
V. Cohomology and Differential Forms

Courses in multivariable calculus generally end with proofs of fundamental results
in vector analysis such as Green’s Theorem in the plane, path independence criteria for
line integrals, Stokes’ Theorem for oriented surfaces with boundaries, and the Divergence
Theorem in 3-space. Differential forms provide the standard framework for stating and
proving the corresponding results in higher dimensions. We have already seen that alge-
braic topology also provides a setting in which various global versions of these results can
be formulated. These included comprehensive generalizations of Green’s Theorem and the
Divergence Theorem to regions which have nice decompositions. The purpose of this unit
is to describe far-reaching extensions of such relationships to arbitrary finite dimensions.
In particular, we shall see that the answer to the question

Are there k-dimensional differential forms on an open subset U of Rn which are
closed (dω = 0) but not exact (ω = dθ for some θ)?

depends only whether or not the singular homology group Hk(U ;R) is trivial (in which
case the answer is no) or nontrivial (in which case the answer is yes). This even yields new
information in the setting of classical vector analysis; specifically, if U is an open subset
in R

3, then every smooth vector field F whose curl satisfies ∇×F = 0 is a gradient vector
field if and only if H1(U ;R) = 0. This is one of many corollaries of a fundamental result
known as de Rham’s Theorem.

Section 0 is a summary of the main things we need to know about differential k-forms
on an open subset of Rn. Roughly speaking, these are formal integrands of line integrals,
surface integrals, multiple integrals, and their generalizations to integrals over suitably
defined k-dimensional analogs of surfaces in R

n. In Section 1 we make the latter notion
precise by defining a variant of singular homology in which the singular simplices are
smooth mappings, and in Section 2 we state an analog of Stokes’ Theorem for the integral
of a k-form over a k-dimensional smooth singular chain. Differentiation of differential
forms induces maps dk from k-forms to (k+1)-forms which satisfy dk+1 odk = 0, and thus
the differential forms on an open subset in R

n form a cochain complex often called the
de Rham complex of an open set. The cohomology groups of this cochain complex are
called the de Rham cohomology groups of the open set, and Section 3 shows that these
groups have several formal properties which resemble those of singular cohomology groups
with real coefficients. The main result of Section 4 is de Rham’s theorem, which states
that the two types of cohomology groups are isomorphic. Finally, in Section 5 we shall
prove that under this isomorphism the cup product in singular cohomology corresponds to
a construction on differential forms known as the wedge product.

Throughout the rest of this section we shall refer to the following textbook for the
details of various constructions and proofs:

L. Conlon. Differentiable Manifolds. (Second Edition), Birkhäuser-Boston,
Boston MA, 2001. ISBN: 0–8176–4134–3.
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There will also be references to Lee’s book on smooth manifolds; however, in many in-
stances the discussion in Lee is at a more abstract and general level than these notes (in
particular, it gets into some complicated issues that we are trying to avoid).
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V.0 : Review of differential forms

(Conlon, §§ 6.2, 6.4, 7.1–7.2, 8.1; Lee, Chs. 6, 11-12)

We have already noted that differential forms provide a convenient and powerful set-
ting for generalizing classical vector analysis to higher dimensions, but they also have
numerous other uses in both mathematics and physics. Setting up the theory requires
some time and effort, but differential forms can be used very effectively to unify and sim-
plify some fundamentally important concepts and results. They have become the standard
framework for analyzing an extremely wide range of topics and problems. For the most
part, we shall restrict attention to differential forms on open subsets of Rn where n is
allowed to be a more or less arbitrary positive integer.

This is only a summary of the main points of the theory. Additional details can be
found on pages 245–288 of Rudin (Principles of Mathematical Analysis, Third Edition).

Covariant tensors and differential forms

Let U be an open subset of Rn, and let p be a nonnegative integer. A covariant
tensor field of rank p is defined to be an expression of the form

∑
i1,i2, (etc.)

gi1 i2 ··· ip dx
i1 ⊗ · · · ⊗ dxip

where

(1) each gi1 i2 ··· ip is a smooth real valued function on U ,

(2) each ij ranges from 1 to n,

(3) two expressions are equal if and only if the functional coefficients of each dxi1⊗ · · · ⊗
dxip are equal.

We shall call denote this object by Covp(U). It will be understood that Cov0(U) =
C∞(U); note also that there is a natural identification of Cov1(U) with the space of
differential 1-forms we considered in Section V.3 of the lecture notes.

The space of exterior or differential p-forms on U is defined to be the quotient of
Covp(U) obtained by the identification

dxi1 ⊗ · · · ⊗ dxip ≈ − dxj1 ⊗ · · · ⊗ dxjp

if [ j1 j2 · · · jp ] is obtained from [ i1 i2 · · · ip ] by switching exactly two of the terms, say
is and it where s �= t. If is = it for some s �= t then this is understood to imply that
dxi1 ⊗ · · · ⊗ dxip is equal to its own negative, and since we are working with real vector
spaces this means that the expression in question is identified with zero. The set of all
differential p-forms on an open subset U ⊂ R

n is denoted by ∧p(U), and the images of the
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basic objects in if dxi1 ⊗ · · · ⊗ dxip is one of the basic objects in Covp(U) as above, then
its image in ∧p(U) is denoted by

dxi1 ∧ · · · ∧ dxip .

By convention we also set ∧0(U) equal to C∞(U).

PROPOSITION 1. If p > n then ∧p(U) = 0, and if 0 < p ≤ n then every element of
∧p(U) can be written uniquely as a linear combination of the basic forms

dxi1 ∧ · · · ∧ dxip

with coefficients in C∞(U), where the indexing sequences { ij } satisfy i1 < · · · < ip.

This is an immediate consequence of the construction.

If p = 1 then the definition of ∧1(U) is equivalent to the previous one involving sections
of the cotangent bundle.

Integrals defined by differential forms The motivation for the definition comes from the use of
differential 1-forms as the integrands of line integrals. In particular, we would like 2-forms
to represent the integrands of surface integrals and n-forms to represent the integrands of
ordinary (Riemann or Lebesgue) integrals over appropriate subsets of U . Note in particular
that if U is open in R

n, then every element of ∧n(U) is uniquely expressible as

h(x) · dx1 ∧ · · · ∧ dxn

for some h ∈ C∞(U).

So how do we form integrals such that the integrand is a p-form and the construction
reduces to the usual ones for line and surface integrals if p = 1 or 2? The key is to notice
that such integrals are first defined using parametric equations for a curve or surface defined
for all values of the variable(s) in some open subset of R or R2.

Following Rudin, we do so by defining a smooth singular p-surface piece in U to be
a continuous map σ : Δ → U such that Δ is compact in R

p and σ extends to a smooth
function on an open neighborhood of Δ in R

p. In multivariable calculus one generally
assumes also that the extension of σ to an open set is a smooth immersion, or at least
this is true if one subdivides the domain of definition into suitable pieces and permits bad
behavior at boundary points of such pieces (normally the boundary has measure zero and
hence doesn’t matter for integration purposes), but we shall not make any such assumptions
on the rank of Dσ in these notes.

For each object σ as in the previous paragraph and each tensor Λ ∈ Covp(U) we can
define an integral by the following formula:

∫
σ

Λ =

∫
σ

∑
i1,i2, etc.

gi1 i2 ··· ip dx
i1 ∧ · · · ∧ dxip =
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∑
i1,i2, etc.

∫
Δ

gi1 i2 ··· ip oσ(u)
∂(xi1 , · · · , xip)

∂(u1, · · · , up)

As usual, expressions of the form
∂(xa, · · · )
∂(u1, · · · )

represent Jacobian determinants. We then have the following key observation which allows
us to work with forms rather than tensors:

PROPOSITION 2. In the integral above, the value only depends upon the image λ of
Λ in ∧p(U).

Proof. It suffices to consider simple integrands consisting of only one summand. For
each sequence

xi1 , · · · , xip

we need to show that if we switch two terms xa and xb then the sign of the integral changes
if dxa and dxb are both factors of the integrand. The effect of making such a change on
the integrand is to switch two columns in the p× p matrix of functions whose determinant
is the Jacobian

∂(xi1 , · · · , xip)

∂(u1, · · · , up)

and we know this operation changes signs; this proves the point that we need to reach the
conclusion of the proposition.

Because of the preceding result we shall assume henceforth that integrands are differential
p-forms.

Operations on differential forms

There are several fundamental constructions on differential forms that are used ex-
tensively.

Exterior products. It follows immediately from the definitions that each ∧p(U) is a
real vector space and in fact is a module over C∞(U) However, there is also an important
multiplicative structure that we shall now describe. We shall begin by defining a version
of this structure for covariant tensors. Specifically, there are C∞(U)-bilinear maps

⊗ : Covp(U)×Covq(U) −→ Covp+q(U)

sending a pair of monomials

(
gi1 i2 ··· ip dx

i1 ⊗ · · · ⊗ dxip , hj1 j2 ··· jq dx
j1 ⊗ · · · ⊗ dxjq

)

to the monomial

gi1 i2 ··· iphj1 j2 ··· jq · dxi1 ⊗ · · · ⊗ dxip ⊗ dxj1 ⊗ · · · ⊗ dxjq .
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In order to show this passes to a C∞(U)-bilinear map

∧p,q : ∧p(U)× ∧q(U) −→ ∧p+q(U)

we need to show that if ξ ∈ Covp(U) and η ∈ Covq(U) are monomials as above and ξ′

and η′ are related to ξ and η as in the definition of differential forms, then the images of
⊗(ξ, η) and ⊗(ξ′, η′) are equal. As above we are assuming

ξ = gi1 i2 ··· ip dx
i1 ⊗ · · · ⊗ dxip , η = hj1 j2 ··· jq dx

j1 ⊗ · · · ⊗ dxjq .

Since two covariant monomial tensors determine the same differential form if they are
related by a finite sequence of elementary moves (permuting the dxq’s or replacement by
zero if there is a repeated such factor), it is enough to show that one obtains the same
differential form provided ξ′ and η′ are related to ξ and η by a single elementary move
(which affects one form but not the other).

Suppose the elementary move switches two variables; then we may write

ξ′ = α · gk1 k2 ··· kp
dxk1 ⊗ · · · ⊗ dxkp , η′ = β · h�1 �2 ··· �q dx

�1 ⊗ · · · ⊗ dx�q

where {k1 k2 · · · kp} and {�1 �2 · · · �q} are obtained from {i1 i2 · · · ip} and {j1 j2 · · · jq}
either by doing nothing or by switching two of the variables and the coefficients α and β
are ± 1 depending upon whether or not variables were switched in each case. From this
description one can check directly (with some tedious computations) that the images of
⊗(ξ, η) and ⊗(ξ′, η′) in ∧p+q(U) are equal. On the other hand, if one has repeated factors
in either ξ or η and the corresponding object ξ′ or η′ is zero, then it is immediately clear
that ⊗(ξ, η) and ⊗(ξ′, η′) in ∧p+q(U) both zero and hence are equal.

PROPOSITION 3. If θ ∈ ∧p(U) and ω ∈ ∧q(U), then we have θ ∧ ω = (−1)pq ω ∧ θ.

Proof. Using bilinearity we may immediately reduce this to the special case where

θ = dxi1 ∧ · · · ∧ dxip , ω = dxj1 ∧ · · · ∧ dxjq .

In this case we have

θ∧ω = dxi1∧ · · · ∧dxip∧dxj1∧ · · · ∧dxjq , ω∧θ = dxj1∧ · · · ∧dxjq∧dxi1∧ · · · ∧dxip .

Therefore we need to investigate what happens if one rearranges the variables using some
permutation.

If γ is an arbitrary permutation then γ is a product of transpositions, and therefore
it follows that if one permutes variables by γ the effect on a basic monomial form is
multiplication by sgn(γ). Therefore the proof of the formula in the proposition reduces to
computing the sign of the permutation which takes the first p numbers in {1, · , p+ q} to
the last p numbers in order and takes the last q numbers to the first q numbers in order.

147



It is an elementary combinatorial exercise to verify that the sign of this permutation is pq
(e.g., fix one of p or q and proceed by induction on the other(�)).

The following property is also straightforward to verify(�), and in fact it is a conse-
quence of the analogous property for covariant tensors:

PROPOSITION 4. If θ and ω are as above and λ ∈ ∧r(U), then one has the associa-
tivity property (θ ∧ ω) ∧ λ = θ ∧ (ω ∧ λ).

Exterior derivatives. We have already seen that there is a well-defined map d : ∧0(U)→
∧1(U) defined by taking exterior derivatives, and in fact for each p one can define an
exterior derivative

dp : ∧p(U) −→ ∧p+1(U) .

These maps are linear transformations of real vector spaces and are defined on monomials
by the formula

d
(
g dxi1 ∧ · · · ∧ dxip

)
= dg ∧ dxi1 ∧ · · · ∧ dxip .

If we take g = 1 the preceding definition implies

d
(
dxi1 ∧ · · · ∧ dxip

)
= 0 .

One then has the following basic consequences of the definitions.

THEOREM 5. The exterior derivative satisfies the following identities:

(i) If θ is a p-form then d(θ ∧ ω) = (dθ) ∧ ω + (−1)pθ ∧ (dω).

(ii) For all λ we have d(dλ) = 0.

Sketch of proof. In each case one can use linearity or bilinearity to reduce everything
to the special case of forms that are monomials. For examples of this type it is a routine
computational exercise to verify the identities described above(�).

Definition. A differential form ω is said to be closed if dω = 0 and exact if ω = dλ for
some λ. The second part of the theorem implies that exact forms are closed. On the other
hand, the 1-form

y dx− x dy

x2 + y2

on R
2 − {0} is closed but not exact.

Change of variables (pullbacks). The pullback construction on 1-forms extends naturally
to forms of higher degree. Specifically, if V is open in R

m and f : V → U is smooth
then there are real vector space homomorphisms f∗ : ∧p(U)→ ∧p(U) that are defined on
monomials by the formula

f∗
(
g dxi1 ∧ · · · ∧ dxip

)
= (g of) df i1 ∧ · · · ∧ df ip
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where f i denotes the ith coordinate function of f . If p = 1 this coincides with the previous
definition.

The next result implies that the pullback construction preserves all the basic structure
on exterior forms that we defined above and it has good naturality properties:

THEOREM 6. (i) In the notation above we have f∗(θ ∧ ω) = f∗θ ∧ f∗ω and f∗ odλ =
d of∗λ.

(ii) The pullback map for idU is the identity on ∧p(U), and if h : W → V is another
smooth map, then (f oh)∗ = h∗ of∗.

(iii) The pullback maps and exterior derivatives satisfy the compatibility relations
d of∗ = f∗ od.

Complete derivations of these results appear on pages 263–264 of Rudin(�).

The pullback also has the following basic compatibility property with respect to inte-
grals:

CHANGE OF VARIABLES FOR INTEGRALS. Let ω ∈ ∧p(U), let f : V → U be
smooth, and let σ : Δ → V be a smooth p-surface. Then integration of differential forms
satisfies the following change of variables formula:

∫
Δ

f∗ω =

∫
f oσ

ω

A derivation of this formula appears on pages 264–266 of Rudin(�).

Relation to classical vector analysis

We shall now explain how the basic constructions and main theorems of vector analysis
can be expressed in terms of differential forms. For most of this section U will denote an
open subset of R3.

LetX(U) be the Lie algebra of smooth vector fields on U . As a module over C∞(U) the
space of vector fields is isomorphic to each of ∧1(U) and ∧2(U), and C∞(U) is isomorphic to
∧3(U); recall that C∞(U) = ∧0(U) by definition. For our purposes it is important to give
specific isomorphisms Φ1 : X(U)→ ∧1(U), Φ2 : X(U)→ ∧2(U), Φ3 : C∞(U)→ ∧3(U). A
vector field will be viewed as a vector valued function V = (F,G,H) where each of F,G,H
is a smooth real valued function on U .

Φ1(F,G,H) = F dx+Gdy +H dz

Φ2(F,G,H) = F dy ∧ dx+ Gdz ∧ dx+H dx ∧ dy

Φ3(f) = f dx ∧ dy ∧ dx

We then have the following basic relationships:
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(i) ∇f = Φ−1
1 (df)

(ii) curl(V) = Φ−1
2

od oΦ1(V)

(iii) div(V) = Φ−1
3

od oΦ2(V)

Each of these is a routine computation(�).

From this perspective the vector analysis identities

curl(∇f) = 0 , div curl(V) = 0

are equivalent to special cases of the more general relationship d od = 0.

V.1 : Smooth singular chains

(Hatcher, §§ 2.1, 2.3; Conlon, § 8.2; Lee, Ch. 16)

We now need to introduce yet another way of computing the homology groups of an
open subset of Rn for some n.

Let q be a nonnegative integer. In Unit II we defined a singular q-simplex in a
topological space X to be a continuous mapping T : Δq → X, where Δq is the simplex in
R

q+1 whose vertices are the standard unit vectors; the group of singular q-chains Sq(X)
was then defined to be the free abelian group on the set of singular q-simplices. The first
step in this section is to is to define an analog of these groups involving smooth mappings
if X is an open subset of Rn for some n.

Definition. Let q be a nonnegative integer, and let Λq ⊂ R
q be the q-simplex whose

vertices are 0 and the standard unit vectors. Also, let U be an open subset of Rn for
some n ≥ 0. A smooth singular q-simplex in U is a continuous map T : Λq → U which is
smooth — in other words, there is some open neighborhood WT of Λq in R

q such that T
extends to a map WT → U which is smooth in the usual sense (the coordinate functions
have continuous partial derivatives of all orders). The group of smooth singular q-chains
Ssmooth
q (U) is the free abelian group on all smooth singular q-simplices in U .

There is an obvious natural relationship between the smooth and ordinary singular
chain groups which is given by the standard affine isomorphism ϕ from Δq to Λq defined on
vertices by ϕ(e1) = 0 and ϕ(ei) = ei−1 for all i > 1. Specifically, each smooth singular
q-simplex T : Λq → U determines the continuous singular q-simplex T oϕ : Δq → U . The
resulting map of singular chain groups will be denoted by

ϕ# : Ssmooth
q (U) −→ Sq(U)
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