prod-
ucts in singular homology and cohomology theory, they suffice to yield two fairly signif-
icant results. One is a restriction on the maps in homology associated to a homotopy
self-equivalence from S2m×S2m to itself, and the other is a proof that for all m > 1 there
is a continuous mapping from S4m−1 to S2m which is not homotopic to a constant. The
existence of such maps reflects several of the fundamental difficulties one encounters when
trying to study homotopy theory.

Coefficient homomorphisms in singular homology and cohomology

We would like to have some way of extracting information about homology and coho-
mology groups with integer coefficients from computations of homology and cohomology
with coefficients in various fields (not surprisingly, the usual examples are the rationals Q
and the prime fields Zp where p is prime). There are two or three main ideas.

(1) If ϕ : D→ E is a homomorphism of commutative rings with unit, then there are
associated natural coefficient homomorphisms ϕ# and ϕ# of singular chain and
cochain groups. These are compatible with the cup and cap product structures,
and they induce corresponding natural transformations in homology and coho-
mology which commute with the connecting homomorphisms in the long exact
sequences of pairs and Mayer-Vietoris exact sequences.

(2) Let A→ A(0) be the rationalization functor on abelian groups which is defined in
Section VII.5 of algtop-notes.pdf. Then there is a natural isomorphism of ∂-
functors fromH∗(X,A;Z)(0) toH∗(X,A;Q) which commutes with the connecting
homomorphisms in the long exact sequences of pairs and Mayer-Vietoris exact
sequences.

(3) The Universal Coefficient Theorems in Hatcher provide the “right” way of extract-
ing information about homology and cohomology groups with integer coefficients
from computations involving Zp coefficients. — We are avoiding this to minimize
the amount of algebraic machinery developed in the course.

The first of these is easy to show; given a pair of spaces (X,A), the natural map S∗(X,A)⊗
D→ S∗(X,A)⊗ E is just the tensor product of the identity on S∗(X,A) with ϕ, and the
map on cochains takes f : S∗(X,A) ⊗ D to f oϕ. All of the assertions about these maps
then follow by purely formal considerations. The second principle follows immediately
from Corollary VII.5.3 in algtop-notes.pdf.

Similar considerations hold for simplicial chain and cochain groups, and this is true
for groups defined with respect to orderings of vertices and groups defined without such
orderings. Furthermore, the coefficient homomorphisms commute with the maps defined
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by passage from ordered to unordered simplicial chains, and from unordered simplicial
chains to singular chains.

Cellular homology and cohomology with coefficients. Let (X, E) be a finite cell
complex, and let Xk denote the k-skeleton of this complex. Then one can define cellular
chain groups with coefficients in an arbitrary commutative ring with unit D, and the proof
given in the integer case extends directly to show that the groups H∗(X;D) are isomorphic
to the homology groups of the complex C∗(X, E ;D). One can also define cellular cochain
complexes C∗(X, E ;D) such that Ck(X, E ;D) = Hk(Xk, Xk−1;D) — which will be a free
abelian group whose rank is the number of k-cells — and a dualization of the earlier
arguments shows that the cohomology of X with coefficients in D is isomorphic to the
cohomology of the cellular cochain complex (the details are left to the reader).

It is not difficult to guess how cellular chain and cochain complexes behave under the
coefficient homomorphism associated to a ring homomorphism ϕ : D→ E:

PROPOSITION 0. In the setting above, let F (D) denote the chain or cochain group
Ck(X, E ;D) or Ck(X, E ;D), and let ϕ∗ : F (D) → F (E) be the coefficient map induced by
ϕ. Use the standard free generators for the chain or cochain group (corresponding to the
k-cells in X) to identify F (D) and F (E) with F (Z)⊗ D and F (Z)⊗ E respectively. Then
the coefficient homomorphism ϕ∗ corresponds to id[F (Z)]⊗ ϕ.
Sketch of proof. By naturality considerations it suffices to prove the analogous result
for the homology of (Dk, Sk−1). This case can be treated explicitly using the ordered
simplicial chain complex for the pair (Δk, ∂δk).

Cell decompositions for products of spheres

Let n be a positive integer, and let D be a commutative ring with unit.

If we take the simplest cell decomposition for Sn with a 0-cell and an n-cell, then the
product construction yields a cell decomposition of Sn × Sn with one 0-cell, two n-cells
and one 2n-cell. If n ≥ 2 then there are no possible nonzero differentials in the cellular
chain complex for computing H∗(Sn × Sn;D) and hence one can read off the homology
immediately. If σ ∈ Hn(S

n;D) ∼= D is a generator and i1, i2 are the usual slice inclusions,
then the classes i1∗σ and i2∗σ form a free basis for Hn(S

n × Sn;D). The top cell of this
complex is attached to the n-skeleton, which is a wedge of two copies of Sn by a continuous
map

P : S2n−1 −→ Sn ∨ Sn

that we shall call the universal Whitehead product.

Let n be as in the preceding paragraph, and let PTn ⊂ Tn denote the (n−1)-skeleton
with respect to the standard cell decomposition of Tn described earlier. Then the quotient
space Tn/PTn is homeomorphic to Sn; let κ : Tn → Sn denote the associated collapsing
map. It follows that κ∗ and κ∗ induce isomorphisms in n-dimensional homology and
cohomology (say with field coefficients in the second case). Furthermore, it follows that
κ × κ : Tn × Tn → Sn × Sn induces a monomorphism in cohomology; verifying this is a
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fairly straightforward exercise using the corresponding property of κ∗, the known structure
of H∗(Sn × Sn), and the known structure of H∗(Tn × Fn).

The preceding discussion reduces the computation of the cohomology cup product for
Sn × Sn to questions about the corresponding structure for T 2n = Tn × Tn. Here is a
formal statement of the conclusions:

PROPOSITION 1. Let Ω ∈ Hn(Sn) be such that the Kronecker index 〈Ω, σ〉 = 1, and
let π1, π2 denote the projections of Sn×Sn onto the factors. Then the cohomology classes
π∗jΩ are dual to the homology classes ij∗σ with respect to the Kronecker index pairing,
and these classes satisfy the following conditions:

(i) Their cup squares are zero.

(ii) The class π∗1Ω ∪ π∗2Ω generates H2n(Sn × Sn).
Proof. In the cellular decomposition for Sn × Sn described above, there are no cells
in adjacent dimensions, and hence the cellular chain and cochain complexes have trivial
differentials. Thus the cellular decomposition and the discussion of cellular cohomology
with coefficients imply thatHk(Sn×Sn;D) is isomorphic to D⊕D if k = n, D if k = 0 or 2n,
and zero otherwise. Furthermore, by constructionHn(Sn×Sn;D) is freely generated by the
classes π∗1ΩD and π∗2ΩD, where ΩD is the image of Ω under the coefficient homomorphism
ϕ : Z→ D sending 1 to the identity in D.

The first conclusion holds because Ω2 in the cohomology of Sn and the maps π∗t are
multiplicative. To prove the second statment, let p be a prime and take D = Zp. Then the
Künneth Theorem for cohomology implies that π∗1ΩD∪π∗2ΩD generates H2n(Sn×Sn;Zp) ∼=
Zp. Therefore by Proposition 0 the image of π∗1Ω∪ π∗2Ω in Zp is a generator for all primes
p, and it follows that π∗1Ω ∪ π∗2Ω must be a generator for H2n(Sn × Sn) ∼= Z (otherwise,
its image in some Zp would be trivial).

Finally, we also note that if n is even then grade-commutativity of cup products
implies that π∗1Ω ∪ π∗2Ω = π∗2Ω ∪ π∗1Ω.

These computations lead directly to our first application.

THEOREM 2. Suppose that m ≥ 1 and f is a homotopy self-equivalence of S2m×S2m.
Let σ1 and σ2 denote the free basis for H2m(S2m × S2m;Z) described earlier. Then either
the associated map in homology f∗ sends the σj to εjσj , where εj = ± 1, or else f∗ sends
σ1 to ε1σ2 and sends σ2 to ε1σ1 where again εj = ±1.

All of the possibilities in the theorem can be realized. For the first alternatives this
can be done by considering various product of the form 1, 1 × ρ, ρ × 1 and ρ × ρ, where
ρ is the reflection involution on a sphere, and the second alternatives can be realized by
composing the first alternatives with the transposition map τ on S2m × S2m.

Suppose now that n is an arbitrary positive integer. Since Hn(S
n × Sn;Z) ∼= Z

2, the
only general algebraic restriction one can get on a map f∗ induced by a homotopy self-
equivalence is that it must correspond to a 2×2 matrix over the integers with determinant
equal to ± 1. It is fairly simple to construct examples of homotopy self equivalences of
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T 2 which realize every such matrix (the associated linear transformations of R2 pass to
homeomorphisms of T 2). If n is odd, then the possible 2× 2 matrices are also understood,
but this is a deeper result; the conclusion is that one can realize every matrix if n = 1, 3, 7,
while for the remaining odd values of n it is possible to realize every integral 2× 2 matrix
with determinant ±1 whose reduction mod 2 is a permutation matrix. For the exceptional
odd values of n, one can show this using standard “multiplications” on Sn (given by
restricting complex, quaternionic, and Cayley number multiplication to the unit sphere
in R

n+1 where n + 1 = 2, 4, 8). For the remaining odd values of n, this fact is due to J.
F. Adams and was proved in the nineteen fifties. Here are (very terse) references for the
latter:

http://mathworld.wolfram.com/H-Space.html

http://mathworld.wolfram.com/HopfInvariantOneTheorem.html

Proof of Theorem 2. As noted in the preceding paragraph, if σ1 and σ2 are the given
standard free basis for H2m(S2m×S2m;Z) ∼= Z

2, then there are integers a, b, c, d such that
ad− bc = ±1 and f∗(σ1) = aσ1 + bσ2, f∗(σ2) = cσ1 + dσ2. By the naturality of homology
with respect to coefficient homomorphisms, it follows that one has a similar description of
f∗ with rational coefficients. If we take the dual basis ξ1, ξ2 of H2m(S2m × S2m;Q), then
it follows that f∗ξ1 = aξ1 + cξ2 and f∗ξ2 = bξ1 + dξ2. Since f preserves cup products and
ξ2j = 0, the same is true for f∗(ξj). But Proposition 1 implies that

f∗(ξ1)2 = 2ac ξ1 ∪ ξ2 , f∗(ξ2)2 = 2bd ξ1 ∪ ξ2

and since ξ1 ∪ ξ2 is nonzero it follows that ac = bd = 0, so that either a = 0 or c = 0 and
also either b = 0 and d = 0. The cases a = b = 0 and c = d = 0 both imply that ad−bc = 0,
so neither can hold, and therefore the only possibilities are a = d = 0 or c = b = 0. In the
first case the condition ad− bc implies that b, c ∈ {± 1}, while in the second case we must
have a, d ∈ {± 1}. These are precisely the options listed in the theorem.

Homotopically nontrivial mappings of spheres

If m < n then simplicial approximation implies that every continuous mapping from
Sm to Sn is homotopically trivial, and if m = n we know that there are infinitely many
homotopy classes of maps Sn → Sn which can be distinguished homotopically by their
degrees; we have not proved that two maps of the same degree are homotopic, but it would
not be exceedingly difficult for us to do so at this point (for example, see the argument in
Maunder, Algebraic Topology , pages 288–291; the statement of this result in Hatcher is
Corollary 4.25 on page 361). The important point is that if m ≤ n, then homotopy classes
of maps from Sm to Sn can be distinguished using homology theory. Given that every map
from Sm to S1 is nullhomotopic if m > 1, it was natural to hope that all maps Sm → Sn

would be homotopic to constant maps. However, counterexamples began to surface during
the nineteen thirties, and describing the homotopy classes of mappings from Sn+k to Sn

where k > 0 turns out to be an exceedingly difficult problem, although it is known that
the answer for any specific choice of n and k is finitely computable (although the basic
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algorithm seems unlikely to be implemented in the foreseeable future). We shall limit
ourselves to a single class of important examples:

THEOREM 3. Suppose that m is a positive integer. Then there is a continuous
mapping f : S4m−1 → S2m which is not homotopic to a constant.

In fact, refinements of our methods show that there are infinitely many distinct ho-
motopy classes of such maps. There is actually a very striking converse to this result
discovered by J.-P. Serre in the nineteen fifties:

For all m,n > 0, there are only finitely many homotopy classes of continuous
mappings from Sn to Sm unless m = n or m is even and n = 2m− 1.

One reference for this result is Section 9.7 of Spanier. The basic reference for the finite
computability statement is the following paper;

E. (= Edgar) H. Brown. Finite computability of Postnikov complexes.
Annals of Mathematics 65 (1957), 1–20.

Proof. Throughout this discussion the coefficient field will be the rational numbers Q.

The examples will be composites of the form ∇ oP , where P : S4m−1 → S2m ∨ S2m

is the universal Whitehead product described earlier and ∇ : S2m ∨ S2m → S2m folds the
two wedge summands together (so its restriction to each summand is the identity). This
class is generally known as the Whitehead product of the identity map on S2m with itself
and denoted by [ι2m, ι2m] (compare Hatcher, Example 4.52, page 381). The argument wll
require the following relatively elementary observation:

LEMMA 4. Suppose that f : Sp−1 → A is a continuous map into a compact metric
space and X is the space obtained by attaching a p-cell to A along f . If f is homotopic to
a constant map, then the inclusion of A in X is a retract.

Proof of Lemma 4. If f is homotopic to a constant, then f extends to a mapping
g : Dp → A. Write X = A ∪ E, where E is the p-cell. Then the retraction from X to
A is defined by taking the identity on A and using g to define the mapping on E. By
construction, it follows that these definitions fit together to yield a well-defined continuous
retraction from X to A.

Returning to the proof of Theorem 3, let K(f) be the space obtained by adjoining
a 4m-cell to S2m along the mapping ∇ oP . We then have the following commutative
diagram, in which the two horizontal arrows on the left are attaching maps, the middle
horizontal arrows are inclusions, and the horizontal arrows on the right are maps which
collapse the codomains of the attaching maps to points.

S4m−1 P−→ S2m ∨ S2m −→ S2m × S2m −→ S4m⏐⏐�= ⏐⏐�∇ ⏐⏐�h ⏐⏐�=
S4m−1 ∇P−→ S2m −→ K(f) −→ S4m
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This diagram yields the following commutative diagrams in cohomology for each q > 0;
the rows of these diagrams are short exact sequences:

0 −→ Hq(S4m) −→ Hq(K(f)) −→ Hq(S2m) −→ 0⏐⏐�= ⏐⏐�h∗ ⏐⏐�∇∗
0 −→ Hq(S4m) −→ Hq(S2m × S2m) −→ Hq(S2m ∨ S2m) −→ 0

It follows that H∗(K(f)) is isomorphic to Q in dimensions 0, 2m, 4m and is trivial other-
wise. Let θ denote a generator for H2m

(
K(f)

)
. It follows that h∗(θ) is a nonzero multiple

of ξ1+ ξ2, and we might as well choose θ so that it maps to this class in H2m(S2m×S2m).
Furthermore, we have

h∗(θ)2 = 2 ξ1 ∪ ξ2 �= 0

so that θ2 must also be nonzero in H4m
(
K(f)

)
.

We claim that the statement in the preceding sentence implies that f cannot be
nullhomotopic. If it were, then there would be a retraction ρ : K(f)→ S2m, and θ would
have to be in the image of ρ∗. But if θ = ρ∗θ0 for some θ0 ∈ H∗(S2m), then θ20 = 0 and
hence θ2 = 0, contradicting the conclusions in the preceding paragraph. Hence the only
possibility consistent with the latter is that f is not nullhomotopic.

IV.6 : Open disk coverings of manifolds

(Hatcher, § 3.2)

Every compact topological n-manifold is a union of fintely many open subsets Ui such
each Ui is homeomorphic to R

n. Since each such open subset is noncompact, it is clear
that one needs at least two such open subsets, and of course Sn is an example where the
minimum number is exactly two. More generally, one can ask the following question:

Suppose thatX is a compact Hausdorff space which has at least one open covering
consisting entirely of contractible sets. What is the MINIMUM number of such
sets that are needed to form an open covering of X?

IfX is a topological n-manifold, then the following basic result gives an upper estimate:

THEOREM 1. If M is a (second countable) arcwise connected topological n-manifold,
then M has an open covering by n + 1 sets which are homeomorphic to open subsets of
R
n.

Here is the standard reference for a proof:

E. Luft. Covering manifolds with open cells. Illinois Journal of Mathematics
13 (1969), 321–326.
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In this section we shall use cup products to prove that in general the best possible upper
bound is n+ 1.

Lusternik-Schnirelmann category and cup products

There are numerous variants of the contractible open covering question, and we shall
be particularly interested in a version where “contractible open sets” is replaced by “open
subsets for which the inclusion maps intoX are nullhomotopic.” In particular, the following
homotopy-theoretic concept is closely related to these questions:

Definition. Let X be a second countable, locally compact, Hausdorff space. Then X is
said to have Lusternik-Schnirelmann or LS category ≤ m if X is a union of m subsets Ui
such that the inclusions Ui ⊂M are nullhomotopic.

Note. Frequently one finds slightly different spellings of the names “Lusternik” and
“Schnirelmann” based upon different conventions for transliterating the Cyrillic spellings
L�sternik and Xnirel�man into their Latin counterparts.

Definition. We shall say that X has Lusternik-Schnirelmann or LS category equal to k
if it has LS category ≤ k but does not have LS category ≤ k − 1. Similarly, we shall say
that X has LS category ≥ k if X does not have LS category ≤ k − 1.

If X is a compact topological n-manifold which has a covering by k open subsets,
each homeomorphic to R

n, then it follows immediately that X has LS category ≤ k, and
Theorem 1 implies that the LS category is always ≤ n+1. The main result of this section
gives an example where equality holds.

THEOREM 2. The n-torus Tn has LS category equal to n+ 1.

The proof that Tn has LS category ≥ n + 1 will be a consequence of the following
general observation.

THEOREM 3. Suppose that X is an arcwise connected, second countable, locally
compact, Hausdorff space with LS category ≤ m, and let u1 ∈ Hd(1)(X,F), · · · , um ∈
Hd(m)(X;F) with d(i) > 0 for all i. Then u1 · · · um = 0.

If the conclusion of the theorem holds for an arcwise connected space X, we shall say
that X has cuplength ≤ m because every product of m positive-dimensional cohomology
classes in X is equal to zero.

Proof of Theorem 3. LetW1, · ,Wm be a covering of X such that each inclusionWi →
X is nullhomotopic. Since each cohomology restriction map Hm(i)(X;F)→ Hm(i)(Wi;F)
is trivial, the classes ui lift to classes vi in the relative cohomology groups Hm(i)(X,Wi;F).
It follows that u1 · · · um is the image of v1 · · · vm is the group

H∗(X,∪i Ui;F) = H∗(X,X;F) = 0

and hence this product equals zero.
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Proof of Theorem 2. Since there are n classes in H1(Tn;F) whose cup product is
nonzero, Theorem 3 implies that Tn has LS category ≥ n + 1, and hence every open
covering of Tn by sets homeomorphic to R

n consists of at least n+ 1 such regions.

One can construct an explicit open covering of Tn with n + 1 open sets as follows:
Let p : R

n → Tn be the usual universal covering projection sending (t1, · · · , tn) to
(exp 2π i t1, · · · , exp 2π i tn), and let a0, · · · , an be distinct points in the half-open interval
[0, 1), so that the points zk = exp 2π i ak ∈ S1 are distinct. Now let Wk ⊂ R

n be the set
of all points such that ak < tk < ak + 1 for all k, and take Vk ⊂ Tn to be the image of
Wk under p. By construction each set Vk is contractible. A point of Tn will lie in Tn− Vk
if and only if at least one of its coordinates is equal to zk. The intersection of the sets
Tn−Vk will consist of all points (b1, · · · , bn) such that for each k, there is some j for which
bj = zk. Since there are n + 1 values of zk and only n coordinates bj , this is impossible.
Therefore ∩k (Tn − Vk) = ∅, so that Tn = ∪k Vk.

References for further information

The Wikipedia article

http://en.wikipedia.org/wiki/Lusternik%E2%80%Schnirelmann category

is a good starting point for learning more about the concept of Lusternik-Schnirelmann
category, and it gives several good references for further information on the topic. The
book by Cornea, Lupton, Oprea and Tanré (cited in that article) contains a very thorough
treatment of this subject.

IV.7 : Real and complex projective spaces

(Hatcher, Ch. 0 and §§ 1.2–1.3, 2.2, 2.C, 3.2)

See the files projspaces∗.pdf where ∗ = 1 or 2.
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