
V.2 : Generalized Stokes’ Formula

(Conlon, §§ 2.6, 8.1–8.2; Lee, Ch. 14)

At the end of Section 0 we discussed a far-reaching extension of the classical theorems
of vector analysis (including the Fundamental Theorem of Calculus) to higher dimensions.
In this section we shall formulate a version of this generaliztion which plays the key role
in relating smooth singular cochains to differential forms.

Integration over smooth singular chains

If U is an open subset of R
n and TΛq → U is a smooth singular q-simplex, then

the basic integration formula in Section V.0 provides a way of defining an integral
∫
T
ω

if ω ∈ ∧q(U). There is a natural extension of this to singular chains; if c is the smooth
singular chain

∑
i niTi where the ni are integers, then since the group of smooth singular

q-chains is free abelian on the smooth singular q-simplices the following is well defined:∫
c

ω =
∑
i

ni

∫
Ti

ω

This definition has the following invariance property with respect to smooth mappings
f : U → V .

PROPOSITION 1. Let c ∈ Ssmooth
q (U), where U is above, let f : U → V be smooth

and let ω ∈ ∧q(V ). Then we have

∫
fsmooth
#

(c)

ω =

∫
c

f#ω .

This follows immediately from the definition of integrals and the Chain Rule.

The combinatorial form of the Generalized Stokes’ Formula is a statement about
integration of forms over smooth singular chains.

THEOREM 2. (Generalized Stokes’ Formula, combinatorial version) Let c, U, ω...(etc.)
be as above. Then we have ∫

d c

ω =

∫
c

dω .

Full proofs of this result appear on pages 251–253 of Conlon and also on pages 272–275
of Rudin, Principles of Mathematical Analysis (3rd Ed.)(�). Here is an outline of the basic
steps: First of all, by additivity it is enough to prove the result when c is given by a smooth
singular simplex T . Next, by Proposition 1 and the identity f# od = d of#, we know that
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it suffices to prove the result when T is the universal singular simplex 1q defined by the
inclusion of Λq — the simplex in R

q whose vertices are 0 and the unit vectors — into some
small open neighborhood W0 of Λq. In this case the integrals reduce to ordinary integrals
in R

q. We can reduce the proof even further as follows: Let θi ∈ ∧q−1(W0) be the basic
(q−1)-form dxi1 ∧ · · · dxiq−1 , where i1 < · · · < iq−1 runs over all elements of {1, · · · , q}
except i. By additivity it will suffice to prove the theorem for (q − 1)-forms expressible
as g θi, where g is a smooth function on W0. Yet another change of variables argument
shows that it suffices to prove the result for (q− 1)-forms expressible as g dx2 ∧ · · · ∧ dxq.
Now the exterior derivative of the latter form is equal to

∂g

∂x1
· dx1 ∧ · · · dxq

so the proof reduces to evaluating the integral of the left hand factor in this expression over
Λq, and this is done by viewing this multiple integral as an interated integral via Fubini’s
Theorem (see Rudin, Real and complex analysis or almost any text discussing Lebesgue
integration) and applying the Fundamental Theorem of Calculus.

RELATION TO CLASSICAL VECTOR ANALYSIS. The identifications in (i)− (iii) lead to
a general statement that includes the following three basic results:

(1) The standard path independence result stating that the line integral
∫ ∇f · dx

is equal to f(final point on curve)− f(initial point on curve).

(2) Stokes’ Theorem (note the spelling!! ) relating line and surface integrals.

(3) The so-called Gauss or Divergence Theorem relating surface and volume integrals.

In each case the result can be stated in terms of differential forms and p-surfaces
(where p = 1, 2, 3) as follows: If we are given a p-surface σ that has a reasonable notion of
boundary ∂σ such that ∂σ is somehow a sum of (p − 1)-surfaces with coefficients of ± 1,
then ∫

∂σ

ω =

∫
σ

dω

for all (p− 1)-forms ω.

In all cases the relationship to the Generalized Stokes’ Formula depends upon the
existence of piecewise smooth triangulations for the domains in which the various integrals
are defined. More precisely, these are families of mappings Tα from the standard simplices
Λq satisfying the following conditions:

(a) The union of the images of the simplices is the entire domain of integration, and
the intersection of two images is a common face.

(b) Each map Tα is smooth and 1–1, and the derivative matrix at each point (i.e.,
the matrix of partial derivatives of the coordinate functions of Tα) normally has
rank q(α); in some cases these statements can be weakened slightly to allow some
irregular behavior on the boundaries.
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(c) The structure described above induces a similar structure on the boundary of the
domain of integration.

(d) The sum of the integrals with respect to the mappings Tα are the standard notion
of integral for the domain under consideration, and likewise for the boundary.

One way of restating the final condition is to say that if one forms a triangulating chain
for the domain of integration by adding the symbols ±Tα formally , then the algebraic
boundary of this chain (in the sense of singular homology) will be a triangulating chain for
the boundary of the domain. Standard examples in multivariable calculus amount to saying
that such a condition does not hold for a smooth bounded surface in R

3 corresponding to
a Möbius strip.

Results (1)–(3) are special cases of more general result which hold in all finite dimen-
sions. Unfortunately, precise formulations of such generalizations require more background
than we have developed (mainly from [MunkresEDT]), so we shall not try to state such
results explicitly here.

V.3 : Definition and properties of de Rham cohomology

(Hatcher, §§ 2.1, 2.3, 3.1; Conlon, §§ 2.6, 8.1, 8.3–8.5; Lee, Ch. 15)

Let U be an open subset of Rn for some n. Since the exterior derivative on ∧p(U)
satisfies d od = 0, it follows that (∧∗(U), d∗) is a cochain complex, which we shall call the
de Rham (cochain) complex.

Definition. The de Rham cohomology groups Hq
DR(U) are the cohomology groups

of the de Rham complex of differential forms.

The Generalized Stokes’ Formula in Theorem 2.2 implies that integration of differential
forms defines a morphism J of chain complexes from ∧∗(U) to S∗(U ;R), where U is an
arbitrary open subset of some Euclidean space. The aim of this section and the next is
to show that the associated cohomology map [J ] defines an isomorphism from H∗

DR(U) to
H∗

smooth(U ;R); by the results of the preceding section, it will also follow that the de Rham
cohomology groups are isomorphic to the ordinary singular cohomology groups H∗(U ;R).
In order to prove that [J ] is an isomorphism, we need to show that the de Rham cohomology
groups H∗

DR(U) satisfy analogs of certain formal properties that hold for (smooth) singular
cohomology.

One of these properties is a homotopy invariance principle, and the other is a Mayer-
Vietoris sequence. Extremely detailed treatments of these results are given in Conlon, so
at several points we shall be rather sketchy.

The following abstract result will be helpful in proving homotopy invariance. There
are obvious analogs for other subcategories of topological spaces and continuous mappings,
and also for covariant functors.
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LEMMA 1. Let T be a contravariant functor defined on the category of open subsets
of Rn and smooth mappings. Then the following are equivalent:

(1) If f and g are smoothly homotopic mappings from U to V , then T (f) = T (g).

(2) If U is an arbitrary open subset of Rn and it : U → U × R is the map sending u
to (u, t), then T (i0) = T (i1).

Proof. (1) =⇒ (2). The mappings i0 and i1 are smoothly homotopic, and the
inclusion map defines a homotopy from U × (−ε, 1 + ε) to U × R.

(2) =⇒ (1). Suppose that we are given a smooth homotopyH : U×(−ε, 1+ε)→ V .
Standard results from 205C imply that we can assume the homotopy is “constant” on some
sets of the form (−ε, η)×U and (1− η, 1 + ε)×U for a suitably small positive number η.
One can then use this property to extend H to a smooth map on U ×R that is “constant”
on (−∞, η) × U and (1 − η,∞) × U . By the definition of a homotopy we have H oi1 = g
and H oi0 = f . If we apply the assumption in (1) we then obtain

T (g) = T (i1) oT (H) = T (i0) oT (H) = T (f)

which is what we wanted.

A simple decomposition principle for differential forms on a cylindrical open set of
the form U × R will be useful. If U is open in R

n and I denotes the k-element sequence
i1 < · · · < ik, we shall write

ξI = dxi1 ∧ · · · ∧ dxik

and say that such a form is a standard basic monomial k-forms on U . Note that the
wedge of two standard basic monomials ξJ ∧ ξI is either zero or ± 1 times a standard basic
monomial, depending upon whether or not the sequences J and I have any common wedge
factors.

PROPOSITION 2. Every k-form on U is uniquely expressible as a sum

∑
I

fI(x, t) dt ∧ ξI +
∑
J

gJ(x, t) ξJ

where the index I runs over all sequences 0 < i1 < · · · < ik−1 ≤ n, the index J runs over
all sequences 0 < j1 < · · · < jk ≤ n, and fI , gJ are smooth functions on U × R.

We then have the following basic result.

THEOREM 3. If U is an open subset of some R
n and it : U → U × R is the map

it(x) = (x, t), then the associated maps of differential forms i#0 , i
#
1 : ∧∗(U × R) → ∧∗(U)

are chain homotopic.
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In this example the chain homotopy is frequently called a parametrix.

COROLLARY 4. In the setting above the maps i∗0 and i∗1 from H∗
DR(U×R) to H∗

DR(U)
are equal.

Proof of Theorem 3. The mappings P q : ∧q(U ×R)→ ∧q−1(U) are defined as follows.
If we write a q-form over U ×R as a sum of terms αI = fI(x, t) dt∧ ξI and βJ = gJ(x, t) ξJ
using the lemma above, then we set P q(βJ) = 0 and

P q
(
αI

)
=

( ∫ 1

0

fI(x, u) du

)
· ξI ;

we can then extend the definition to an arbitrary form, which is expressible as a sum of
such terms, by additivity.

We must now compare the values of dP +Pd and i#1 − i#0 on the generating forms αI

and βJ described above. It follows immediately that i#1 (αI)− i#0 (αI) = 0 and

i#1 (βJ) − i#0 (βJ) = [g(x, 1) − g(x, 0)]βJ .

Next, we have d oP (βJ) = d(0) = 0 and

d oP (αI) = d

(∫ 1

0

fI(x, u)du)

)
· ξI =

∑
j

(∫ 1

0

∂fI
∂xj

(x, u) du

)
∧ dxj ∧ ωI .

Similarly, we have

P od(αI) = P

⎛
⎝∑

j

∂fI
∂xj

dxj ∧ dt ∧ ξI +
∂fI
∂t

dt ∧ dt ∧ ξI
⎞
⎠

in which the final summand vanishes because dt ∧ dt = 0. If we apply the definition of P
to the nontrivial summation on the right hand side of the displayed equation and use the
identity dxj ∧ dt = −dt∧ dxj , we see that the given expression is equal to −d oP (αI); this

shows that the values of both dP +Pd and i#1 − i#0 on αI are zero. It remains to compute

P od(βJ) and verify that it is equal to i#1 (βJ)− i#0 (βJ). However, by definition we have

P od(gJ ξJ) = P

(∑
i

∂gJ
∂xi

dxi ∧ ξJ +
∂gJ
∂t

dt ∧ ξJ
)
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and in this case P maps the summation over i into zero because each form dxi∧ξJ is either
zero or ± 1 times a standard basic monomial, depending on whether or not dxi appears as
a factor of ξJ . Thus the right hand side collapses to the final term and is given by

P

(
∂gJ
∂t

dt ∧ ξJ
)

=

(∫ 1

0

∂gJ
∂u

(x, u) du

)
ξJ =

[ g(x, 1) − g(x, 0) ] ξJ

which is equal to the formula for i#1 (βJ)− i#0 (βJ) which we described at the beginning of
the argument.

COROLLARY 5. If U is a convex open subset of some Rn, then Hq
DR(U) is isomorphic

to R if q = 0 and is trivial otherwise.

This follows because the constant map from U to R0 is a smooth homotopy equivalence
if U is convex, so that the de Rham cohomology groups of U are isomorphic to the de
Rham cohomology groups of R

0, and by construction the latter are isomorphic to the
groups described in the statement of the Corollary.

COROLLARY 6. (Poincaré Lemma) Let U be a convex open subset of some R
n and

let q > 0. The a differential q-form ω on U is closed (dω = 0) if and only if it is exact
(ω = dθ for some θ).

Both of the preceding also hold if we merely assume that U is star-shaped with respect
to some point v (i.e., if x ∈ U , then the closed line segment joining x and v is contained
in U), for in this case the constant map is again a smooth homotopy equivalence.

The Mayer-Vietoris sequence

Here is the main result:

THEOREM 7. Let U and V be open subsets of R
n. Then there is a long exact

Mayer-Vietoris sequence in de Rham cohomology

· · · → Hq−1
DR (U∩V )→ Hq

DR(U∪V )→ Hq
DR(U)⊕Hq

DR(V )→ Hq
DR(U∩V )→ Hq+1

DR (U∪V )→ · · ·

and a commutative ladder diagram relating the long exact Mayer-Vietoris sequences for
{U, V } in de Rham cohomology and smooth singular cohomology with real coefficients.

Proof. The existence of the Mayer-Vietoris sequence will follow if we can show that
there is a short exact sequence of chain complexes

0→ ∧∗(U ∪ V ) −→ ∧∗(U)⊕ ∧∗(V ) −→ ∧∗(U ∩ V )→ 0
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where the map from ∧∗(U ∪ V ) is given on the first factor by the i#U (where iU denotes

inclusion) and on the second factor by −i#V , and the map into ∧∗(U ∩ V ) is given by the

maps j#U and j#V defined by inclusion of U ∩ V into U and V .

The exactness of this sequence at all points except ∧∗(U ∩ V ) follows immediately.
Therefore the only thing to prove is that the map to ∧∗(U∩V ) is surjective. This turns out
to be less trivial than one might first expect (in contrast to singular cochains, a differential
form on U ∩ V need not extend to either U or V ), but it can be done using smooth
partitions of unity. Specifically, let {ϕU , ϕV } be a smooth partition of unity subordinate
to the open covering {U, V } of U ∪ V , and let ω ∈ ∧p(U ∩ V ). Consider the forms ϕU · ω
and ϕV · ω on U ∩ V . By definition of a partition of unity there are open subsets U0 ⊂ U
and V0 ⊂ V whose closures in U ∪ V are contained in U and V respectively, and such that
ϕU and ϕV are zero off the closures of U0 and V0. This means that we can define a smooth
form θU on U such that

θU |U ∩ V = ϕU · ω , θU |U − U0

because both restrict to zero on U ∩V −U0. The same reasoning also yields a similar form
θV on V , and it follows that

(θU , θV ) ∈ ∧p(U) ⊕ ∧p(V )

maps to ω ∈ ∧p(U ∩ V ). Additional details are given in Conlon (specifically, the last four
lines of the proof for Lemma 8.5.1 on page 267).

The existence of the commutative ladder follows because the Generalized Stokes’ For-
mula defines morphisms from the objects in the de Rham short exact sequence into the
following analog for smooth singular cochains:

0→ S∗
smooth,U (U ∪ V ) −→ S∗

smooth(U)⊕ S∗
smooth(V ) −→ S∗

smooth(U ∩ V )→ 0

The first term in this sequence denotes the cochains for the complex of U -small chains on
U ∪ V , where U denotes the open covering {U, V }.

Since the displayed short exact sequence yields the long exact Mayer-Vietoris sequence
for (smooth) singular cohomology, the statement about a commutative ladder in the the-
orem follows.

V.4 : De Rham’s Theorem

(Conlon, § 8.9; Lee, Chs. 15–16)

The results of the preceding section show that the natural map [J ] : H∗
DR(U) →

H∗
smooth(U ;R) is an isomorphism if U is a convex open subset of some Euclidean space,
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and if we compose this with the isomorphism between smooth and ordinary singular co-
homology we obtain an isomorphism from the de Rham cohomology of U to the ordinary
singular cohomology of U with real coefficients. The aim of this section is to show that
both [J ] and its composite with the inverse map from smooth to ordinary cohomology is
an isomorphism for an arbitrary open subset of Rn. As in Section II.2, an important step
in this argument is to prove the result for open sets which are expressible as finite unions
of convex open subsets of Rn.

PROPOSITION 1. If U is an open subset of Rn which is expressible as a finite union
of convex open subsets, then the natural map from H∗

DR(U) to H∗
smooth(U ;R) and the

associated natural map to H∗(U ;R) are isomorphisms.

Proof. If W is an open subset in R
n we shall let ψW denote the natural map from de

Rham to singular cohomology. If we combine the Mayer-Vietoris sequence of the preceding
section with the considerations of Section II.2, we obtain the following important principle:

If W = U ∪ V and the mappings ψU , ψV and ψ(U ∩ V ) are isomorphisms, then
ψU∪V is also an isomorphism.

Since we know that ψV is an isomorphism if V is a convex open subset, we may prove
the proposition by induction on the number of convex open subsets in the presentation
W = V1 ∪ · · · ∪ Vk using the same sorts of ideas employed in Section II.2 to prove a
corresponding result for the map relating smooth and ordinary singular homology.

Extension to arbitrary open sets

Most open subsets of Rn are not expressible as finite unions of convex open subsets,
so we still need some method for extracting the general case. The starting point is the
following observation, which implies that an open set is a locally finite union of convex
open subsets.

THEOREM 2. If U is an open subset of Rn, then U is a union of open subsets Wn

indexed by the positive integers such that the following hold:

(1) Each Wn is a union of finitely many convex open subsets.

(2) If |m− n| ≥ 3, then Wn ∩Wm is empty.

Proof. Results from 205C imply that U can be expressed as an increasing union
of compact subsets Kn such that Kn is contained in the interior of Kn+1 and K1 has
a nonempty interior(�). Define An = Kn − Int(Kn−1), where K−1 is the empty set; it
follows that An is compact. Let Vn be the open subset Int(Kn+1)−Kn−1. By construction
we know that Vn contains An and Vn∩Vm is empty if |n−m| ≥ 3. Clearly there is an open
covering of An by convex open subsets which are contained in Vn, and this open covering
has a finite subcovering; the union of this finite family of convex open sets is the open set
Wn that we want; by construction we have An ⊂ Wn, and since U = ∪n An we also have
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U = ∪n Wn. Furthermore, since Wn ⊂ Vn, and Vn ∩ Vm is empty if |n−m| ≥ 3, it follows
that Wn ∩Wm is also empty if |n−m| ≥ 3.

We shall also need the following result:

PROPOSITION 3. Suppose that we are given an open subset U in R
n which is

expressible as a countable union of pairwise disjoint subset Uk. If the map from de Rham
cohomology to singular cohomology is an isomorphism for each Uk, then it is also an
isomorphism for U .

Proof. By construction the cochain and differential forms mappings determined by the
inclusions ik : Uk → U define morphisms from ∧∗(U) to the cartesian product Πk ∧∗ (Uk)
and from S∗

smooth(U) to Πk S
∗
smooth(Uk). We claim that these maps are isomorphisms. In

the case of differential forms, this follows because an indexed set of p-forms ωk ∈ ∧p(Uk)
determine a unique form on U (existence follows because the subsets are pairwise disjoint),
and in the case of singular cochains it follows because every singular chain is uniquely
expressible as a sum

∑
k ck, where ck is a singular chain on Uk and all but finitely many

ck’s are zero (since the image of a singular simplex T : Δq → U is pathwise connected and
the open sets Uk are pairwise disjoint, there is a unique m such that the image of T is
contained in Um).

If we are given an abstract family of cochain complexes Ck then it is straightforward
to verify that there is a canonical homomorphism

H∗ (
∏

k Ck ) −→
∏

k H
∗(Ck)

defined by the projection maps

πj :
∏

k Ck −→ Cj

and that this mapping is an isomorphism. Furthermore, it is natural with respect to
families of cochain complex mappings fk : Ck → Ek.

The proposition follows by combining the observations in the preceding two paragraphs(�).

We are now ready to prove the main result, which G. de Rham (1903–1990) first
proved in 1931:

THEOREM 4. (de Rham’s Theorem. ) The natural maps from de Rham cohomology
to smooth and ordinary singular cohomology are isomorphisms for every open subset U in
an arbitrary R

n.

Proof. Express U as a countable union of open subset Wn as in the discussion above,
and for k = 0, 1, 2 let Uk = ∪m W3m+k. As noted in the definition of the open sets Wj ,
the open sets W3m+k are pairwise disjoint. Therefore by the preceding proposition and

164


