
AFFINE CLASSIFICATION OF HYPERQUADRICS

(Revised and expanded, April 2014)

In Chapter 7 of the notes http://math.ucr.edu/∼res/progeom/pg-all.pdf there is a com-
plete classification of projective hyperquadrics over the real and complex numbers (see Theorems
VII.15 and 16 on page 160). Furthermore, Exercise 4 on page 162 states that every affine real
hyperquadric in Rn is affinely equivalent to an example whose defining equation appears in the
following list:

(i) x2
1 + · · · + x2

p − x2
p+1 − · · · − x2

r = 0 (1 ≤ p ≤ r ≤ n, r ≥ 1, p ≥ 1

2
r)

(ii) x2
1 + · · · + x2

p − x2
p+1 − · · · − x2

r + 1 = 0 (0 ≤ p ≤ r ≤ n, r ≥ 1)

(iii) x2
1 + · · · + x2

p − x2
p+1 − · · · − x2

r + xr+1 = 0 (1 ≤ p ≤ r < n, r ≥ 1, p ≥ 1

2
r)

There is a corresponding result over the complex numbers which can be proved by the same methods,
but in the complex case the list of examples is simpler:

(i) x2
1 + · · · + x2

r = 0 (1 ≤ r ≤ n)

(ii) x2
1 + · · · + x2

r + 1 = 0 (1 ≤ r ≤ n)

(iii) x2
1 + · · · + x2

r + xr+1 = 0 (1 ≤ r < n)

It is natural to ask whether these lists are minimal or irredundant in the sense that a nontrivial (in
particular, nonempty) quadric is affinely equivalent to exactly one of the listed examples, and
our goal here is to prove this fact.

Augmented matrices and projectivizations

Recall that an affine hyperquadric Σ in Fn (where F can be the real numbers, the complex
numbers, or more generally any field in which 1+1 6= 0) is definable as the set of all n-dimensional
vectors x, viewed as n × 1 column vectors, such that

TxAx + 2 · Tbx + c = 0

where A is some nonzero symmetric n×n matrix and b is some n-dimensional vector again viewed
as a column vector. We may rewrite this more concisely using a single (n + 1) × (n + 1) matrix in
block form; specifically, the hyperquadric is the set of all x such that

( Tx 1 ) ·
(

A b
Tb c

)

·
(

x

1

)

= 0 .

We shall say that the (n+1)×(n+1) matrix is an augmented symmetric matrix for the equation of
the hyperquadric. This matrix is also a defining matrix for an associated projective hyperquadric
Σ′ such that Σ = Σ′ ∩ Fn.
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A nondegeneracy criterion

Definition. Suppose that F is a field in which 1 + 1 6= 0. A hyperquadric Σ in Fn is said to be
affinely nondegenerate if there is a projective hyperquadric Σ′ in FPn such that Σ = Σ′ ∩ Fn

and Σ has at least one nonsingular point.

Since hyperquadrics and nonsingularity are preserved by projective collineations, it follows that
two affinely equivalent hyperquadrices are either both nondegenerate or both not nondegenerate
(i.e., they are degenerate).

One motivation for this definition is Theorem VII.6 on page 151 of pgnotes07.pdf, and by
Theorem E.5 on page 210 of

http://math.ucr.edu/∼res/progeom/pgnotesappe.pdf
all complex hyperquadrics are nondegenerate. The real case is more complicated, but there are
fairly simple characterizations of nondegenerate real hyperquadrics:

PROPOSITION. Suppose that Σ is a real hyperquadric in Rn which has a defining equation
corresponding to the following augmented symmetric matrix (in which A is symmetric):

(

A b
Tb c

)

Then Σ is nondegenerate if either of the following holds:

(i) The augmented symmetric matrix has both positive and negative eigenvalues.

(ii) Σ is not an affine k-plane for some k ≥ 0.

Proof. We shall go down the list to see which of the standard examples extends to a projective
hyperquadric with at least one singular point. Here are the homogeneous coordinate equations for
the naturally associated projective hyperquadrics in each case:

(i) u2
1 + · · · + u2

p − u2
p+1 − · · · − u2

r = 0 (1 ≤ p ≤ r ≤ n, r ≥ 1, p ≥ 1

2
r)

(ii) u2
0 + u2

1 + · · · + u2
p − u2

p+1 − · · · − u2
r = 0 (0 ≤ p ≤ r ≤ n, r ≥ 1)

(iii) u2
1 + · · · + u2

p − u2
p+1 − · · · − u2

r + u0ur+1 = 0 (1 ≤ p ≤ r < n, r ≥ 1, p ≥ 1

2
r)

Suppose that p < r in each case. In the first and third cases, consider the point X whose coordinates
are given by up = up+1 = 1 and all other coordinates equal to zero; then X is a nonsingular point
of Σ. In the second case, consider the point Y whose coordinates are given by up = 1, up+1 =

√
2

and all other coordinates equal to zero; then Y is a nonsingular point of Σ. Therefore the standard
examples are nondegenerate except possibly in cases where p = r.

In the third case where p = r, consider the point Z whose coordinates are given by ur =
1, ur+1 = −1 and all other coordinates equal to zero; then Z is a nonsingular point of Σ. Thus
the only possible degenerate examples are those defined by homogeneous quadratic polynomials
of the form

∑

i u2
i = 0, where the sum runs over some subset of {0, 1, · · · , n}. Conversely, a

nonempty projective hyperquadric defined by such an equation has the property that every point
is a singular point (in fact, the set of points satisfying the equation is the set of all points satisfying
the system of linear homogeneous equations of the form ui = 0, where i runs through all indices in
the summation.

To prove (i), notice that the augmented matrix has both positive and negative eigenvalues,
then the naturally associated projective quadric is not given by an equation of the form

∑

i u2
i = 0,

and therefore this projective hyperquadric has a nonsingular point. To prove (ii), observe that if
the original hyperquadric is degenerate, then by the preceding paragraph it is the intersection of a
projective k-plane with Fn and hence must be an affine k-plane.
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Equations defining the same affine hyperquadric

In Section VII.2 of pgnotes07.pdf, one result (Theorem VII.6) shows that two projective
hyperquadrics which satisfy a very weak nondegeneracy hypothesis will be equivalent if and only if
the defining equation for one is a nonzero multiple of the defining equation for the other, at least
if 1 + 1 6= 0 in F. We are going to need a similar result for affine hyperquadrics. In order to keep
the discussion as elementary and concise as possible, we shall restrict attention to the case where
F is the field of real numbers. The approach will be analogous to that in Theorem VII.6 from
pgnotes07.pdf, but there are significant complications. The reason for this is that lines through a
nonsingular point in a projective quadric are easily classified as tangent or secant lines depending
upon their intersections with the quadric, but the corresponding classification in the affine case
includes an additional possibility; namely, there might be some lines which are not tangents but
meet the affine quadric in exactly one point. — For example, the latter happens if we consider the
intersection of the hyperbola with equation xy−1 = 0 and a vertical line with equation x = a (where
a 6= 0). In the ordinary coordinate plane, the only intersection point has coordinates (a, a−1), if we
extend the curves to the projective plane we obtain a second intersection point; namely, the point
at infinity on the vertical line (note that the points at infinity on the projectivized hyperbola are
the ideal points on the x− and y−axes).

THEOREM ON DEFINING EQUATIONS. Let Σ an the affinely nondegenerate hyper-
quadric in Rn defined by each of the augmented symmetric matrices

Qi =

(

Ai bi
Tbi ci

)

, (i = 1, 2)

where each Ai is a symmetric matrix, each bi is a column vector and each ci is a scalar. Then
there is a nonzero constant k such that Q1 = k Q2.

The preceding theorem implies a strong result on the standard way of passing from projective
to affine hyperquadrics. Recall that if Σ ⊂ RPn is a projective hyperquadric defined by the
homogeneous polynomial f(x1, · · · , xn, xn+1) such that the monomial xn+1 does not divide f ,
then an associated affine hyperquadric A = Σ ∩ Rn is defined by the inhomogeneous quadratic
polynomial f(x1, · · · , xn, 1) = 0.

COROLLARY. Let Σ1 and Σ2 be hyperquadrics in RPn such that the following hold:

(i) Neither Σ1 nor Σ2 has a defining equation which is divisible by xn+1.

(ii) Both Σ1 and Σ2 define the same affine hyperquadric A.

(iii) The affine hyperquadric A is affinely nondegenerate.

Then Σ1 = Σ2.

Proof of the corollary. Let Q1 and Q2 be symmetric matrices which define Σ1 and Σ2, and
let Ai be the affine hyperquadric associated to Σi, so that A1 = A2. The hypotheses guarantee
that this affine hyperquadric is affinely nondegenerate, and therefore by the theorem we know that
Q1 = k Q2 for some nonzero constant k. As noted before, this means that Σ1 = Σ2 because they
have defining equations which are nonzero multiples of each other.

In the statement of the theorem, note that if a point x on Σ is nonsingular with respect to one
defining equation, then the results of pgnotesappe.pdf show that it is nonsingular with respect to
every other defining equation, for in this case the tangent space at x is a hyperplane which consists
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of all points on lines through x which are tangent lines to differentiable curves in Σ which pass
through x.

Proof of the Theorem on Defining Equations. Let x be a nonsingular point of Σ. Then the
observations in the preceding paragraph imply that one obtains the same tangent hyperplane at x

from each of the two defining equations. If we let

ξ =

(

x

1

)

this means that homogeneous coordinates for the tangent hyperplane are given by T ξ Q1 and
T ξ Q2, which implies that there is some nonzero contant k such that

T ξ Q1 = k · T ξ Q2 .

Another property of Σ which does not depend upon the choice of defining equation involves
secant lines though x which meet Σ at some second point in Rn: If v is a nonzero vector such that
the line through x with direction v also meets Σ at x + s∗ v for some unique s∗ 6= 0, this yields an
equation involving Q1 and a similar equation involving Q2. Specifically, if

θ =

(

v

0

)

then the two roots of the quadratic equations

0 =
(

Tξ + s Tθ
)

Qi (ξ + s θ) = 2 · s Tξ Qi θ + s2 Tθ Qi θ (i = 1, 2)

are s = 0 and s = s∗. Since there are only two roots, the coefficients of s2 in these equations must
be nonzero, and likewise for the coefficients of s. Furthermore, since Tξ Q1 = k Tξ Q2 we must have

s∗ = − 2 s Tξ Qi θ
Tθ Qi θ

(i = 1, 2)

and s∗ 6= 0 the denominators of these fractions must both be nonzero. These observations and
some elementary rewriting or equations imply that

Tθ Q1 θ = Tθ Q2 θ

for all θ =
(

R v 0
)

satisfying the conditions in the preceding paragraph. By construction we may
rewrite the displayed equation in the form

Tv A1 v = TvA2 v

where Ai is given as in the statement of the theorem.

To be more precise, our reasoning shows that the last displayed equation is valid provided the
line through x with direction v is neither a tangent line to Σ at x nor a line whose point at infinity
lies on one or more of the projective hyperquadrics quadrics P(Qi) defined by Qi. We shall show
that the set of good choices for v is the defined by the nonzero sets of three nontrivial polynomials;
in other words, the displayed formula is valid for v provided gi(v) 6= 0 for 1 ≤ i ≤ 3, where each gi
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is a nontrivial polynomial in the coordinates of v. — A normal vector to the tangent hyperplane
at x is given by

A1x + b1 = k (A2x + b2)

so the condition for v to be a tangential direction at x is given by a first degree polynomial in the
coordinates of v. Next, the point at infinity for the line through x with direction v has homogeneous
coorindates θ, so the defining equation for the points at infinity on P(Qi) is 0 = Tθ Qi θ, and since
the last coordinate of θ is zero these reduce to 0 = Tv Ai v for i = 1, 2. To recapitulate, if v does
not satisfy any of these equations then we have

TvA1 v = k · Tv A2 v .

By the Sparseness Theorem and its corollaries (see the Addendum), the set of all v not satisfying
the three given polynomial equations is an open dense subset of Rn. Since two continuous real
valued functions on R

n are equal if they have the same values on a dense subset, it follows that the
displayed equation holds for ALL choices of v in R

n. If we change notation from v to θ, then we
may rewrite the identity of the preceding sentence in the form

Tθ Q1 θ = k · Tθ Q2 θ

where θ ∈ Rn × {0} ⊂ Rn+1. If we now use the identities

2 · Tθ1 Qi θ2 = T(θ1 + θ2)Qi (θ1 + θ2) − Tθ1 Qi θ1 − Tθ2 Qi θ2

we see that Tθ1 Q1 θ2 = k · Tθ1 Q2 θ2 for all θ1, θ2 ∈ Rn × {0} ⊂ Rn+1.

We now claim that a similar identity holds if η1 and η2 are arbitrary vectors in Rn+1. Since
the last coordinate of ξ is 1, we can write an arbitrary vector ηj ∈ R

n+1 as a sum θj + zj ξ where
the last coordinate of θj is zero and zj ∈ R. We then have

Tη1 Q1 η2 = Tθ1 Q1 θ2 + z1
Tξ Q1 θ1 + z2

Tξ Q1 θ2 + Tξ Q1 ξ .

By our previous discussions in this proof the first term is k Tθ1 Q2 θ2, and the equation Tξ Q1 =
k Tξ Q2 implies the equalities

z1
Tξ Q1 θ1 = k z1

Tξ Q2 θ1 , z2
Tξ Q1 θ2 = k z2

Tξ Q1 θ2 , Tξ Q1 ξ = k Tξ Q1 ξ

and if we combine these we find that Tη1 Q1 η2 = k · Tη1 Q2 η2 for all η1, η2 ∈ Rn+1.

Finally, if we take η1 and η2 to be the standard unit vectors εu and εv in R
n+1 then Tη1 Qi η2

is the (u, v) entry of Qi, and consequently we see that for all u and v the (u, v) entry of Q1 is k
times the corresponding entry for Q2, so that Q1 = k Q2, which is what we wanted to prove.

Note. There is an alternate approach to this type of result in Appendix D of the following
book:

A. Reventós Tarrida. Affine Maps, Euclidean Motions and Quadrics. Springer-Verlag,
New York etc., 2011.

A matrix criterion for affine equivalence

The following straightforward reformulation of affine equivalence will be extremely useful.
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THEOREM. Let R be the of real numbers, and let Σi be the nonempty affinely nondegenerate
hyperquadric in Rn defined by the augmented symmetric matrix

(

Ai bi
Tbi ci

)

, i = 1, 2

where Ai is a symmetric matrix, bi is a column vector and ci = is a scalar. Suppose further that
there is an affine transformation T(x) = Px + q which maps Σ2 to Σ1. Then the augmented
symmetric matrices are related by the following equation, in which k is some nonzero constant:

(

TP 0
Tb 1

)

·
(

A2 b2
Tb2 c2

)

·
(

P q

0 1

)

= k ·
(

A1 b1
Tb1 c1

)

Proof. We know that x lies in Σ1 if and only if T(x) lies in Σ2. The first equation implies that
Σ1 is defined by the augmented symmetric matrix on the right hand side of the displayed formula,
while the second implies that Σ1 is defined by the augmented symmetric matrix on the left hand
side of the displayed formula without the constant factor k. Since Σ2 and Σ1 are nondegenerate, we
can now apply the previous theorem to conclude that each of these augmented symmetric matrices
must be a nonzero scalar multiple of the other.

If we expand the left hand side of the equation in the preceding theorem, we see that it is given
by the following expression:





TP A2 P TP (A2 q + b2)

(

TqA2 + Tb2

)

P TxA2 x + 2 · Tb2 x + c2





We shall need this formula to complete the proof of the classification theorem.

The definiteness index

If Σ is a hyperquadric in real projective n-space which is defined by the symmetric matrix
A, then the classificiation for projective quadrics implies that the projective equivalence class of
Σ is completely determined by the rank of A and the absolute value of its signature. For the
classification of affine hyperquadrics up to affine equivalence, we shall need an invariant which is
equivalent to the absolute value of the signature but is the same for a symmetric matrix and its
negative (recall that in the projective case A and −A define the same hyperquadric, and clearly an
analogous statement holds for affine hyperquadrics).

Definition. Given a symmetric m × m matrix A over the real numbers, the definiteness index
∆(A) is the maximum dimension of all vector subspaces V ⊂ Rn such that the bilinear form
associated to A is either positive or negative definite on V . Equivalently, by the diagonalization
theorem for real symmetric matrices this is the maxiumum of the dimensions of V+ and V−, where
V+ is spanned by the eigenvectors for positive eigenvalues and V− is spanned by the eigenvectors
for negative eigenvalues.

It follows immediately that the definiteness index satsifies ∆(A) = ∆(k A) for all k 6= 0 and
that if P is an invertible m × m matrix then we have

∆
(

TP AP
)

= ∆(A) .
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There is a very simple formula relating the definiteness index to the absolute value of the
signature.

PROPOSITION. Let A be a symmetric m×m matrix with rank r, and let σ and ∆ denote its
signature and definiteness index respectively. Then |σ| = 2∆ − r.

Proof. In the notation of the paragraph which defines ∆, let p and n be the dimensions of V+

and V− respectively. Then we have

∆ = max (p, n) , r = p + n , |σ| = |p − n|

and the verification splits into two cases depending upon whether p ≥ n or vice versa. If p ≥ n
then ∆ = p, so that n = r − p implies

|σ| = p − n = p − (r − p) = 2p − r = 2∆ − r

and similarly if n ≥ p then ∆ = n and we have

|σ| = n − p = n − (r − n) = 2n − r = 2∆ − r

which is the same formula derived in the first case.

The affine classification

Here is a formal statement of the main result:

THEOREM. Let Σ be a nondegenerate affine hyperquadric in Fn, where F = R or C. Then Σ is
affinely equivalent to exactly one of the hyperquadrics listed at the beginning of this document.

Proof. We need to check that two hyperquadrics defined by two different equations in the lists
for R and C are not affinely equivalent. The argument has two main steps. First, we shall check
this is true if both equations are in one of the sublists (i) − (iii) described above. Next, we shall
show that the statement is true if the two equations come from different sublists. There are two
cases depending upon the field under consideration. Suppose that the augmented matrices for the
different equations are given by

Qj =

(

Aj bj
Tbj cj

)

where j = 1 or 2, and we shall let Σj be the affine hyperquadric defined by Qj .

The complex case. If Σ1 and Σ2 are affinely equivalent, then the preceding results imply that
the ranks of the augmented matrices, which we shall write ρ(Q1) and ρ(Q2) are equal, and also (by
the previous explicit formula) the ranks ρ(A1) and ρ(A2) are equal. If we let rj be the appropriate
number in the defining equation for Σj , then we have the following formulas:

(1.1) For an equation of type (i), we have ρ(Qj) = ρ(Aj) = rj .

(1.2) For an equation of type (ii), we have ρ(Qj) = rj + 1 and ρ(Aj) = rj .

(1.3) For an equation of type (iii), we have ρ(Qj) = rj + 1 and ρ(Aj) = rj − 1.

In fact, these hold for both F = C and F = R.

If Σ1 and Σ2 are affinely equivalent, then as noted above we have ρ(Q1) = ρ(Q2) and if they are
both defined by an equation of the same type, it follows from (1.1)− (1.3) that r1 = r2, completing
the proof for such cases.
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Again by (1.1) − (1.3), if Σ1 and Σ2 are affinely equivalent, then we also have

ρ(Q1) − ρ(A1) = ρ(Q2) − ρ(A2) .

Since this difference is 0, 1, 2 for equations of types (i), (ii) and (iii) respectively, we see that two
equations of different types cannot define affinely equivalent hyperquadrics. This completes the
argument in the complex case.

The real case. The arguments in the complex case imply that Σ1 and Σ2 are both defined
by equations of the same type and that r1 = r2; let r denote this common value. In particular, it
follows that the defining equations for both standard models have the same type (i), (ii) or (iii).
Therefore it will suffice to prove that p1 = p2 must also hold.

In analogy with the complex case, if Σ1 and Σ2 are affinely equivalent then the definiteness
indices for the defining equations satisfy ∆(Q1) = ∆(Q2) and ∆(A1) = ∆(A2). There are now
essentially two cases depending upon whether the defining equations for the hyperquadrics have
type (i), (ii) or (iii); the phrase “essentially two cases” means that the arguments for types (i) and
(iii) are identical.

If Σ1 and Σ2 are both defined by equations of type (i) or (iii), then the conditions pi ≥ 1

2
ri

imply that pi = ∆(Ai), and hence if Σ1 and Σ2 are affinely equivalent then p1 = ∆(A1) = ∆(A2) =
p2.

Now suppose that Σ1 and Σ2 are both defined by equations of type (ii) and that these hyper-
quadrics are affinely equivalent.

Subcase (a). Suppose that p1, p2 ≥ 1

2
r. Then the argument for types (i) and (iii) implies

that p1 = ∆(A1) = ∆(A2) = p2.

Subcase (b). Suppose that p1, p2 ≤ 1

2
r. In this subcase we have n − p1 = ∆(A1) = ∆(A2) =

n − p2, which again yields p1 = p2.

Subcase (c). If neither of the preceding holds, then either p1 > 1

2
r > p2 or else p2 > 1

2
r > p1.

Claim: In this case we shall prove that the existence of an affinely equivalent pair Σ1 and Σ2 leads
to a contradiction. — Suppose that such a pair exists. Without loss of generality, we might as well
assume that the latter holds. By our hypotheses, the definiteness indices of the various defining
matrices for the Σi and their projective extensions must satisfy

p1 = ∆(A1) = ∆(A2) = r − p2 , p1 + 1 = ∆(Q1) = ∆(Q2) = r − p2

and this yields a contradiction because ∆(Q1) − ∆(A1) = 1 and ∆(Q2) − ∆(A2) = 0. The source
of the contradiction was the assumption that two distinct equations in the type (ii) list (with
r1 = r = r2 but p1 6= p2) defined affinely equivalent pairs, and hence it follows that such a pair
cannot exist with p1 6= p2.

Example. It is very easy to describe two affinely inequivalent quadric surfaces in R3 such
that one is sent to another by a nonlinear change of variables transformation

(u, v, w) = F(x, y, z)

where F is 1–1 onto, its coordinate functions have partial derivatives of all orders, and the Jacobian
of F is nonzero (so that F is an invertible mapping). Specifically, if we let u = x/

√
1 + z2,

v = y/
√

1 + z2, and w = z, then F maps the one-sheeted hyperboloid with equation x2+y2−z2 = 1
to the circular cylinder with equation u2 + v2 = 1.
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Classification up to congruence or similarity

The classification results for affine and projective hyperquadrics over R and C lead naturally
to related questions in separate directions:

TOPOLOGICAL CLASSIFICATION PROBLEMS. Let F = R or C. Given two projective or affine
hyperquadrics Σ1 and Σ2 in FPn or Fn, is there a homeomorphism (= topological equivalence) T

mapping Σ1 onto Σ2?

Actually, there are two possible versions of this question, depending upon whether one is
looking for a homeomorphism from FP

n or F
n to itself or merely for a homeomorphism from Σ1 to

Σ2. In this document we shall be interested mainly in the less restrictive (second) option.

CONGRUENCE OR ISOMETRY CLASSIFICATION PROBLEM. Given two affine hyperquadrics Σ1

and Σ2 in Rn, is there a congruence or isometry T from Rn to itself mapping Σ1 onto Σ2?

Once again, there are two possible versions of the question. An arbitrary isometry T from
R

n to itself is an affine transformation of the form T(x) = P x + q, where P is some orthogonal
matrix (i.e, TP = P−1 and q is some vector); in some writings, the term “congruence” refers
to an arbitrary isometry, while in others it refers to an isometry for which detP = +1. In this
document we shall be interested mainly in the less restrictive (first) option.

We also have a third problem which is closely related to the second:

SIMILARITY CLASSIFICATION PROBLEM. Given two affine hyperquadrics Σ1 and Σ2 in Rn, is
there a similarity transformation T from Rn to itself mapping Σ1 onto Σ2?

A similarity transformation T from Rn to itself is an affine transformation of the form T(x) =
P x+q, where P is is a positive multiple of some orthogonal matrix (the ratio of similitude) and q

is some vector. Note that an isometry is a similarity transformation for which the ratio of similitude
is +1.

An affine transformation of Fn (where F is any field) always has an inverse which is an affine
transformation, and if F = R or C then an affine transformation is continuous, and therefore every
affine transformation is a homeomorphism. Similarly, if F = R or C then a projective transformation
of FPn to itself is also a homeomorphism. Using these facts, we can summarize the relationships
among the various classification problems as follows:

Congruent or isometric affine hyperquadrics are similar.

Similar affine hyperquadrics are affinely equivalent.

Affinely or projectively equivalent hyperquadrics are topologically equivalent.

At the end of the previous section we gave examples of affinely inequivalent quadric surfaces in R3

which are topologically equivalent. However, a complete discussion of the topological classification
requires concepts from graduate level topology courses, and for this reason the topological clas-
sification is discussed in a separate document titled quadrics2.pdf. In contrast, the congruence
and siliarity classifications only require input from a second course in linear algebra, and these
classifications are derived in quadrics3.pdf.

ADDENDUM: Sets of solutions to polynomials

If p(t) is a nonzero polynomial with coefficients in a field F, then the set of solutions is a
finite subset of F, and for simple examples of real polynomials in two indeterminates one can check
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directly that the sets of solutions are relatively sparse subsets of R2. More precisely, if p(t1, t2) is
a nonzero polynomial with real coefficients, then for each point (a, b) ∈ R2 and each ε > 0 there
is a point (c, d) such that the distance from (a, b) to (c, d) is less than ε and p(c, d) 6= 0. We shall
formulate and prove a general version of this result.

Recall (say, from multivariable calculus) that a subset U ⊂ Rn is open if for each x ∈ U there
is some δ > 0 such that |y − x| < δ implies y ∈ U . Since polynomial functions are continuous, the
set of all points x ∈ Rn such that p(x) 6= 0 is open (if p is nonzero at x, it is also nonzero near x).
We also need the following concept:

Definition. A subset A ⊂ Rn is dense in Rn if for each x ∈ Rn and ε > 0 there is some a ∈ A
such that |a− x| < ε.

One of the simplest, and most important, nontrivial examples of a dense subset is the subset
A = Q of all rational numbers in R = R1.

SPARSENESS THEOREM. Let F = R or C.

(i) If p(t1, · · · , tn) is a polynomial form in F[t1, · · · , tn], then V (p) is a closed subset of Fn

with respect to the metric topology. Furthermore, if V (p) contains a nonempty open subset, then
p is the zero polynomial.

(ii) If p(t1, · · · , tn) is a nonzero polynomial form in F[t1, · · · , tn], then the complement
Fn − V (p) of V (p) is an open dense subset of Fn.

Similar conclusions hold for the zero sets of a finite family of nonzero polynomials.

COROLLARY. If p1, · · · , pm are nonzero polynomial forms in F[t1, · · · , tn], then the comple-
ment Fn − ∪j V (pj) of ∪j V (pj) is an open dense subset of Fn.

Proof of the corollary. The conclusion will follow if we know that a finite intersection of open
dense subsets is dense, and by an induction argument the latter reduces to proving the result for
an intersection of two such subsets. Suppose that U and V are open and dense subsets of Fn, let
x ∈ Fn, and let ε > 0. Since U is dense, there is some u ∈ U such that |u−x| < 1

2
ε. Let δ > 0 such

that δ < 1

2
ε and |y − u| < δ implies that y ∈ U . Then there is some v ∈ V such that |v − u| < δ.

By the choice of δ we know that v ∈ U , so that v ∈ U ∩V , and by the Triangle Inequality we know
that |v − x| < ε.

Proof of the Sparseness Theorem. (i) The first conclusion follows because p is continuous,
so that the inverse image V (p) of the closed set {0} ⊂ F

n is a closed set.

We shall prove the second conclusion by induction on the number of indeterminates in the
polynomial. The result is for polynomials in one indeterminate because a nontrivial polynomial
in one variable has only finitely many roots. Assume it is true for polynomials of with n − 1
indeterminates, where n ≥ 2, and write the polynomial in the form

p(t1, · · · , tn) =

d
∑

j=0

qj(t1, · · · , tn−1) tjn

where we might as well assume that d > 0 (otherwise we have a polynomial not involving the
indeterminate tn and the conclusion of the proposition follows from the induction hypothesis).

Suppose now that p = 0 on some open subset U , let a = (a1, · · · , an) ∈ U , and choose h > 0
such that the product open set

n
∏

i=1

Nh(ai) ⊂ U .
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If (x1, · · · , xn) ∈ U , then by the preceding sentence we have

p(x1, · · · , xn) =

d
∑

j=0

qj(x1, · · · , xn−1)xj
n .

Then for each fixed choice of (x1, · · · , xn−1) ∈
∏n−1

i=1
Nh(ai), the polynomial

f(tn) = p(x1, · · · , tn) =

d
∑

j=0

qj(x1, · · · , xn−1) tjn

is zero whenever tn ∈ Nh(an), and since the proposition is known for polynomials in one indeter-
minate this polynomial must be zero. Therefore we know that qj(x1, · · · , xn−1) = 0 for all j and
all (x1, · · · , xn−1) ∈

∏n

i=1
Nh(ai). We can now apply the induction hypothesis to conclude that

qj is the zero polynomial for each j, and this in turn implies that p = 0.

(ii) Let U be a nonempty metrically open open subset of Fn. Then by the first part of the
result the open set U is not contained in V (p), which means that U −V (p) is not empty. Since this
is one definition or characterization of a dense subset, the conclusion of (ii) follows.
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