
is the corresponding partition of [0, 1] given by shrinking Δ and Δ′ to [0, 12 ] and [ 12 , 1]
respectively, and it follows immediately that the previously constructed mapping η(U,u0)

sends (γ,Δ) + (γ′,Δ′) to η(U,u0)(γ,Δ) + η(U,u0)(γ
′,Δ′).

Consider now the following commutative diagram, in which the vertical map at the
left sends (γ,Δ) to the homotopy class [γ] and the map h is the Hurewicz homomorphism:

Θ(U, u0)
η−→ Hsmooth

1 (U))⏐⏐�
⏐⏐�

π1(U, u0)
h−→ H1(U))

We can now complete the proof as follows: The basic properties of line integrals imply
that the line integral of ω along γ is equal to the integral of γ with respect to the chain
Chain(γ,Δ) =

∑
i Ti. Since dω = 0, the Generalized Stokes’ Theorem implies that the

integral
∫
Chain(γ,Δ)

ω only depends on the image of (γ,Δ) in Hsmooth
1 (U). If γ is basepoint

preserving homotopic to the constant map whose value everywhere is u0, then the class of
γ in π1(U, u0) is trivial and hence we can use the diagram to conclude that h o [γ] = 0 and
hence η(γ,Δ) = 0, and therefore by the preceding sentence we know that

∫
γ
ω = 0, which

is what we wanted to prove.

Proof that Theorem 1 implies Theorem 4. We do not know whether or not the
freely homotopic closed curves γ0 and γ1 start and end at the same point, so assume that γi
starts and ends at ui for i = 0, 1. Choose appropriate partitions Δi such that γi is smooth
on each subinterval determined by Δi for i = 0, 1. Since γ0 and γ1 are freely homotopic,
the commutative diagram implies that

η(U,u0)(γ0,Δ0) = η(U,u1)(γ1,Δ1) in Hsmooth
1 (U) .

As in the proof of Theorem 1, the integrand
∑

i Pi dxi corresponds to a closed 1-form ω,
and therefore in this case the Generalized Stokes’ Theorem implies that the integrals of ω
over the chains

∫
Chain(γ0,Δ0)

ω and
∫
Chain(γ1,Δ1)

ω are equal As in the proof of Theorem

1, we know that these inegrals are respectively equal to the line integrals
∫
γ0

ω and
∫
γ1

ω,
and therefore these two line integrals must also be equal.

Some classical implications

Frequently one sees the 3-dimensional case of the following result in multivariable
calculus texts:

THEOREM 5. Let n ≥ 3, and suppose that U is obtained from R
n by removing finitely

many points. If F = (P1, · · · , Pn) is a smooth vector field on U such that

∂Pi

∂xj
=

∂Pj

∂xi

174



for all i �= j, then there is a smooth function g on U such that ∇g = F. In particular, if Γ
is a regular piecewise smooth curve in U , then the value of the line integral

∫
Γ

∑
i Pi dxi

depends only upon the endpoints of the curve Γ.

In particular, a result of this type is formulated as Theorem 7 on page 551 of Marsden
and Tromba.

Theorem 5 contrasts sharply with the case n = 2, and the easiest way to explain the
difference is to note that the complement of a finite subset in R

n is simply connected if
n = 3 but is not simply connected if n = 2. We shall give a simpler (but less elementary)
argument which only requires us to know thatH1(U ;R) is trivial if n ≥ 3. By the Universal
Coefficient Theorem relating integral homology to real cohomology, we only need to prove
the following:

LEMMA 6. Let n ≥ 3, and suppose that U is obtained from R
n by removing a set X

which contains exactly k points. Then the singular homology groups of U = R
n −X are

given by Hj(R
n −X) ∼= Z if k = 0, Hj(R

n −X) ∼= Z
k if k = n− 1, and Hj(R

n −X) ∼= 0
otherwise.

Proof that Lemma 6 implies Theorem 5. By Lemma 10 we know that H1(U =
R

n −X) is trivial because n ≥ 3, and by the Universal Coefficient Theorem we know that
H1(U ;R) ∼= Hom(H1(U),R); therefore H

1(U ;R) is trivial. Since H∗
DR(U)

∼= H∗(U ;R) by
de Rham’s Theorem, it follows that H1

DR(U) is trivial and therefore every closed 1-form
over U is exact; i.e., if dω = 0 then ω = dg for some g.

Let ω be the 1-form
∑

i Pi dxi; the hypothesis on the functions Pi is equivalent to the
identity dω = 0, and therefore if this identity holds we can apply the preceding paragraph
to conclude that ω = dg for some smooth function g. If we translate this back into the
language of vector fields, we see that the original vector field F is equal to ∇g, proving the
first assertion in the conclusion of the theorem. The second assertion now follows because
the line integral in question has the form

∫
Γ

∇g · dx and we have already noted that the
values of such line integrals only depend upon the endpoints of Γ.

Proof of Lemma 6. For each x ∈ X let Vx be the open neighborhood of radius r
centered at x; choose r to be smaller than half the minimum distance between points of X
(the minimum exists by the finiteness ofX, and let V = ∪x Ux, so that R

n = V ∪(Rn −X))
and V ∩X = ∪x Vx − {x}. Then by excision, the splitting of the homology of X into the
homology of its arc componenents, and Theorem VII.1.7 in algtop-notes.pdf we know
that

Hj(R
n,Rn −X) ∼= Hj(U,U −X) ∼= Hj (∪x Vx, ∪x Vx − {x}) ∼=

⊕
x

Hj ( Vx, Vx − {x}) ∼= Z
k or 0
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where the group is zero unless j = n, in which case it is isomorphic to Z
k. We can

now recover the homology groups R
n − X from the long exact homology sequence for

(Rn,Rn −X) and the fact that Hj(R
n) is Z if j = 0 and zero otherwise.

Similar conclusions hold if U is obtained from R
n (where n ≥ 3) by deleting an infinite

sequence of isolated points {p1,p2, · · · }. The main difference in the argument is that
the open disk Vk centered at pk must have a radius rk such that for each j �= k we have
|pj − pk| > rk; we can always find such positive radii if we have a sequence of isolated
points.
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