
(i) ∇f = Φ−1
1 (df)

(ii) curl(V) = Φ−1
2

od oΦ1(V)

(iii) div(V) = Φ−1
3

od oΦ2(V)

Each of these is a routine computation(�).

From this perspective the vector analysis identities

curl(∇f) = 0 , div curl(V) = 0

are equivalent to special cases of the more general relationship d od = 0.

V.1 : Smooth singular chains

(Hatcher, §§ 2.1, 2.3; Conlon, § 8.2; Lee, Ch. 16)

We now need to introduce yet another way of computing the homology groups of an
open subset of Rn for some n.

Let q be a nonnegative integer. In Unit II we defined a singular q-simplex in a
topological space X to be a continuous mapping T : Δq → X, where Δq is the simplex in
R

q+1 whose vertices are the standard unit vectors; the group of singular q-chains Sq(X)
was then defined to be the free abelian group on the set of singular q-simplices. The first
step in this section is to is to define an analog of these groups involving smooth mappings
if X is an open subset of Rn for some n.

Definition. Let q be a nonnegative integer, and let Λq ⊂ R
q be the q-simplex whose

vertices are 0 and the standard unit vectors. Also, let U be an open subset of Rn for
some n ≥ 0. A smooth singular q-simplex in U is a continuous map T : Λq → U which is
smooth — in other words, there is some open neighborhood WT of Λq in R

q such that T
extends to a map WT → U which is smooth in the usual sense (the coordinate functions
have continuous partial derivatives of all orders). The group of smooth singular q-chains
Ssmooth
q (U) is the free abelian group on all smooth singular q-simplices in U .

There is an obvious natural relationship between the smooth and ordinary singular
chain groups which is given by the standard affine isomorphism ϕ from Δq to Λq defined on
vertices by ϕ(e1) = 0 and ϕ(ei) = ei−1 for all i > 1. Specifically, each smooth singular
q-simplex T : Λq → U determines the continuous singular q-simplex T oϕ : Δq → U . The
resulting map of singular chain groups will be denoted by

ϕ# : Ssmooth
q (U) −→ Sq(U)
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with subscripts or superscripts added if it is necessary to keep track of q or U .

One important feature of the ordinary singular chain groups is that they can be made
into a chain complex, and it should not be surprising to learn that there is a compatible
chain complex structure on the groups of smooth singular chains. We recall the definition
of the chain complex structure on S∗(X) for a topological space X, starting with the
preliminary constructions. If Δq is the standard q-simplex, then for each i such that
0 ≤ i ≤ q there is an ith face map ∂i : Δq−1 → Δq sending the domain to the face of Δq

opposite the vertex ei+1 with ∂i(ej) = ej if j ≤ i and ∂i(ej) = ej+1 if j ≥ i+ 1. Then
each face map ∂i defines function from singular q-simplices to singular (q− 1)-simplices by
the formula ∂i(T ) = T o∂i, and the formula

dq =

q∑

i=0

(−1)i ∂i

defines a homomorphism from Sq(X) to Sq−1(X) with some important formal properties
like dq−1

odq = 0.

For the analogous constructions on smooth singular chain groups, we first need com-
patible face maps on Λq. The simplest way to do this is to relabel the vertices of the latter
as 0 = v0 and ei = vi+1 for all i; then we may define ∂Λ

i in the same way as ∂i, the only
difference being that we replace the vertices ej for Δq by the vertices vj for Λq.

We claim that if T : Λq → U is a smooth singular simplex then are all of the faces
given by the composites T o∂Λ

i ; this follows because each of maps ∂Λ
i is an affine mapping

and hence is smooth.

It follows immediately that the preceding constructions are compatible with the sim-
plex isomorphisms ϕ constructed above, so that ϕ# o∂i = ∂Λ

i
oϕ#, and if we define

dsmooth
q : Ssmooth

q (U) −→ Ssmooth
q−1 (U)

to be the sum of the terms (−1)i∂Λ
i , then one has the following compatibility between

smooth and singular chains.

PROPOSITION 1. Let U be an open subset of Rn for some n, and let ϕ# : Ssmooth
q (U)→

Sq(U) and dsmooth
∗ be the map given by the preceding constructions. Then the latter map

makes Ssmooth
∗ (U) into a chain complex such that ϕ# is a morphism of chain complexes.

The assertion in the first sentence can be verified directly from the definitions, and
the first assertion in the second sentence follows from the same sort of argument employed
earlier in these notes. Finally, the fact that ϕ# is a chain complex morphism is an immedi-
ate consequence of the assertion in the first sentence and the definitions of the differentials
in the two chain complexes in terms of the maps ∂i and ∂Λ

i .
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We shall denote the homology of the complex of smooth singular chains byHsmooth
∗ (U)

and call the associated groups the smooth singular homology groups of the open set U ⊂
R

n. Later in this section we shall prove the following fundamentally important result.

ISOMORPHISM THEOREM. For all open subsets U ⊂ R
n, the associated homology mor-

phism ϕ#
∗ from the smooth singular homology groups Hsmooth

∗ (U) to the ordinary singular
homology groups H∗(U).

Functoriality properties

In order to prove the Isomorphism Theorem, we need to establish additional properties
of smooth singular chain and homology groups that are similar to basic properties of
ordinary singular chain and homology groups. The first of these is a basic naturality
property:

PROPOSITION 2. Let U ⊂ R
n, (etc.) be as above, let V ⊂ R

m be open, and let
f : U → V be a smooth mapping from U to V (the coordinates have continuous partial
derivatives of all orders). Then there is a functorial chain map f smooth

# : Ssmooth
∗ (U) →

Ssmooth
∗ (V ) such that f smooth

# maps a smooth singular q-simplex T to f oT and we have
the naturality property

f# oϕ# = ϕ# of smooth
#

where f# is the corresponding map of smooth singular chains from S∗(U) to S∗(V ).

COROLLARY 3. In the setting of the preceding result, one has functorial homology
homomorphisms on smooth singular homology, and the maps ϕ#

∗ define natural transfor-
mations from smooth singular homology to ordinary singular homology.

Combining this with the Isomorphism Theorem mentioned earlier, we see that the
construction ϕ#

∗ determines a natural isomorphism from smooth singular homology to
ordinary singular homology for open subsets of Euclidean spaces.

Since we are already discussing functoriality, this is a good point to mention some
properties of this sort which hold for differential forms but were not formulated in Section
0:

THEOREM 4. Let f : U → V and g : V →W be smooth mappings of open subsets in
Cartesian (Euclidean) spaces Rn where n need not be the same for any of U, V, W . Then
the pullback construction on differential forms satisfies the identity (g of)# = f# og#.
Furthermore, if f is the identity on U then f# is the identity on ∧∗(U).

The second of these is trivial, and the first is a direct consequence of the definitions
and the Chain Rule for derivatives of composite maps.
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Comparison principles

Our objective is to show that the natural map from smooth singular chains to ordinary
chains

Ssmooth
∗ (U) −→ S∗(U)

defines isomorphisms in homology and in cohomology with real coefficients if U is an
arbitrary open subset of some R

n.

It will be convenient to extend the definition of smooth singular chain complexes to
arbitrary subsets of R

n for some n. Specifically, if A ⊂ R
n then the smooth singular

chain complex Ssmooth
∗ (A) is defined so that each group Sq(A) is free abelian on the set of

continuous mappings T : Λq → A which extend to smooth mappings T ′ from some open
neighborhood W (T ′) of Λq to R

n. If A is an open subset of Rn, then this is equivalent
to the original definition, for if we are given T ′ as above we can always find an open
neighborhood V of Λq such that T ′ maps V into A.

Clearly the definitions of smooth and ordinary singular chains are similar, and in fact
many properties of ordinary singular chain complexes extend directly to smooth singular
chain complexes. The following two are particularly important:

(0) If A is a convex subset of Rn (which is not necessarily open), then the constant
map defines an isomorphism from Hsmooth

q (A) to Hsmooth
q (R0) for all q; in partic-

ular, these groups vanish unless q = 0.

(1) If we are given two smooth maps f, g : U → V such that f and g are smoothly
homotopic, then the chain maps from Ssmooth

∗ (U) to Ssmooth
∗ (V ) determined by

f and g are chain homotopic.

(2) The construction of barycentric subdivision chain maps β : S∗(U) → S∗(U)
in Section I.2 of these notes, and the related chain homotopy from β to the
identity, determine compatible mappings of the same type on smooth singular
chain complexes.

The first two of these follow because the chain homotopy constructions from Section
I.5 clearly send smooth chains to smooth chains. The proof of the final assertion has two
parts. First, the barycentric subdivision chain map in Section I.2 takes singular chains in
the images of the canonical mappings

Ssmooth
∗ (W ) −→ S∗(W )

into chains which also lie in the images of such mappings. However, the construction of
the chain homotopy must be refined somewhat in order to ensure that it sends smooth
chains to smooth chains. In order to construct such a refinement, one needs to know that
the homology of Ssmooth

∗ (Λq) is isomorphic to the homology of a point (hence is zero in
positive dimensions). The latter is true by Property (0).
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As in the ordinary case, if W is an open covering of an open set U ⊂ R
n, then one

can define the complex W-small singular chains

Ssmooth,W
∗ (U)

generated by all smooth singular simplices whose images lie inside a single element of W,
and the argument for ordinary singular chains implies that the inclusion map

Ssmooth,W
∗ (U) −→ SW

∗ (U)

defines isomorphisms in homology. The latter in turn implies that one has long exact
Mayer-Vietoris sequences relating the smooth singular homology groups of U , V , U ∩ V
and U ∪ V , where U and V are open subsets of (the same) Rn, and in fact one has a long
commutative ladder diagram relating the Mayer-Vietoris sequences for (U, V ) with smooth
singular chains and ordinary singular chains.

The smooth and ordinary singular chain groups for R
0 are identical, and therefore

their smooth and ordinary singular homology groups are isomorphic under the canonical
map from smooth to ordinary singular homology. By the discussion above, it follows that
the canonical map

ϕU
∗ : Ssmooth

∗ (U) −→ S∗(U)

is an isomorphism if U is a convex open subset of some Rn. The next step is to extend the
class of open sets for which ϕU

∗ is an isomorphism.

THEOREM 5. The map ϕU
∗ is an isomorphism if U is a finite union of convex open

subsets in R
n.

Proof. Let (Ck) be the the statement that ϕU
∗ is an isomorphism if U is a union of at

most k convex open subsets. Then we know that (C1) is true. Assume that (Ck) is true;
we need to show that the latter implies (Ck+1).

The preceding statements about ladder diagrams and the Five Lemma imply the
following useful principle: If we know that ϕU

∗ , ϕ
V
∗ , and ϕU∩V

∗ are isomorphisms in all
dimensions, then the same is true for ϕU∪V

∗ . — Suppose now that we have a finite
sequence of convex open subsets W1, · · · ,Wk+1, and take U and V to be W1 ∪ · · · ∪Wk

and Wk+1 respectively. Then we know that ϕU
∗ and ϕV

∗ are isomorphisms by the inductive
hypotheses. Also, since

U ∩ V = (W1 ∩Wk+1) ∪ · · · ∪ (Wk ∩Wk+1)

and all intersections Wi ∩Wj are convex, it follows from the induction hypothesis that
ϕU∩V
∗ is an isomorphism in all dimensions. Therefore by the observation at the beginning

of this paragraph we know that ϕU∪V
∗ is an isomorphism, which is what we needed in order

to complete the inductive step.
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To complete the proof that ϕU
∗ is an isomorphism for all U , we need the so-called

compact carrier properties of singular homology. There are two versions of this result.

THEOREM 6. Let X be a topological space, and let u ∈ Hq(X). Then there is a
compact subset K ⊂ X such that u lies in the image of the canonical map from Hq(K) to
Hq(X). Furthermore, if K is a compact subset of X, and v and w are classes in Hq(K)
whose images in Hq(X) are equal, then there is a compact subset L such that K ⊂ L ⊂ X
such that the images of v and w are equal in Hq(L).

Proof. Choose a singular chain
∑

i ni Ti representing u, where each Ti is a continuous
mapping Δq → X. If K is the union of the images Ti[Δq], then K is compact, and
it follows that u lies in the image of Hq(K) (because the chain lies in the subcomplex
S∗(K) ⊂ S∗(X).

To prove the second assertion in the proposition, note that by additivity it suffices to
prove this when w = 0. Once again choose a representative singular chain

∑
i ni Ti for

v; since the image of v in Hq(X) is a boundary, there is a (q + 1)-chain
∑

j mj Uj on X
whose boundary is

∑
i ni Ti. Let L be the union of K and the compact sets Uj [Δq+1];

then L is compact and it follows immediately that v maps to zero in Hq(L).

We shall need a variant of the preceding result.

THEOREM 6. Let U be an open subset of some Rn, and let u ∈ HCAT
q (U), where CAT

denotes either ordinary singular homology or smooth singular homology. Then there is a
finite union of convex open subsets V ⊂ U such that u lies in the image of the canonical
map from HCAT

q (V ) to HCAT
q (U). Furthermore, if V is a finite union of convex open

subsets of U , and v and w are classes in HCAT
q (V ) whose images in HCAT

q (U) are equal,
then there is a finite union of convex open subsets W such that V ⊂W ⊂ U such that the
images of v and w are equal in HCAT

q (W ).

Proof. The argument is similar, so we shall merely indicate the necessary changes. We
adopt all the notation from the preceding discussion.

For the first assertion, by compactness we know that there is a finite union of convex
open subsets V such that K ⊂ V ⊂ U , and it follows that u lies in the image of the
homology of V . For the second assertion, take W to be the union of V and finitely many
convex open subsets whose union contains L. It then follows that v maps to zero in the
homology of W .

We can now prove the following general result.

THEOREM 7. The map ϕU
∗ is an isomorphism for arbitrary open subsets of some R

n.

Proof. If u ∈ Hq(U), then we know there is some finite union of convex open subsets
V such that u = i∗(u1), where i : V ⊂ U is inclusion. By our previous results we know
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that u1 = ϕV
∗ (u2) for some u2 ∈ Hsmooth

q (V ), and since i∗ oϕV
∗ = ϕU

∗ oi∗, it follows that

u = ϕU
∗ i∗(u2), so that ϕU

∗ is onto.

To show that ϕU
∗ is 1–1, suppose that v lies in its kernel. By the previous results we

know that v lies in the image of Hsmooth
q (V ); suppose that v1 maps to v. Then it follows

that v2 = ϕV
∗ (v1) ∈ Hq(V ) maps to zero in Hq(U), so that there is a finite union of convex

open subsets W such that V ⊂ W and v2 maps to zero in Hq(W ). If j : V → W is
inclusion, then it follows that j∗(v1) lies in the kernel of ϕW

∗ ; however, we know that the
latter map is 1–1 and therefore it follows that j∗(v1) = 0. Since the image of the latter
element in Hsmooth

∗ (U) is equal to v, it follows that v = 0 and hence ϕU
∗ is 1–1, which is

what we wanted to prove.

Smooth singular cochains

As in Unit IV, we can dualize the construction of smooth singular chains to obtain
smooth singular cochain groups for an open subset U ⊂ R

n. Specifically, if M is an abelian
group then the smooth singular cochain complex is defined by

S∗
smooth(U ;M) = Hom

(
Ssmooth
∗ (U),M

)

with the coboundary δ∗ given by Hom(d∗,M).

If we are given a smooth map of open subsets in Euclidean spaces f : U → V and
its associated map of smooth singular chain complexes f#, then we have maps of singular
cochain complexes

f# = Hom(f#,M) : S∗
smooth(V ;M)→ S∗

smooth(U ;M)

and morphisms of cohomology groups f∗ : H∗
smooth(V ;M) → H∗

smooth(U ;M) which are
contravariantly functorial with respect to smooth mappings. Furthermore, for open subsets
in Euclidean spaces the canonical natural transformation from Ssmooth

∗ (U) to S∗(U) defines
natural transformations of cochain complexes

ϕ## : S∗(U ;M) −→ S∗
smooth(U ;M)

and cohomology groups H∗(U ;M) → H∗
smooth(U ;M) which are natural with respect to

smooth maps.

Theorem 7 and the weak Universal Coefficient Theorem of Unit IV immediately yields
the following result for cohomology with field coefficients:

THEOREM 8. If F is a field and U is an arbitrary open subset of Rn, then the map
ϕ∗
U : H∗(U ;F) −→ H∗

smooth(U ;F) is an isomorphism of real vector spaces.

155


