Details of proofs for several results on differential forms

The attached pages from the Third Edition of Rudin, Principles of Mathematical Analysis (pp.

262 — 280), contain proofs or examples for the following, which are either in the main notes or
closely related to them:

1. Theorem V.1.6 on change of variables for differential forms.

2. An example of a closed 2—form on R* - {0} which is not exact (this corresponds to a

vector field F such the divergence of F is zero but F is not the curl of some vector
field on the given open set (see Example 10.37 on page 277 of Rudin, which is page 17
of this document).

3. Proposition V.3.1 on the change of variables rule for integrating differential forms over
smooth singular chains (“with respect to the bilinear map defined by taking integrals, the
pullback for differential forms associated to a smooth function f is adjoint to the induced
map for smooth singular chains”).

4. Theorem V.3.2, which is the general version of Stokes’ Theorem for integrals of
differential forms over smooth singular chains (“with respect to the bilinear map defined
by taking integrals, the exterior derivative for differential forms is adjoint to the boundary
map for smooth singular chains”).
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by (42). Hence
d(w A 2)=(df A dx) A(gdxy)+ (= DX(fdx)) A (dg A dx;)
= (dw) A A+(=1D*0 A d],
which proves (a).

Note that the associative law (58) was used freely.
Let us prove (b) first for a 0-form fe ¢”:

d*f = d( S (D,1)(X) dx ,)
=1

= ;I(D,jf)(x) dx; A dx;.
Since D,;f= D;;f (Theorem 9.41) and dx; A dx; = —dx, A dx;, we see
that df = 0.

If w = fdx;, as in (64), then dw = (df) A dx,;. By (60), d(dx;) = 0.
Hence (63) shows that

d*w = (d*) Adx,;=0.

10.21 Change of variables Suppose E is an open set in R", T is a €’-mapping
of E into an open set ¥ = R™, and w is a k-form in ¥V, whose standard presenta-

tion is
(65) w=Y by)dy,.
1

(We use y for points of V, x for points of E.)
Let ¢, ..., t, be the components of T If

y=(y1’ ""ym)= T(X)
then y, = #,(x). As in (59),

(66) d, =j£\:l(pj DO dy,  (1<i<m)

Thus each dt; is a 1-form in E.
The mapping T transforms w into a k-form wy in E, whose definition is

(67) wr=Y bATX) dt;, A -+ A dt,.
1

In each summand of (67), I = {i,, ..., i)} is an increasing k-index.
Our next theorem shows that addition, multiplication, and differentiation
of forms are defined in such a way that they commute with changes of variables.
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10.22 Theorem With E and T as in Sec. 10.21, let w and A be k- and m-forms
in V, respectively. Then

(68)

(69)

(70)

(@) (W+Nr=0wr+ Arifk=m;
(b) (@ ANr=wrAir;
(¢) d(wy) = (dw)y if w is of class €' and T is of class €".
Proof Part (@) follows immediately from the definitions. Part (b) is
almost as obvious, once we realize that
((1}",-l A A dyir)T = dti1 At A dtir

regardless of whether {i, ..., i,} is increasing or not; (68) holds because
the same number of minus signs are needed on each side of (68) to produce

increasing rearrangements.
We turn to the proof of (¢). If fis a O-form of class ¢’ in V, then

Jix)=fTX), df= ;(Dif Ny) dy;.

By the chain rule, it follows that
d(fr) = Z (DjfT)(x) dxj
= ; Z.: (Dif YT (X)) D; 1)(x) dx;

1€ v — Av A ces )
itayr=ay; A NGy,

10.20 shows that
d((dy 1)r) = 0.

(This is where the assumption T € €” is used.)
Assume now that w = fdy,;. Then

wr = fr(X) (dy )7
and the preceding calculations lead to

d(wr) = d(f7) A ([@dy)r=d)r A (dy)r
= ((df) A dy)r = (dw)r.
The first equality holds by (63) and (70), the second by (69), the third by
part (b), and the last by the definition of dw.

The general case of (c) follows from the special case just proved, if
we apply (a). This completes the proof.
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Our next objective is Theorem 10.25. This will follow directly from two
other important transformation properties of differential forms, which we state
first.

10.23 Theorem Suppose T is a €’-mapping of an open set E < R" into an open
set V. R™ S is a €’-mapping of V into an open set W — RP, and w is a k-form
in W, so that wg is a k-form in V and both (wg)y and wgr are k-forms in E, where
ST is defined by (ST)(x) = S(T(x)). Then

(71) (ws)r = Wsr-
Proof If w and A are forms in W, Theorem 10.22 shows that
(@ A Ds)r = (05 A A9)r = (ws)r A (Ag)r
and
(0 A Vst = st A dst.

Thus if (71) holds for w and for 4, it follows that (71) also holds for w A 4.
Since every form can be built up from O-forms and 1-forms by addition
and multiplication, and since (71) is trivial for 0-forms, it is enough to
prove (71) in the case w =dz,, g =1, ..., p. (We denote the points of
E, V, Wby x, y, z, respectively.)

Let ¢, ..., t, be the components of T, let s;, ..., s, be the compo-
nents of S, and let ry, ..., r, be the components of ST. If w = dz,, then

ws = ds, = ; (D;5)(y) dy;,
so that the chain rule implies
(ws)r = ; (D;s (T (%)) dt,
= zj\: (D; s )T (x)) Z (D, 1))(x) dx;
= [i\: (D;r )x) dx; = dr, = wgr.

10.24 Theorem Suppose w is a k-form in an open set E = R", ® is a k-surface
in E, with parameter domain D < R*, and A is the k-surface in R*, with parameter
domain D, defined by A(u) = u(u € D). Then

o= o

Proof We need only consider the case

w=aX)dx; A Adxg.



INTEGRATION OF DIFFERENTIAL FORMS 265

If ¢4, ..., ¢, are the components of ®, then
we = a(®(W) dp;, A -+ A do,, .

The theorem will follow if we can show that

(72) dp, A - Adp, =JW)du; A -+ A du,
where
O(Xips oy Xy,)
Jll = ! k,
= B . )

since (72) implies
f w= f a(®(u))J(u) du

=J a(@))J() du; A <+ A du, =f Do -
A A

Let [4] be the k by k matrix with entries
a(p’q)=(Dq¢ip)(u) (p9q= 1’ ’k)

Then
do; = qZ o(p, q) du,
so that
doi, Ao Adey =) a(l,q) - alk, gi) dug, A -0 A dug, .
In this last sum, ¢, ..., g, range independently over 1, ..., k. The anti-

commutative relation (42) implies that
dug At Aduy, =5(qy, ..., q) duy At A dy,
where s is as in Definition 9.33; applying this definition, we see that
dp; A+ A dp, =det[Adldu; A -+ A du;
and since J(u) = det [4], (72) is proved.
The final result of this section combines the two preceding theorems.

10.25 Theorem Suppose T is a €’-mapping of an open set E = R" into an open
set V < R", ® is a k-surface in E, and w is a k-form in V.

Then
fmw - Lwr-
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Proof Let D be the parameter domain of ® (hence also of 7®) and
define A as in Theorem 10.24.

Then
f W= f wm—f (wT)d)_f wr.
T®
The first of these equalities is Theorem 10.24, applied to T® in place of ®
The second follows from Theorem 10.23. The third is Theorem 10.24,

with w; in place of w.

SIMPLEXES AND CHAINS

10.26 Affine simplexes A mapping f that carries a vector space X into a
vector space Y is said to be affine if f — £(0) is linear. In other words, the require-
ment is that

(73) f(x) = f(0) + Ax

for some 4 € L(X, Y).

An affine mapping of R* into R" is thus determined if we know f(0) and
f(e,) for 1 <i< k; as usual, {e,, ..., ) is the standard basis of R,

We define the standard simplex Q" to be the set of all u € R* of the form

(74) =
l=1
such thata; >0 fori=1,..., kand Za; < 1.
Assume now that py, py, ..., Pk are points of R". The oriented affine
k-simplex
(75) 0=[p09 pl"--’pk]

is defined to be the k-surface in R" with parameter domain Q* which is given
by the affine mapping

k
(76) o€ + - + o €) =Ppo + Zlai(pi — Po)-
Note that ¢ is characterized by
(77 a(0) = po, o(e;) =p; (for1 <i<k),
and that
(78) o(u) = p, + Au (ue QY

where 4 € L(R*, R") and Ae; =p; — p, for 1 <i <k.
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We call ¢ oriented to emphasize that the ordering of the vertices py, ..., px
is taken into account. If

(79) 6=[pio9pip '°'9pik]9

where {i,, i, ..., i} is a permutation of the ordered set {0, 1, ..., k}, we adopt
the notation

(80) o =S(l.0, il’ ey ik)O',

where s is the function defined in Definition 9.33. Thus ¢ = +¢, depending on
whether s =1 or s = —1. Strictly speaking, having adopted (75) and (76) as
the definition of o, we should not write ¢ = ¢ unless i, =0, ..., iy =k, even
ifs(iy, ..., i) = 1; what we have here is an equivalence relation, not an equality.
However, for our purposes the notation is justified by Theorem 10.27.

If & = eo (using the above convention) and if ¢ = 1, we say that ¢ and ¢
have the same orientation; if e = —1, 6 and ¢ are said to have opposite orienta-
tions. Note that we have not defined what we mean by the “orientation of a
simplex.”” What we have defined is a relation between pairs of simplexes having
the same set of vertices, the relation being that of “having the same orientation.”

There is, however, one situation where the orientation of a simplex can
be defined in a natural way. This happens when n = k and when the vectors

P; — Po (1 < i< k) are independent. In that case, the linear transformation 4
that appears in (78) is invertible, and its determinant (which is the same as the
Jacobian of ¢) is not 0. Then o is said to be positively (or negatively) oriented if
det A4 is positive (or negative). In particular, the simplex [0, e, ..., ¢] in R
given by the identity mapping, has positive orientation.

So far we have assumed that k > 1. An oriented O-simplex is defined to
be a point with a sign attached. We write 6 = +p, or 6 = —p,. If 6 = ¢p,

(e = £1) and if fis a 0-form (i.e., a real function), we define

[ =0

10.27 Theorem If ¢ is an oriented rectilinear k-simplex in an open set E = R"
and if ¢ = €o then

81 f_w=efw

for every k-form w in E.

Proof For k=0, (81) follows from the preceding definition. So we
assume k 2> 1 and assume that o is given by (75).
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Suppose 1 <j < k, and suppose & is obtained from ¢ by inter-
changing p, and p;. Then e= —1, and

é(u) = p; + Bu (ue 09,

where B is the linear mapping of R* into R" defined by Be; = p, — p;,
Be;=p, —p; if i #j. If we write de; = x; (1 < i< k), where 4 is given
by (78), the column vectors of B (that is, the vectors Be;) are

xl—xi,...,Xj_l_x‘i, —Xj,Xj+1—Xj ...,Xk—xj.

If we subtract the jth column from each of the others, none of the deter-
minants in (35) are affected, and we obtain columns x,, ..., x;_;, —X,,
X;+1, .-+, X¢. These differ from those of 4 only in the sign of the jth
column. Hence (81) holds for this case.

Suppose next that 0 < i <j < k and that & is obtained from ¢ by
interchanging p; and p;. Then &(u) = p, + Cu, where C has the same
columns as A, except that the ith and jth columns have been inter-
changed. This again implies that (81) holds, since ¢ = — 1.

The general case follows, since every permutation of {0, 1, ..., k} is
a composition of the special cases we have just dealt with.

10.28 Affine chains An affine k-chain T in an open set E = R" is a collection
of finitely many oriented affine k-simplexes a4, ..., 0, in E. These need not be
distinct; a simplex may thus occur in I" with a certain multiplicity.

If T is as above, and if w is a k-form in E, we define
(82) JI‘ w= i J{‘ w.

r i=1vay

We may view a k-surface ®@ in F as a function whose domain is the collec-
tion of all k-forms in E and which assigns the number [, w to w. Since real-
valued functions can be added (as in Definition 4.3), this suggests the use of the
notation

(83) IF'=oy+ - +o,
or, more compactly,
(84) =)y o

i=1

to state the fact that (82) holds for every k-form w in E.

To avoid misunderstanding, we point out explicitly that the notations
introduced by (83) and (80) have to be handled with care. The point is that
every oriented affine k-simplex o in R" is a function in two ways, with different
domains and different ranges, and that therefore two entirely different operations
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of addition are possible. Originally, o was defined as an R"-valued function
with domain Q*; accordingly, o, + o, could be interpreted to be the function
o that assigns the vector a;(u) + o,(u) to every u € Q%; note that ¢ is then again
an oriented affine k-simplex in R"! This is not what is meant by (83).

For example, if 6, = —0o, as in (80) (that is to say, if o, and o, have the
same set of vertices but are oppositely oriented) and if I = o, + 7,, then
frw=0 for all , and we may express this by writing I' =0 or ¢, + g, =0.
This does not mean that a,(u) + o,(u) is the null vector of R".

10.29 Boundaries For k > 1, the boundary of the oriented affine k-simplex

c= [Po’ Py - e pk]
is defined to be the affine (k — 1)-chain

k
(85) 50’=.ZO(—1)’[P0, cees Pi-15 Pj+1s ""pk]-
J=
For example, if ¢ = [py, py, P>], then
06 = [py, P21 — [Po> P2] + [P0, P1] = [Po> P1] + [P1s P2] + [P2 Pol;

which coincides with the usual notion of the oriented boundary of a triangle.

For 1 <j < k, observe that the simplex ¢; = [po, ..., Pj=15 Pj+1> -+ > Pkl
which occurs in (85) has Q¥ ! as its parameter domain and that it is defined by
(86) oW =po+Bu (ue @Y,

where B is the linear mapping from R*~! to R" determined by
Be;, =p;, — po (if I<i<j-1),
Be; =p;+; — Po (if j<i<k-1).
The simplex
0o =[Py, P2> --+» Puls
which also occurs in (85), is given by the mapping
oo(u) = p; + Bu,

where Be;, =p;,; —p; for1 <i<k -1

10.30 Differentiable simplexes and chains Let 7 be a ¥”-mapping of an open
set E < R"into an open set V' = R™; T need not be one-to-one. If ¢ is an oriented
affine k-simplex in E, then the composite mapping ® = T - ¢ (which we shall
sometimes write in the simpler form 7o) is a k-surface in V, with parameter
domain Q. We call @ an oriented k-simplex of class €.
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A finite collection ¥ of oriented k-simplexes ®,, ..., ®, of class €” in V
is called a k-chain of class ¢" in V. If w is a k-form in V, we define

(87) J“l"a) =i=i1 d)iw

and use the corresponding notation ¥ = XZ®;.
If I' = Zo, is an affine chain and if ®; = T o o;, we also write ¥ =TT,
or

(88) T o) =Y To,.

The boundary 0® of the oriented k-simplex ® = T - ¢ is defined to be the
(k — 1) chain

(89) o® = T (do).

In justification of (89), observe that if T is affine, then ® = T o ¢ is an
oriented affine k-simplex, in which case (89) is not a matter of definition, but is
seen to be a consequence of (85). Thus (89) generalizes this special case.

It is immediate that 0@ is of class €” if this is true of ®.

Finally, we define the boundary 0¥ of the k-chain ¥ = Z®; to be the
(k — 1) chain

(90) ¥ =Y 0;.

10.31 Positively oriented boundaries So far we have associated boundaries to
chains, not to subsets of R". This notion of boundary is exactly the one that is
most suitable for the statement and proof of Stokes’ theorem. However, in
applications, especially in R* or R?, it is customary and convenient to talk
about ‘‘oriented boundaries” of certain sets as well. We shall now describe
this briefly.

Let Q" be the standard simplex in R" let g, be the identity mapping with
domain Q". As we saw in Sec. 10.26, 6, may be regarded as a positively oriented
n-simplex in R". Its boundary do, is an affine (n — I)-chain. This chain is
called the positively oriented boundary of the set Q".

For example, the positively oriented boundary of Q? is

[e19 €, e3] - [0, €, e3] + [O’ €1, e3] - [09 €1 e2]°

Now let T be a 1-1 mapping of Q" into R", of class ¥”, whose Jacobian is
positive (at least in the interior of Q). Let E = T(Q"). By the inverse function
theorem, E is the closure of an open subset of R". We define the positively
oriented boundary of the set E to be the (n — 1)-chain

6T= T(@O‘o),
and we may denote this (n — 1)-chain by OE.
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An obvious question occurs here: If F=T,(Q") = T,(Q"), and if both
T, and T, have positive Jacobians, is it true that 0T, = 0T,? That is to say,
does the equality

[ e[ w
0Ty 0T,

hold for every (n — 1)-form w? The answer is yes, but we shall omit the proof.
(To see an example, compare the end of this section with Exercise 17.)
One can go further. Let

Q=E, u-rUE,

where E; = T,(Q"), each T has the properties that T had above, and the interiors
of the sets E; are pairwise disjoint. Then the (n — 1)-chain

0Ty + -+ + 0T, = 6Q

is called the positively oriented boundary of Q.
For example, the unit square /> in R? is the union of ¢,(Q?) and ¢,(Q?),
where

o,(u) = u, o,(u) =e¢; + e, —u.
Both &, and ¢, have Jacobian 1 > 0. Since

o

—
r—

we have

1-10,e;] +[0,¢,],
06, =[e;, e;] —[e; +e;,e]+ [e +e,,e,];
The sum of these two boundaries is
oI* = [0, e;] + [e;, e; + e,] + [e; + e,, e;] + [e,, 0],

the positively oriented boundary of 2. Note that [e,, e,] canceled [e,, e,].

If ® is a 2-surface in R™, with parameter domain /2, then ® (regarded as
a function on 2-forms) is the same as the 2-chain

Qoo +Poo,.
Thus
0D =0(®o0,)+ (P oo0,)
= ®(d0,) + ®(d0,) = D).
In other words, if the parameter domain of ® is the square I2, we need

not refer back to the simplex Q2 but can obtain ® directly from 8I>.
Other examples may be found in Exercises 17 to 19.
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10.32 Example For 0 <u <7, 0 <v < 2nx, define
>(u, v) = (sin u cos v, sin  sin v, cos u).

Then X is a 2-surface in R3, whose parameter domain is a rectangle D = R?,
and whose range is the unit sphere in R>. Its boundary is

0L =X(0D) =19, + 72+ V3 + V4
where
y,(¥) = Z(u, 0) = (sin «, 0, cos u),
72(v) = Z(m, v) = (0, 0, — 1),
y3(u) = X(n — u, 2n) = (sin u, 0, —cos u),
14(v) = Z(0, 2n — v) = (0, 0, 1),
with [0, n] and [0, 27] as parameter intervals for # and v, respectively.

Since 7, and y, are constant, their derivatives are 0, hence the integral of

any 1-form over y, or y, is 0. [See Example 1.12(a).]
Since y;(u) = y,(n — u), direct application of (35) shows that

fw=—fw
73 Y1

or every 1-form w. Thus [,z @ =0, and we conclude that 9% = 0.

(In geographic terminology, 0% starts at the north pole N, runs to the
south pole S along a meridian, pauses at S, returns to N along the same meridian,
and finally pauses at N. The two passages along the meridian are in opposite
directions. The corresponding two line integrals therefore cancel each other.
In Exercise 32 there is also one curve which occurs twice in the boundary, but
without cancellation.)

STOKES’ THEOREM

10.33 Theorem If ¥ is a k-chain of class €" in an open set V < R™ and if w
is a (k — 1)-form of class €' in V, then

©D fw do = W

The case kK = m = 1 is nothing but the fundamental theorem of calculus
(with an additional differentiability assumption). The case k = m = 2 is Green’s
theorem, and k = m = 3 gives the so-called ‘‘divergence theorem’’ of Gauss.
The case k =2, m =3 is the one originally discovered by Stokes. (Spivak’s
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book describes some of the historical background.) These special cases will be
discussed further at the end of the present chapter.

(92)

(93)

(94)

(95)

(96)

Proof It is enough to prove that
do=| o
Joto=1,q
for every oriented k-simplex @ of class ¢” in V. For if (92) is proved and
if ¥ = X®,, then (87) and (89) imply (91).
Fix such a ® and put
c=1[0,ep,..., €&l

Thus & is the oriented affine k-simplex with parameter domain Q* which
is defined by the identity mapping. Since ® is also defined on QO (see
Definition 10.30) and ® € #”, there is an open set E = R* which contains
Q% and there is a ¥"-mapping T of E into V such that ® =T og. By
Theorems 10.25 and 10.22(c), the left side of (92) is equal to

do= f (do)r = f d(wq).

Another application of Theorem 10.25 shows, by (89), that the right side
of (92) is

f W= f w = f wr.
&(Ta) T(da) oa

Since wy is a (k — 1)-form in E, we see that in order to prove (92)
we merely have to show that
[ar=] 2
a da

for the special simplex (93) and for every (k — 1)-form A of class €' in E.

If k=1, the definition of an oriented O-simplex shows that (94)
merely asserts that

. £ du=r)-10)

for every continuously differentiable function f on [0, 1], which is true
by the fundamental theorem of calculus.
From now on we assume that k > 1, fix an integer r (1 <r < k),
and choose fe €'(E). It is then enough to prove (94) for the case
A=f(X)dx; A Adx,_ Adx, 1 A0 Adxy

since every (k — 1)-form is a sum of these special ones, for r =1, ..., k.
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By (85), the boundary of the simplex (93) is

k
do = [ela SRR ek] + Z(—l)iri
i=1

where

T = [Ga €5 €15 €4 15400, ek]
fori=1,..., k. Put

To=1[€,€, ..., € _1,€41,--5 €l

Note that 7, is obtained from [e,, ..., €] by r — 1 successive interchanges
of e, and its left neighbors. Thus

(97) 80 = (—1y "1, +_§(—1)'r,..

Each 7, has Q*"! as parameter domain.
If X = 75(u) and ue Q*!, then

u; (1<j<r),
(98) xp= 1= (uy+  +u_y) G=n),
Uj_y (r<j<k).
Wleiclk une k1 40d v — «.(n) than
11 1 >t > Nhvs, U T Z s QI A L,\u}, LilG 1L
u; (1<j<i),
(99) x;= {0 (=1,
LuJ—l (l <j = k)
For 0 < i <k, let J; be the Jacobian of the mapping
(100) WUypy ooy thgg) 2 (Xgs oees Xpms Xppts » o o5 Xi)

induced by 7;. When i = 0 and when i = r, (98) and (99) show that (100)
is the identity mapping. Thus J, =1, J, = 1. For other /, the fact that
x; =0 in (99) shows that J; has a row of zeros, hence J; = 0. Thus

(101) f A=0  (i#0,i#n),
T
by (35) and (96). Consequently, (97) gives
102 A== A+ (=1 A
(102) A= ae -]

= (=7 (o) —Ax )] du.
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On the other hand,
dA = (D,f)X)dx, Adxy A+ AdX_g AdXpypy A0 A dxy
= (—1)""YD,HX)dx; A *** A dxy
so that

(103) f A= (—1)"! ka(D,f)(x) dx.

We evaluate (103) by first integrating with respect to x,, over the interval
[0, 1~ (x4 "+ +Xpog + Xy + 0 + X)),

PUt (X(5 . vo» Xpmts Xppgs oees Xk) = (Ug, ..., Ug—y), and see with the aid of
(98) that the integral over Q¥ in (103) is equal to the integral over Q*~!
in (102). Thus (94) holds, and the proof is complete.

CLOSED FORMS AND EXACT FORMS

10.34 Definition Let w be a k-form in an open set E = R". If thereisa (k — 1)-
form A in E such that w = d/, then w is said to be exact in E.

If w is of class €' and dw = 0, then w is said to be closed.

Theorem 10.20(b) shows that every exact form of class €’ is closed.

In certain sets E, for example in convex ones, the converse is true; this
is the content of Theorem 10.39 (usually known as Poincaré’s lemma) and
Theorem 10.40. However, Examples 10.36 and 10.37 will exhibit closed forms

that are not exact.

10.35 Remarks

(@) Whether a given k-form w is or is not closed can be verified by
simply differentiating the coefficients in the standard presentation of w.
For example, a 1-form

(104) w =Y fi(x)dx;,
i=1
with f; € ¥'(E) for some open set £ < R", is closed if and only if the
equations
(105) (D;f)(x) = (D, f;)(x)

hold for all i, jin{l, ..., n} and for all x e E.
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Note that (105) is a ““pointwise’ condition; it does not involve any
global properties that depend on the shape of E.

On the other hand, to show that w is exact in E, one has to prove
the existence of a form A, defined in E, such that dA = w. This amounts
to solving a system of partial differential equations, not just locally, but

in all Af E Fa A chaw that (1NA) 1q avant at F Ana hag
A3 Qi1 V1l Akse 1 Ul \/Aal].lyl\/, I-U D11V VY Lllal \l\l‘r} 10 \/A“UL l.ll a D\vb ‘-J’ Viiv 11ad

to find a function (or O-form) g € €'(E) such that
(106) (Dig9)x)=f(x) (X€eE,1<i<n).
Of course, (105) is a necessary condition for the solvability of (106).

(b) Let w be an exact k-form in E. Then there is a (k — 1)-form A in E
with dA = w, and Stokes’ theorem asserts that

(107) Lw = L di=| i

for every k-chain W of class ¢” in E.
If ¥, and ¥, are such chains, and if they have the same boundaries,
it follows that

w = .
L 1 ¥,

g ok D -

In particular, the integral of an exact k-form in E is O over every
k-chain in E whose boundary is 0.

As an important special case of this, note that integrals of exact
1-forms in E are O over closed (d1ﬂ"erpntmhle\ curves in E

a AR — A AAVAVARVGUAY ) Vwid VO 2l as

(¢) Let w be a closed k-form in E. Then dw = 0, and Stokes’ theorem
asserts that

(108) W= f dew = 0
o vy

for every (k + 1)-chain ¥ of class ¢” in E.
In other words, integrals of closed k-forms in E are O over k-chains
that are boundaries of (k + 1)-chains in E.

(d) Let¥ be a (k + 1)-chain in E and let A be a (k — 1)-form in E, both
of class €”. Since d?A = 0, two applications of Stokes’ theorem show that

(109) fwz - fw dh = J:szi =0.

We conclude that 82¥ = 0. In other words, the boundary of a

boundary is 0.
See Exercise 16 for a more direct proof of this.
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10.36 Example Let E = R?> — {0}, the plane with the origin removed. The
1-form

xdy—ydx
110 = =
(110) =TT
is closed in R* — {0}. This is easily verified by differentiation. Fix r > 0, and
define
(111) y(¢) = (rcost,rsint) 0<t<2m.
Then y is a curve (an ‘“‘oriented 1-simplex”) in R? — {0}. Since y(0) = y(2n),
we have
(112) dy =0.

Direct computation shows that

(113) fn=2n¢a
7

The discussion in Remarks 10.35(b) and (c) shows that we can draw two
conclusions from (113):

First, n is not exact in R* — {0}, for otherwise (112) would force the integral

(113) to be 0.
Secondly, y is not the boundary of any 2-chain in R* — {0} (of class %"),
for otherwise the fact that # is closed would force the integral (113) to be 0.

10.37 Example Let E = R*® — {0}, 3-space with the origin removed. Define

_xdyAdz+ydzAdx+zdx Ady
- (xz +y2 +22)3/2

(114) ¢

where we have written (x, y, z) in place of (x,, x,, x3). Differentiation shows
that d¢ = 0, so that { is a closed 2-form in R® — {0}.

Let X be the 2-chain in R® — {0} that was constructed in Example 10.32;
recall that X is a parametrization of the unit sphere in R3. Using the rectangle
D of Example 10.32 as parameter domain, it is easy to compute that

(115) LC=stinududv=47r;éO.

As in the preceding example, we can now conclude that { is not exact in
R — {0} (since 0 = 0, as was shown in Example 10.32) and that the sphere
is not the boundary of any 3-chain in R® — {0} (of class %”), although 6 = 0.
The following result will be used in the proof of Theorem 10.39.
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10.38 Theorem Suppose E is a convex open set in R", fe €'(E), p is an integer,
1<p<n,and

(116) (D;f)x)=0 (p<j<nmxekE).
Then there exists an F € €'(E) such that
(117) (D, F)x)=f(x), (D;F)x)=0 (p<j<nxekE)

Proof Write x = (x/, x,, x"), where

X' = (Xg5 s Xpo1)y X' = (Xpaqy oy Xp)e

(When p =1, x' is absent; when p =n, x" is absent.) Let V be the
set of all (x', x,) € RP such that (x, x,, x") € E for some x". Being a
projection of E, V is a convex open set in R?. Since E is convex and (116)
holds, f(x) does not depend on x"”. Hence there is a function ¢, with
domain V, such that
f0) = o(x', x,)

for all x € E.

If p=1, Vis a segment in R' (possibly unbounded). Pick ce V
and define

Fo=[ o@)d  (xeE).

If p> 1, let U be the set of all x' e RP~! such that (x’, x,) e V for
some x,. Then U is a convex open set in RP~!, and there is a function
o € ¢'(U) such that (x', a(x")) € V for every x’ € U; in other words, the
graph of « lies in V (Exercise 29). Define

Fo = oa,nd  (xeE).

a(x’)

In either case, F satisfies (117).
(Note: Recall the usual convention that [, means — §if < a.)

10.39 Theorem If E = R" is convex and open, if k > 1, if o is a k-form of
class €' in E, and if dw = 0, then there is a (k — 1)-form A in E such that o = dA.
Briefly, closed forms are exact in convex sets.

Proof For p=1,...,n, let Y, denote the set of all k-forms w, of class
%' in E, whose standard presentation

(118) o= fix)dx;

does not involve dx 4y, ..., dx,. Inother words, I = {1, ..., p}if f{(x) # 0
for some x € E.
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We shall proceed by induction on p.

Assume first that we Y;. Then w =f(x)dx;. Since dw =0,
(D;f)x) =0for1 <j<n,xeE. By Theorem 10.38 there is an F € ¢'(E)
such that D,F = fand D;F =0 for 1 <j<n. Thus

dF = (D F)(x) dx, = f(x) dx; = o.

Now we take p > 1 and make the following induction hypothesis:
Every closed k-form that belongs to Y,_, is exact in E.
Choose w € Y, so that dw = 0. By (118),

(119) Y Y (D f)x) dx; A dxp=do =0.
I j=1
Consider a fixed j, with p <j < n. Each I that occurs in (118) lies in
{1,...,p}. If I, I, are two of these k-indices, and if I, # I,, then the
(k + 1)-indices (I, ), (I,,Jj) are distinct. Thus there is no cancellation,
and we conclude from (119) that every coefficient in (1i8) satisfies

(120) D;fx)=0 (xeE,p<j<n).
We now gather those terms in (118) that contain dx, and rewrite @
in the form
(121) w=oa+ Y f(x)dxp, Adx,,
where a € Y,_;, each I, is an increasing (k — l)-index in {1, ..., p — 1},

and I = (I,, p). By (120), Theorem 10.38 furnishes functions F; e ¢'(E)
such that

(122) D,F;=fy, D;F;=0 (p<j<n).
Put
(123) p=Y Fix)drr,

and define y = w — (—1)*"* dB. Since B is a (k — 1)-form, it follows that
4
Yy =0 — Izjzl(DjFI)(x) dx,o A dxj

p—1
=0 — IZJ-ZI(D'IFI)(X) deO A dxl,

which is clearly in Y,_;. Since dw =0 and d?f =0, we have dy = 0.
Our induction hypothesis shows therefore that y =du for some
(k — 1)-form pin E. If A = u + (~1)*"B, we conclude that w = di.

By induction, this completes the proof.
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10.40 Theorem Fix k, 1<k <n. Let E < R" be an open set in which every
closed k-form is exact. Let T be a 1-1 €"-mapping of E onto an open set U = R"
whose inverse S is also of class €".

Then every closed k-form in U is exact in U.

Note that every convex open set E satisfies the present hypothesis, by
Ml e ncimane 1N 20 Ly p) PP DRSS MR - o1 TT o b 1 1 . .
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that they are €¢"-equivalent.

Thus every closed form is exact in any set which is €"-equivalent to a convex
open set.

Proof Let w be a k-form in U, with dw =0. By Theorem 10.22(c),
w7 is a k-form in E for which d(w;) =0. Hence w; = dA for some
(k — 1)-form A in E. By Theorem 10.23, and another application of
Theorem 10.22(¢c),

@ = (07)s = (dA)s = d(As).

Since Ag is a (k — 1)-form in U, w is exact in U.

1041 Remark In applications, cells (see D=finition 2.17) are often more con-
venient parameter domains than simplexes. If our whole development had
been based on cells rather than simplexes, the computation that occurs in the
proof of Stokes’ theorem would be even simpler. (It is done that way in Spivak’s
book.) The reason for preferring simplexes is that the definition of the boundary
of an oriented simplex seems easier and more natural than is the case for a cell.
(See Exercise 19.) Also, the partitioning of sets into simplexes (called ‘‘triangu-
lation’’) plays an important role in topology, and there are strong connections
between certain aspects of topology, on the one hand, and differential forms,
on the other. These are hinted at in Sec. 10.35. The book by Singer and Thorpe
contains a good introduction to this topic.

Since every cell can be triangulated, we may regard it as a chain. For
dimension 2, this was done in Example 10.32; for dimension 3, see Exercise 18.

Poincaré’s lemma (Theorem 10.39) can be proved in several ways. See,
for example, page 94 in Spivak’s book, or page 280 in Fleming’s. Two simple
proofs for certain special cases are indicated in Exercises 24 and 27.

VECTOR ANALYSIS

We conclude this chapter with a few applications of the preceding material to
theorems concerning vector analysis in R3. These are special cases of theorems
about differential forms, but are usually stated in different terminology. We
are thus faced with the job of translating from one language to another.



