
and if we compose this with the isomorphism between smooth and ordinary singular co-
homology we obtain an isomorphism from the de Rham cohomology of U to the ordinary
singular cohomology of U with real coefficients. The aim of this section is to show that
both [J ] and its composite with the inverse map from smooth to ordinary cohomology is
an isomorphism for an arbitrary open subset of Rn. As in Section II.2, an important step
in this argument is to prove the result for open sets which are expressible as finite unions
of convex open subsets of Rn.

PROPOSITION 1. If U is an open subset of Rn which is expressible as a finite union
of convex open subsets, then the natural map from H∗DR(U) to H∗smooth(U ;R) and the
associated natural map to H∗(U ;R) are isomorphisms.

Proof. If W is an open subset in R
n we shall let ψW denote the natural map from de

Rham to singular cohomology. If we combine the Mayer-Vietoris sequence of the preceding
section with the considerations of Section II.2, we obtain the following important principle:

If W = U ∪ V and the mappings ψU , ψV and ψ(U ∩ V ) are isomorphisms, then
ψU∪V is also an isomorphism.

Since we know that ψV is an isomorphism if V is a convex open subset, we may prove
the proposition by induction on the number of convex open subsets in the presentation
W = V1 ∪ · · · ∪ Vk using the same sorts of ideas employed in Section II.2 to prove a
corresponding result for the map relating smooth and ordinary singular homology.

Extension to arbitrary open sets

Most open subsets of Rn are not expressible as finite unions of convex open subsets,
so we still need some method for extracting the general case. The starting point is the
following observation, which implies that an open set is a locally finite union of convex
open subsets.

THEOREM 2. If U is an open subset of Rn, then U is a union of open subsets Wn

indexed by the positive integers such that the following hold:

(1) Each Wn is a union of finitely many convex open subsets.

(2) If |m− n| ≥ 3, then Wn ∩Wm is empty.

Proof. Results from 205C imply that U can be expressed as an increasing union
of compact subsets Kn such that Kn is contained in the interior of Kn+1 and K1 has
a nonempty interior(�). Define An = Kn − Int(Kn−1), where K−1 is the empty set; it
follows that An is compact. Let Vn be the open subset Int(Kn+1)−Kn−1. By construction
we know that Vn contains An and Vn∩Vm is empty if |n−m| ≥ 3. Clearly there is an open
covering of An by convex open subsets which are contained in Vn, and this open covering
has a finite subcovering; the union of this finite family of convex open sets is the open set
Wn that we want; by construction we have An ⊂ Wn, and since U = ∪n An we also have
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U = ∪n Wn. Furthermore, since Wn ⊂ Vn, and Vn ∩ Vm is empty if |n−m| ≥ 3, it follows
that Wn ∩Wm is also empty if |n−m| ≥ 3.

We shall also need the following result:

PROPOSITION 3. Suppose that we are given an open subset U in R
n which is

expressible as a countable union of pairwise disjoint subset Uk. If the map from de Rham
cohomology to singular cohomology is an isomorphism for each Uk, then it is also an
isomorphism for U .

Proof. By construction the cochain and differential forms mappings determined by the
inclusions ik : Uk → U define morphisms from ∧∗(U) to the cartesian product Πk ∧∗ (Uk)
and from S∗smooth(U) to Πk S

∗
smooth(Uk). We claim that these maps are isomorphisms. In

the case of differential forms, this follows because an indexed set of p-forms ωk ∈ ∧p(Uk)
determine a unique form on U (existence follows because the subsets are pairwise disjoint),
and in the case of singular cochains it follows because every singular chain is uniquely
expressible as a sum

∑
k ck, where ck is a singular chain on Uk and all but finitely many

ck’s are zero (since the image of a singular simplex T : Δq → U is pathwise connected and
the open sets Uk are pairwise disjoint, there is a unique m such that the image of T is
contained in Um).

If we are given an abstract family of cochain complexes Ck then it is straightforward
to verify that there is a canonical homomorphism

H∗ (
∏

k Ck ) −→
∏

k H
∗(Ck)

defined by the projection maps

πj :
∏

k Ck −→ Cj

and that this mapping is an isomorphism. Furthermore, it is natural with respect to
families of cochain complex mappings fk : Ck → Ek.

The proposition follows by combining the observations in the preceding two paragraphs(�).

We are now ready to prove the main result, which G. de Rham (1903–1990) first
proved in 1931:

THEOREM 4. (de Rham’s Theorem. ) The natural maps from de Rham cohomology
to smooth and ordinary singular cohomology are isomorphisms for every open subset U in
an arbitrary R

n.

Proof. Express U as a countable union of open subset Wn as in the discussion above,
and for k = 0, 1, 2 let Uk = ∪m W3m+k. As noted in the definition of the open sets Wj ,
the open sets W3m+k are pairwise disjoint. Therefore by the preceding proposition and
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the first result of this section we know that the natural maps from de Rham cohomology
to singular cohomology are isomorphisms for the open sets Uk.

We next show that the natural map(s) must define isomorphisms for U0 ∪ U1. By the
highlighted statement in the proof of the first proposition in this section, it will suffice to
show that the same holds for U0 ∩ U1. However, the latter is the union of the pairwise
disjoint open sets W3m ∩W3m+1, and each of the latter is a union of finitely many convex
open subsets. Therefore by the preceding proposition and the first result of this section
we know that the natural maps from de Rham to singular cohomology are isomorphisms
for U0 ∩ U1 and hence also for U∗ = U0 ∪ U1.

Clearly we would like to proceed similarly to show that we have isomorphisms from
de Rham to singular cohomology for U = U2 ∪ U∗, and as before it will suffice to show
that we have isomorphisms for U2 ∩ U∗. But U2 ∩ U∗ = (U2 ∩ U0) ∪ (U2 ∩ U1). By
the preceding paragraph we know that the maps from de Rham to singular cohomology
are isomorphisms for U0 ∩ U1, and the same considerations show that the corresponding
maps are isomorphisms for U0 ∩ U2 and U1 ∩ U2. Therefore we have reduced the proof
of de Rham’s Theorem to checking that there are isomorphisms from de Rham to singular
cohomology for the open set U0 ∩ U1 ∩ U2. The latter is a union of open sets expressible
as Wi ∩Wj ∩Wk for suitable positive integers i, j, k which are distinct. The only way such
an intersection can be nonempty is if the three integers i, j, k are consecutive (otherwise
the distance between two of them is at least 3). Therefore, if we let

Sm =
⋃

0≤k≤2

W3m−k ∩W3m+1−k ∩W3m+2−k

it follows that Sm is a finite union of convex open sets, the union of the open sets Sm is
equal to U0∩U1∩U2, and ifm 	= p then Sm∩Sp is empty (since the first is contained inW3m

and the second is contained in the disjoint subset W3p). By the first result of this section
we know that the maps from de Rham to singular cohomology define isomorphisms for
each of the open sets Sm, and it follows from the immediately preceding proposition that
we have isomorphisms from de Rham to singular cohomology for ∪m Sm = Uo ∩U1 ∩U2.
As noted before, this implies that the corresponding maps also define isomorphisms for U .

Some applications

In Section 6 we shall use de Rham’s Theorem to generalize results multivariable cal-
culus on path independence for line integrals in open subsets of R

2 and R
3. For the

time being we shall limit ourselves to verifying another result which sometimes appears in
multivariable calculus texts.

PROPOSITION 5. Suppose that U ⊂ R
3 is a contractible open set and F is a smooth

vector field on U whose divergence ∇ ·F is zero. Then F = ∇×P for some vector field P
on U .
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Proof. Given F = (F1, F2, F3) as in the statement of the proposition, let θF be the
2-form

F1 dx2 ∧ dx3 + F2 dx3 ∧ dx1 + F3 dx1 ∧ dx2
and note that dθF = (∇·F) dx1 ∧dx2 ∧dx3. Therefore the divergence condition translates
into dθF = 0. Since H1

DR(U) ∼= H2(U ;R) by de Rham’s Theorem and the latter is trivial
by contractibility, it follows that θF = dω for some 1-form ω. Expand ω as

∑
i Pi dxi

and write ω = ωP to reflect this expansion. Then direct calculation shows that dωP is the
2-form θ∇×P in the notation at the beginning of the proof. Therefore θF = θ∇×P, and by
construction this means that F = ∇×P.

Generalization to arbitrary smooth manifolds

In fact, one can state and prove de Rham’s Theorem for every (second countable)
smooth manifold if we use Conlon’s approach to define differential forms (and related
constructions) more generally; details are given in Chapters 6–8 of Conlon. The details of
this generalization are beyond the scope of this course, so we shall only give a purely formal
method for deriving the general case of de Rham’s Theorem from the special case of open
sets in R

n and a generalization of differential forms satisfying a few simple properties.

FACT 6. The category of (second countable) smooth manifolds and smooth mappings
has the following properties:

(i) It contains the category of open sets in R
n as a full subcategory.

(ii) The cochain complex functors ∧∗ and S∗smooth extend to this category, and likewise
for the natural transformation θ∗ : ∧∗ → S∗smooth.

(iii) Every smooth manifold Mm is a smooth retract of some open set U ⊂ R
N for

sufficiently large values of N .

Property (i) follows directly from the construction of the category of smooth mani-
folds and smooth mappings, while (ii) clearly must hold in any reasonable extension of
differential forms to smooth manifolds. Finally, (iii) is an immediate consequence of the
Tubular Neighborhood Theorem for a smooth embedding of M in some R

N ; one reference
is Lee, Proposition 10.20, page 256.

In view of the preceding discussion, the general case of de Rham’s Theorem will be a
consequence of the following very general result:

THEOREM 7. Let A be a category, let W ⊂ A be a full subcategory, and assume that
every object in A is an A-retract of an object in W. Assume further that E and F are
contravariant functors from A to the category of abelian groups and that θ : E → F is a
natural transformation. Then θ(X) is an isomorphism for all objects X in A if and only
if it is an isomorphism for all objects X in W.

Proof. One implication is trivial, so we shall only look at the other case in which θ(X)
is an isomorphism for all objects X in W.
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Suppose that X is an object of A, choose a retract i : X → Y , where Y is an object
of W, and let r : Y → x be such that r oi = id(X). Consider the following commutative
diagram:

E(Y )
i∗−→ E(X)

r∗−→ E(Y )⏐⏐�θY
⏐⏐�θX

⏐⏐�θX
F (Y )

i∗−→ F (X)
r∗−→ F (Y )

Since i∗ or∗ is the identity on E(X) and F (X), it follows that i∗ is onto and r∗ is 1–1. To
see that θX is 1–1, notice that θX(u) = θX(v) implies θY r

∗(u) = r∗θX(u) = r∗θX(v) =
θY r

∗(v). Since θY is an isomorphism it follows that r∗(u) = r∗(v), which in turn implies
u = v because r∗ is 1–1. To see that θX is onto, given u ∈ F (X) use the surjectivity of i∗

to write u = i∗(v). Since θY is an isomorphism it follows that v = θY (w) for some w, and
thus we have u = i∗θY (v) = θX i

∗(w).

V.5 : Multiplicative properties of de Rham cohomology

(Hatcher, §§ 3.1–3.2; Conlon, § D.3; Lee, Ch. 15)

DEFAULT HYPOTHESIS. Unless specifically stated otherwise, all cochain complexes, mod-
ules in this section are vector spaces over the real numbers, all algebraic morphisms are
linear transformations, and all tensor products are taken over the real numbers.

As in the case of simplicial cup products, the Leibniz rule for for differential forms

d(ω1 ∧ ω2) = (dω1) ∧ ω2 ± ω1 ∧ d(ω2)

implies that the wedge of two closed forms is closed and the wedge of a closed form with
an exact form is exact. Consequently there is a well defined (bilinear) cohomology wedge
product

Hp
DR(M)⊗R H

q
DR(M) −→ Hp+q

DR (M)

sending [ω] ⊗ [θ] to [ω ∧ θ] (where ω and θ are closed forms). It follows imeediately that
this product makes the de Rham cohomology of a smooth manifold into a graded algebra
and this structure is functorial. Since the de Rham and singular cohomology groups of a
smooth manifold are isomorphic, it is natural to ask if the wedge product and cup product
correspond under the isomorphism in de Rham’s theorem, and it turns out that this is
the case. We shall not give all the details of the argument; the references mentioned at
appropriate points contain the omitted steps. Our approach will involve some explicit
constructions involving simplicial chains and cochains which are taken from Eilenberg and
Steenrod and also from the following classic text (which we shall simply call Homology):

S. MacLane. Homology (Reprint of the first edition). Grundlehren der math-
ematischen Wissenschaften Bd. 114. Springer-Verlag, Berlin-New York, 1967.
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LEMMA 1. Let A be a p-simplex in R
n with vertices a0, · · · , ap, and let B be a

p-simplex in R
m with vertices b0, · · · , bq. Then there is a simplicial decomposition of

A× B ⊂ R
n × R

m such that every point likes on at one (p+ q)-simplex and an arbitrary
(p+ q)-simplex of the decomposition has vertices

(ai0 , bj0), · · · , (aip+q
, bjp+q

)

where it ≥ it+1, jt ≥ jt+1 for all t and exactly one of these two inequalities is strict for each
t.

For future reference, we note that the vertices of this decomposition for A × B have
a standard lexicographic ordering obtained from the given orderings for the vertices of A
and B.

Lemma 1 is a special case of the construction appearing in Section II.8 of Eilenberg
and Steenrod.

We shall also need an explicit singular (in fact, simplicial) chain

X(p, q) ∈ Cp+q(Λp × Λq) ⊂ Sp+q(Λp × Λq)

defined on page 243 of Homology . This chain contains plus or minus each of the affine
ordered simplices mentioned in Lemma 1, and the sign is that of detTα, where Tα is the
unique affine map sending the vertices of Δp+q monotonically to those of the (p+q)-simplex
α ⊂ Λp × Λq (the assertion about signs requires a little work). The choice of signs leads
to the following result:

LEMMA 2. Let f be a smooth real valued function defined on an open neighborhood
of Λp × Λq ⊂ R

p × R
q. Then

∫
Λp×Λq

f(t) dt =

∫
X(p,q)

f(t) dt1 ∧ · · · ∧ dtp+q

where the left hand side is the usual Riemann or Lebesgue integral and the right hand side
is the differential forms integral.

Again turning to page 743 of Homology , we see that there is a natural chain trans-
formation

γ : Ssmooth
∗ (M)⊗ Ssmooth

∗ (N) −→ Ssmooth
∗ (M ×N)

such that if M and N are open neighborhoods of Λp and Λq in R
p and R

q respectively and

σk : Λk → R
k is the standard inclusion, then γ(σp⊗σq) = X(p, q); in fact, the map γ is an

explicit chain inverse to the Alexander-Whitney map (see pages 743–744 of Homology).

NOTATIONAL CONVENTIONS. Given forms ω ∈ ∧p(M) and η ∈ ∧q(N), the external
wedge ω × η ∈ ∧p+q(M × n) is equal to

(
p#Mω

)
∧
(
p#Mω

)
∈ ∧p+q(M ×N) .
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In coordinates, if ω = f(x) dx1 ∧ · · · ∧ dxp and η = g(y) dy1 ∧ · · · ∧ dyq, then

ω × η = f(x) g(y) dx1 ∧ · · · ∧ dxp ∧ dy1 ∧ · · · ∧ dyq .

Given a chain complex S∗, a commutative ring with unit R, and cochains f : Sp → R,
g : Sq → R, define the map f 
� g : Sp ⊗ Sq → R by the formula

f 
� g(u⊗ v) = f(u) · g(v) .

We can now state and prove a key fact relating the cross product in singular cohomology
and the external wedge product in de Rham cohomology.

PROPOSITION 3. The following diagram is commutative:

∧p(M)⊗ ∧q(N)
×−→ ∧p+q(M ×N)⏐⏐�θM ⊗ θN

⏐⏐�θM×N

Sp
smooth(M)⊗ Sq

smooth(N) −→ Sp+q
smooth(M ×N)⏐⏐�
�

⏐⏐�(γ|Sp ⊗ Sq)
∗

[Sp ⊗ Sq]
∗ =−→ [Sp ⊗ Sq]

∗

In this diagram W ∗ denotes the dual space to the vector space W .

Proof. By the naturality properties of the constructions in the diagram, it suffices
to consider the case in which M and N are open neighborhoods of the simplices Λp,
Λq ∈ R

p,Rq and to evaluate both composites applied to a tensor product of forms ω⊗η on
the universal example σp⊗σq. Assume ω and η are given as in the notational conventions.
Then the value of the composite 
� o (θM ⊗ θN ) o(ω ⊗ η) at σp ⊗ σq is equal to

∫
σp

ω ·
∫
σq

η =

∫
Λp

f(x) dx ·
∫
Λq

g(y) dy =

∫
Λp×Λq

f(x) · g(y) dx dy

(the last equation follows from Fubini’s Theorem). By Lemma 2, the last integral in the
display is equal to

∫
X(p,q)

f(x) g(y) dx1 ∧ · · · ∧ dyq =

∫
X(p,q)

ω × η

and by definition the latter is equal to

(γ|Sp ⊗ Sq)
∗ oθM×N

o(ω ⊗ η) evaluated at σp ⊗ σq
which is what we wanted to prove.

The next result is nearly as important as the previous one for relating the cup and
wedge products.
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PROPOSITION 4. Suppose that r + t = p + q but (s, t) 	= (p, q). Then (γ|Sr ⊗
St)

∗θ(ω ⊗ η) = 0.

Proof. Again by naturality it suffices to consider the case where M and N are open
neighborhoods of the simplices Λr, Λt ∈ R

r,Rt and to evaluate at σr⊗σt. The hypothesis
implies that either r < p or t < q. Since dimM = r and dimN = t, it follows that either
∧p(M) or ∧q(N) is trivial.

The preceding results give us a cochain level formula relating the cross and external
wedge products (and thus also for the cup and ordinary wedge products).

PROPOSITION 5. In the setting above, let ψ : S∗(M ×N)→ S∗(M)⊗ S∗(N) be the
Alexander-Whitney map. Then θM (ω)× θN (η) = ψ∗ oγ∗ oθM×N (ω × η).
Proof. The left hand side is equal to ψ∗ oρ(p, q) oθM ⊗ θN (ω ⊗ η), where ρ(p, q) projects
[Ssmooth
∗ (M) ⊗ Ssmooth

∗ (N)]p+q onto the direct summand Ssmooth
p (M) ⊗ Ssmooth

q (N). By
Proposition 4 the composite ψ∗ oγ∗ oθM×N (ω×η) is equal to ρ(p, q)∗ o(γ|Sp⊗Sq)

∗ oθM×N (ω×
η), and therefore θM (ω)× θN (η) = ψ∗ oγ∗ oθM×N (ω × η) by Proposition 3.

We can now state and prove the main result of this section:

THEOREM 6. Let θ : H∗DR(M)→ H∗(M) be the isomorphism in de Rham’s Theorem,
and let ω and η be closed forms on M . Then θM ([ω] ∧ [η]) = θM ([ω]) ∪ θM ([η]).

Proof. Let M = N in the preceding discussion, and let ΔM : M → M ×M be the
diagonal. Applying the cochain mapping Δ#

M to the right hand side of the equation in

Proposition 5, we get θM (ω) ∪ θM (η) on the cochain level. Applying Δ#
M to the left hand

side, we get Δ#
M

oψ∗ oγ∗ oθM×M (ω × η). Since γ oψ is chain homotopic to the identity (γ
is a a chain homotopy inverse to ψ), the conditions dω = dη = 0 imply that

ψ∗ oγ∗ oθM×M (ω × η) = θM×M (ω × η) + δz for some z .

Therefore we have

θM (ω) ∪ θM (η) = Δ#
M (θM×M (ω × η) + δz) =

θM oΔ#
M (ω × η) + δΔ#

Mz = θM (ω ∧ η) + δΔ#
Mz

where the last equation follows because ω ∧ η = Δ#
M (ω × η). This means that if ω and η

are closed forms, then the closed forms θM (ω ∧ η) and θM (ω)∪ θM (η) determine the same
singular cohomology class.

V.6 : Path independence of line integrals

(Conlon, § 8.2; Lee, Chs. 11, 16)
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