
EXERCISES FOR MATHEMATICS 246A

FALL 2010

Hatcher’s book is the default source for references.

I . Foundational material

I.1 : Categories and functors

1. Definition. A morphism f : A → B in a category is a monomorphism if for all
g, h : C → A we have that f oh = f og only if h = g. Dually, a morphism f : A → B in a category
is an epimorphism if for all u, v : B → D we have that u of = v of only if u = v.

(a) Prove that a monomorphism in the category Set is 1 − 1 and an epimorphism in Set is
onto. [Hint: Prove the contrapositives.]

(b) Prove that in the category of Hausdorff topological spaces (and continuous maps) a mor-
phism f : A → B is an epimorphism if f(A) is dense in B.

(c) Prove that the composite of two monomorphisms is a monomorphism and the composite
of two epimorphisms is an epimorphism.

(d) A morphism r : X → Y in a category is called a retract if there is a morphism q : Y → X
such that qr = idX . For example, in the category of sets or topological spaces the diagonal map
dX : X → X × X is a retract with q = projection onto either factor. Prove that every retract is a
monomorphism.

(e) A morphism p : A → B in a category is called a retraction if there is a morphism s : B → A
such that q or = idB . For example, if r and q are as in (d) then q is a retraction. Prove that every
retract is a monomorphism and every retraction is an epimorphism.

2. Let A be a category, and let f : A → B be a morphism in A such that

Morph (f, C) : Morph (B,C) → Morph (A,C)

is an isomorphism for all objects C in A. Prove that f is an isomorphism. [Hint: Choose C = B or
A and consider the preimages of the identity elements.] Also prove the (relatively straightforward)
converse.

3. An object 0 is called an initial object in the category A if for each object A in A there
is a unique morphism 0 → A. An object 1 is a terminal object in A if for each object A there is a
unique morphism A → 1.

(a) Prove that the empty set is initial and every one point set is terminal in Set.

(b) Prove that a zero-dimensional vector space is both initial and terminal in the category
Vec–F of vector spaces over a field F .
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(c) Prove that every two initial objects in a category A are uniquely isomorphic (there is a
unique isomorphism from one to the other), and similarly for terminal objects.

(d) If A contains an object Z that is both initial and terminal (a null object), prove that for
each pair of objects A,B in A there is a unique morphism A → B that factors as A → Z → B.
Also, if W is any other such object, prove that this composite equals the composite A → W → B.
[Hint: Consider the unique maps from W to Z and vice versa.]

4. Prove that a covariant functor takes retracts to retracts and retractions to retractions.
State the corresponding result for contravariant functors.

5. If E is a terminal object in the category A and f : E → X is a morphism in A, prove
that f is a monomorphism (in fact, something stronger is true—what is it?).

6. Let A = (N+,Morph , ϕ), where N
+ denotes the positive integers, Morph (p, q) denotes

all p × q matrices with integer coefficients, and

ϕ : Morph (p, q) × Morph (q, r) → m(p, r)

is matrix multiplication. Verify that A is a category.

7. If f is a morphism in a category A, a morphism g (in the same category) is called a
quasi-inverse for f if and only if f og of = f . Prove that every morphism that has a quasi-inverse
is itself the quasi-inverse of some morphism in the category.

8. In the category of sets, show that the Axioms of Choice implies that every mapping
has a quasi-inverse. Also, in the matrix category of Exercise 6, show that every matrix has a
quasi-inverse. [Hint: Look at the associated linear transformations, and choose bases in a suitable
manner.]

NOTE. In fact, there are canonical choices of quasi-inverses. See the following Wikipedia articles
for further information on generalizations of matrix inverses:

http://en.wikipedia.org/wiki/Moore-Penrose inverse

http://en.wikipedia.org/wiki/Group inverse

http://planetmath.org/encyclopedia/DrazinInverse.html

9. Suppose that C is a category in which every map has a quasi-inverse. Prove that
every monomorphism in C is a retract. Using this, give examples of mappings in the category of
topological spaces (and continuous mappings) which do not have quasi-inverses.

10. Let A and B be small categories. Prove that one can define a product category A×B

whose objects are given by ordered pairs (X,Y ), where X and Y are objects of A and B respectively,
whose morphisms are given by ordered pairs (f, g) of morphisms f in A and g in B, and whose
domain, codomain and composition operations are given as follows:

Domain(f, g) =
(

Domain(f),Domain(g)
)

Codomain(f, g) =
(

Codomain(f),Codomain(g)
)

(f1, g1) o (f0, g0) = (f1
of0, g1

og0)
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Prove that A×B with these definitions of objects, morphisms, domains, codomains and composition
forms a category, and show that “projections onto the first and second coordinates” define covariant
functors from this category into A and B respectively.

11. Suppose that we are in a category C with morphisms f : X → Y and g : Y → Z. Prove
that if any two of f , g and g of are isomorphisms, then so is the third.

12. Let IC0 be the category whose objects are open intervals in the real line and whose
morphisms are continuous mappings, and let IC1 be the subcategory with the same objects, but
whose morphisms are maps with continuous first derivatives. Give an example of a morphism in
IC1 which is an isomorphism in IC0 but not in IC1 (hence subcategories are not necessarily closed
under taking inverses).

13. Let {Xα} be an indexed family of objects in a category C. Then a categorical product
of the Xα is given by an object P and morphisms pα : P → Xα such that for each indexed family
of maps fα from a fixed object Y into the objects Xα, there is a unique f : Y → P such that
pα

of = fα for all α. — All the standard examples of product constructions turn out to have this
property.

(a) Prove that if (P, pα) and (Q, qα) are categorical products, then there is a unique isomor-
phism h : Q → P such that qα = pα

oh for all α. [Hint: The only morphism ϕ from P to itself
satisfying pα = pα

oϕ for all α is the identity.]

(b) Formulate the dual notion of coproduct in a category (a product in the opposite category),
and state the dual of the conclusion in (a).

(c) Show that the (external) direct sum is both a product and coproduct in VECF for finite
families of vector spaces, and show that the coproduct can be viewed as a proper subspace of the
product for infinite families.

14. Let FLD be the category of (commutative) fields with morphisms given by field homo-
morphisms. Show that the category FLD does not have products. [Hints: Suppose we could con-
struct a product A of the complex numbers with itself in this category, and consider the morphisms
from C to itself given by the identity and complex conjugation. Recall that every homomorphism
of fields is injective.]

15. Let TOP be the category of topological spaces and continuous mappings. Show that
there is a homotopy category HTP whose objects are topological spaces and whose morphisms are
homotopy classes of continuous maps from one space to another. [Hint: The key thing to note is
that one has identities and a decent well-defined notion of composition in HTP.]

16. We have mentioned that the reason for specifying codomains as part of the structure for
morphisms is that functors to not necessarily preserve the injectivity of mappings. Illustrate this
for the fundamental group functor π1(X,x) on pointed topological spaces by giving an example of a
continuous map of pointed spaces f : (X,x) → (Y, y) such that f is injective but f∗ is surjective and
not injective, and also give an example of a continuous map of pointed spaces f : (X,x) → (Y, y)
such that f is surjective but f∗ is injective and not surjective.

I.2 : Barycentric coordinates and polyhedra

1. Suppose that P is a polyhedron which has a simplicial decomposition K with N ver-
tices. Prove that P is homeomorphic to a subset of the simplex ∆N such that the simplices in K

correspond to sub-simplices of ∆n.
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2. Suppose that (P,K) is a simplicial complex, and let L be a subcollection of K which
is closed under taking faces. If Q is the union of all the simplices in L, prove that (Q,L) is a
polyhderon.

Definition. Let X be a metrizable topological space, let n be a nonnegative
integer, and let x ∈ X. Then x is said to be an n-fold branch point of X if there is
an open neighborhood base U1 ⊃ U2 · · · of x in X such that each Uk is connected,
each deleted neighborhood Uk − {x} has exactly n components, and if m < k
then the inclusion mappings Uk − {x} ⊂ Um − {x} induce 1–1 correspondences
between the connected components of these spaces (hence different components
of Uk − {x} map to different components of Um − {x}); see Example 5 on page
11 of the notes for the precise definition of the map of connected components
associated to a continuous function f : X → Y .

3. (a) Let X and x be as above. Explain why x is a 0-fold branch point of X if and only if
x is isolated in X (in other words {x} is open).

(b) Suppose that x is an n-fold branch point of X. Prove that for every sufficiently small open
neighborhood V of x, the deleted neighborhood V −{x} contains at least n connected components.

(c) Suppose that (P,K) is a connected 1-dimensional polyhedron in some Rn such that every
vertex of K is contained in a 1-simplex. Prove that for each x ∈ P there is some positive integer n
such that x is an n-fold branch point of P . [Hint: Why can we take n = 2 if x is not a vertex? If
x is a vertex, then x lies on some finite number of 1-simplices.]

(d) Suppose that x is an n-fold branch point of X and m 6= n is another nonnegative integer.
Prove that x cannot be an m-fold branch point of X. [Hint: Use (b).]

(e) Use the preceding two parts of the exercise to show that if (P,K) satisfies the conditions
in (c) then for each x ∈ X there is a unique positive integer nx such that x is an nx-fold branch
point of x. Also, explain why the set Vn(P ) of n-fold branch points is finite if and only if n 6= 2.

Notation. If x is an n-fold branch point in X for some nonnegative integer n, we shall
set nx = n(x;P ) denote the unique integer for which this is true.

(f) Let X ⊂ R2 be the union of the circles of radius 1/n centered at the points (0, 1/n), where
n is a positive integer. Show that there is no n ≥ 0 such that n is an n-fold branch point of the
origin. [Hint: For each M > 0 show that there is some open neighborhood UM of (0, 0) such that
if V ⊂ UM then V − {x} contains at least M components.]

4. (a) Suppose that (P,K) and (Q,L) are connected 1-dimensional polyhedra in some Rn

such that every vertex in eiher polyhedron is contained in a 1-simplex, and let f : P → Q be
a homeomorphism. Prove that for all positive integers n the map h sends Vn(P ) to Vn(Q). In
particular, show that if n 6= 2 then Vn(P ) and Vn(Q) have the same numbers of elements and that
V2(P ) and V2(Q) have the same (finite) numbers of components.

(b) Using the notion of n-fold branch points, show that there are at least 7 homeomorphism
types represented by the standard hexadecimal digits as written below (in sans-serif type):

0 1 2 3 4 5 6 7 8 9 A B C D E F

Are new homeomorphism types added if we consider the remaining letters of the alphabet? Ex-
plain. — Obviously, one can formulate similar questions for a more or less arbitrary set of printed
characters.
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(c) As noted in the next to last paragraph on page 358 of Munkres, the Figure 8 and Figure
Theta spaces, corresponding to 8 and θ respectively, have the same homotopy type, but neither is
a deformation retract of the other, and in fact neither is homeomorphic to a subspace of the other.
Prove the last assertion in the preceding sentence. [Hint: Suppose more generally that we have
1-dimensional polyhedra P and Q such that P is homeomorphic to a subset of Q, and let x ∈ P .
Modify earlier arguments to show that n(x;P ) ≤ n(x;Q), and explain why this shows that the Figure
Eight cannot be a subset of the Figure Theta and vice versa by describing the sets Vn(Figure Eight)
and Vn(Figure Theta) for n > 2.]

5. Let (P,K) be a 1-dimensional complex satisfying the conditions in previous exercises.
Prove that V2(P ) is an open subset with finitely many connected (equivalently, arc/path) compo-
nents, prove that each of these components is homeomorphic to an open interval, and prove that
the closure of each component is homeomorphic to a closed interval.

Note. Using this result it is not difficult to prove the following statement, which
is often called the Hauptvermutung for 1-complexes: If (P,K) and (Q,L)
are 1-dimensional simplicial complexes such that P and Q are homeomorphic,
then there are linear subdivisions (as defined in the next section) K1 of K and
L1 of L such that (P,K1) and (Q,L1) are isomorphic simplicial complexes. —
Although the proof is somewhat lengthy and inelegant, it can be done only using
the methods and results described above. — The history of such statements
dates back to at least 1908, when E. Steinitz and H. Tietze raised the ques-
tion of whether this holds for polyhedra of arbitrary dimensions in connection
with the constructions for simplicial homology groups in Unit III of these notes.
Studies of the Hauptvermutung and related issues have had an enormous impact
on geometric topology, and a fairly comprehensive bibliography is given on the
Hauptvermutung website http://www.maths.ed.ac.uk/∼aar/haupt; one other
important reference is the following paper of E. M. Brown: The Hauptvermu-
tung for 3-complexes, Transactions of the American Mathematical Society Vol.
144 (1969), 173–196. — To summarize known results, the Hauptvermutung is
true for complexes of dimension ≤ 3 and false in all higher dimensions. In fact,
for every simplicial complex (P,K) of dimension ≥ 5, there is another complex
(Q,L) of the same dimension such that P and Q are homeomorphic but K and
L do not have isomorphic subdivisions.

6. A simplicial complex (P,K) is said to be a star complex if there is some vertex v of K

such that every maximal simplex σ of K has v as one of its vertices. Prove that if (P,K) is a star
complex, then P is contractible (and in fact {v} is a deformation retract of P ).

I.3 : Subdivisions

1. Suppose that (P,K) is a simplicial complex of dimension ≥ 1. Prove that P has infinitely
many different simplicial decompositions, and in fact, if M is an arbitrary positive number then
there is a simplicial decomposition of P with more than M vertices.

2. (a) Suppose that (P,K) is a polyhedron and (Q,L) is a subpolyhedron. If U is an open
neighborhood of Q in P , prove at there is some r > 0 such that in the rth barycentric subdivision,
every simplex of Br(K) which contains points of Q is a subset of U .
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(b) Using the preceding and the methods and results from Section II.9 of Eilenberg and Steen-
rod, prove that there is an open set V such that Q ⊂ V ⊂ V and Q is a strong deformation retract
of both V and V .

3. (a) Prove that R
n contains an infinite sequence of points such that any n + 1 points in

the set are affinely independent.

(b) Let A be a simplex with vertices vi, and let f : A → Rn be the affine-linear map

f

(

∑

i

ti vi

)

=
∑

i

ti wi

for wi ∈ Rn. Prove that f is an isomorphism of simplices preserving barycentric coordinates if the
vectors wi are affinely independent.

(c) Using the preceding observations, prove that if (P,K) is a simplicial complex of dimension
n, then it is isomorphic to a polyhedron in R2n+1. — Later in this course we shall give examples
of 1-dimensional complexes which cannot be even topologically embedded in R2.

I.4 : Cones and suspensions

1. In the category of spaces with basepoints one generally wants a slightly different version
of cones and suspensions. In particular, if (X,x) is a Hausdorff topological space with basepoint,
then the reduced suspension S(X,x) is defined to be the quotient of S1 ×X obtained by collapsing
the subspace {1} × X ∪ S1 × {x} to a point.

(a) Prove that there is a functorial quotient map from the unreduced suspension to the re-
duced suspension, and it corresponds to collapsing the “meridian” [−1, 1] × {x} in the unreduced
suspension to a point.

(b) If X is a compact subset of some R
n, explain why its unreduced suspension is metrizable

(this requires input from 205A).

(c) If X = Sn prove that the reduced suspension is homeomorphic to Sn+1. [Hint: Results
from 205A imply that the unreduced suspension will be the one point compactification of the
complement of {1} × X ∪ S1 × {x} in S1 × X. Show that this complement is homeomorphic to
Rn+1.]

2. Similarly, if (X,x) is a Hausdorff topological space with basepoint, then the reduced cone
C(X,x) is defined to be the quotient of [0, 1] × X obtained by collapsing the subspace {1} × X ∪
[0, 1] × {x} to a point.

(a) Formulate and prove analogs of the first two parts of the preceding exercise, and explain
why the reduced suspension is homeomorphic to a union of two copis of the reduced cones, identified
along their bases in the obvious fashion.

(b) If X = Sn prove that the reduced suspension is homeomorphic to Dn+1. [Hint: Let
A ⊂ Dn+1 denote the set of points for which the coordinate xn is nonnegative, and use stereographic
projection to show that A−{en+1} is homeomorphic to the set R

n
+ ⊂ R

n of points such that xn ≥ 0,
and hence A is homeomorphic to the one point compactification of the latter. Next, show that the
reduced cone is homeomorphic to the one point compactification of (Sn−{en+1})× [0, 1); the latter
can be identified with the set of all points in Dn +1 that are not on the closed line segment joining
0 to en+1. Compare these observations to obtain the assertion in this part of the problem.]
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3. Let A be an n × n orthogonal matrix, and let B be the (n + 1) × (n + 1) orthogonal
matrix in the block form

(

A 0
0 1

)

.

Then A and B determine homeomorphisms of Sn−1 and Sn to themselves. Prove that the home-
omorphism determined by B corresponds to the suspension of the homeomorphism determined
by A if we identify Sn with Σ(Sn−1) as in the notes. Similarly, show that the homeomorphism
determined by A on Dn corresponds to the cone of the homeomorphism determined by A on Sn−1.

NOTE. Of course, there are also many good exercises in Hatcher. For each section of the
notes, it is worthwhile to look at the exercises in the corresponding sections of Hatcher and see
which ones are related to the material covered in the notes. Suggestions for working exercises in
various sections of Hatcher will be given in the course directory file hwsuggestions.txt.

II . Homotopy and cell complexes

II.1 : Homotopic mappings

1. Suppose that we are given continuous mappings f : X → Y and g : Y → Z. Prove that
if any two of the maps f , g and g of are homotopy equivalences, then so is the third.

2. Prove the following transitivity property (sometimes jokingly called the “Gertrude Stein”
property) of deformation retracts: If B is a deformation retract of A and A is a deformation retract
of X, then B is a deformation retract of X.

II.2 : The fundamental group

Since this material is covered in earlier courses, no problems are listed. However, some of the
problems in the file

http://math.ucr.edu/∼res/math205B/math205Bexercises.pdf

may be worth checking for review purposes. Also, the first exercise in the next section is relevant
to this topic.

II.3 : Abstract cell complexes

0. Prove that a connected finite cell complex is arcwise connected. [Hint: Every closed cell
lies in a single arc component.]

1. A group G is said to be finitely presented if it is isomorphic to a quotient group of the
form F/R, where F is a free group on finitely many generators and R is the normal subgroup
generated by a finite number of elements r1, · · · , rm in F .
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(a) Prove that every finitely presented group is isomorphic to the fundamental group of some
connected finite 2-dimensional cell complex.

(b) Suppose that X is an arcwise connected finite cell complex, and let X2 be its 2-skeleton;
choose a base point x of X to be one of the vertices. Prove that the inclusion of X2 in X induces
an isomorphism of fundamental groups. [Hint: Use the Seifert-van Kampen Theorem, the simple
connectivity of Sk−1 for k ≥ 3, and Proposition II.3.4 in the notes.]

(c) Suppose that X is an arcwise connected 2-dimensional finite cell complex with a single
0-cell. Prove that the fundamental group of X is finitely presented. [Hint: Explain why the
1-skeleton X1 is a one-point union of finitely many circles. The complex X is obtained by repeated
adjunctions of 2-cells, and the restrictions of their attaching maps to the boundaries correspond to
classes in the fundamental group of X1, Show that if Yj is obtained by adjoining the first j 2-cells,
then the fundamental group of Yj is isomorphic to the quotient of the fundamental group of X1 by
the normal subgroup generated by the first j “relations” r1, · · · , rj .]

NOTE. One can use results from the Mathematics 205B directory to show that the statement
in the third part holds for connected complexes with more than a single 0-cell, so we in fact have the
following result: A group G is isomorphic to the fundamental group of a connected finite complex
if and only if G is finitely presented.

2. Let (X, E) be a finite cell complex. Show that X× [0, 1] has a finite cell complex structure
whose cells have the form A × {0}, B × {1} and C × [0, 1], where A, B and C are cells in E .

3. Show that the cone and suspension of a finite cell complex have finite cell complex
structures such that the “base” of the cone and the “equator” of the suspension are subcomplexes.

II.4 : The Homotopy Extension Property

1. A closed subspace A ⊂ X is said to be collared in X if it has an open neighborhood
homeomorphic to A × [0, 1) such that A corresponds to A × {0} in the obvious fashion. Prove
that a pair of spaces A ⊂ X satisfying this condition also has the Homotopy Extension Property.
Similarly, one says that A is bicollared in X if it has a neighborhood of the form A × (−1, 1) such
that A corresponds to A×{0} in the obvious fashion. Prove that a pair of spaces A ⊂ X satisfying
this bicollaring condition also has the Homotopy Extension Property.

2. Let P be a polyhedron, suppose that x ∈ P is a vertex in P with respect to some
simplicial decomposition, and let γ : [0, 1] → P be a continuous curve in P such that γ(0) = x.
Prove that there is a continuous mapping f : P → P such that f is homotopic to the identity and
f(x) = γ(1).

3. A topological space S is said to be solid if the following holds: If X is a compact metric
space and A ⊂ X is a closed subspace, then every continuous mapping f : A → S extends to X.
The Tietze Extension Theorem implies that every interval in the real line is solid.

(a) Prove that if S has the indiscrete topology, then S is solid.

(b) Prove that a product of solid spaces is solid.

(c) Prove that if a compact metric space is solid, then it is contractible.
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4. Suppose that X is a compact metric space and A ⊂ X is homeomorphic to Dn for some
n. Prove that A is a retract of X.

NOTE. Books by K. Borsuk andn S.-T. Hu, both with the title Theory of Retracts, discuss
some important further topics in the direction of the preceding two exercises.

III . Simplicial homology

III.1 : Exact sequences and chain complexes

1. Let (A∗, d
A
∗ ) and (B∗, d

B
∗ ) be chain complexes, let f : A∗ → B∗ be a chain complex map,

and for each n let Kn denote the kernel of fn : An → Bn. Prove that (K∗, 0) is a chain subcomplex
of (A∗, d

A
∗ ).

2. Let V be a finite-dimensional vector space over a field F, and let ∧k(V ) be the exterior
kth power of V (the Wikipedia article on exterior algebra summarizes the main points and is
mathematically reliable). Set n = dimV , and let Sk = ∧n−k(V ). Given a nonzero vector u ∈ V ,
define ∆k : Sk → Sk−1 — equivalently, from ∧n−k(V ) to ∧(n−k)+1(V ) — by setting ∆k(x) = u∧x.
Prove that the maps wk+1 and wk define an exact sequence Sk+1 → Sk → Sk−1. [Hint: What do
we know about u ∧ u ∧ x? To prove that the kernel of wk is contained in the image of wk+1, pick
a basis for V whose first element is u.]

3. Let (C∗, d∗) be a chain complex of A-modules, where A is a commutative ring with unit,
and let B be a fixed A-module. Show that the construction

(

HomA(B,C∗), HomA(B, d∗)
)

also defines a chain complex of A-modules.

4. (a) Let (C∗, d∗) be a chain complex, and define the cylinder (M∗, δ∗) by letting Mk =
Ck ⊕ Ck ⊕ Ck−1 with

δk(x, y, z) =
(

dx − (−1)kz, dy + (−1)kz, dz
)

.

Prove that (M∗, δ∗) is a chain complex with subcomplexes given by 0 ⊕ C∗ ⊕ 0 and C∗ ⊕ 0 ⊕ 0.

(b) Let t = 0, 1, and let i0, i1 : C∗ → M∗ be the obvious maps to 0 ⊕ C∗ ⊕ 0 and C∗ ⊕ 0 ⊕ 0.
Explain why these mappings identify C∗ with two distinct chain subcomplexes of M∗.

III.2 : Homology groups

1. Prove that if the maps dk in a chain complex C∗ are all zero then Hq(C) ∼= Cq for all
integers q.

2. If C∗ is a chain complex, explain why Hq(C) = 0 if ane only if Cq+1 → Cq → Cq−1 is
exact.
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3. (a) In Exercise 4 from the preceding section, show that the chain maps i0 and i1 define
monomorphisms in homology.

(b) In the same exercise, show that the chain maps i0 and i1 define the same map in homology.
[Hint: Let U denote their difference, and show that U maps every cycle in C∗ to a boundary in
M∗.]

4. Give an example to show that if B∗ ⊂ A∗ is a chain subcomplex, then the map H∗(B) →
H∗(A) induced by inclusion is not necessarily injective. [Hint: Take B to be Z in dimension zero
and zero elsewhere, and take A to be Z in dimensions 0 and 1 and zero elsewhere. Find a map from
A1 to A0 for which the conditions in the exercise are met. In fact, there are many possibilities.]

III.3 : Homology and simplicial complexes

1. Let (P,K) be a simplicial complex of dimension n. Prove that Hn(P,K) is a finitely
generated free abelian group. [Hint: Using ordered or oriented simplicial chains, explain why
Hn(P,K) is just the kernel of the boundary mapping dn and hence is isomorphic to a subgroup of
the finitely generated free abelian group Cn(P,K).]

2. If (Pi,Ki) are disjoint simplicial complexes for i = 1, 2, show that the homology groups
of their union is isomorphic to the direct sum of the homology groups of (P1,K1) and (P2,K2).

3. Let (P,K) be a connected 1-dimensional simplicial complex with ni simplices of dimension
i. Prove that H1(P,K) is a free abelian group on 1 + n1 − n0 generators.

III.4 : Comparison principles

1. Prove that the following potential generalizations of the Five Lemma (III.4.5) are false:

(a) A statement in which “isomorphism(s)” is replaced by “epimorphisms.”

(b) A statement in which “isomorphism(s)” is replaced by “monomorphisms.”

[Hints: Consider examples where the second or first row is all zeros but the other row is not.]

2. Suppose that we are given chain complexes B∗ and B′
∗ with subcomplexes A∗ and A′

∗,
and suppose that f : B∗ → B′

∗ is a chain complex map which sends A∗ to A′
∗. Denote the associated

map of subcomplexes by g, and let h : A∗/B∗ → A′
∗/B

′
∗ denote the chain complex map obtained

from f and g by passage to quotients. Prove that if two of the mapping sequences f∗, g∗, h∗ are
isomorphisms in homology (for all dimensions), then so is the third.

III.5 : Chain homotoopies

1. Suppose that C∗ is a chain complex and M∗ is the cylinder complex constructed in
Exercise III.1.4. Prove that the maps i0 and i1 are chain homotopic.
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2. A chain homotopy equivalence is a map of chain complexes f : A → B for which there
is a chain map g : B → A such that g of and f og are chain homotopic to the identity maps on A
and B respectively. The map g is called a chain homotopy inverse to f .

(a) Prove that the maps i0 and i1 in the preceding exercise are chain homotopy equivalences.

(b) Prove that two chain homotopy inverses to f are chain homotopic.

(c) Suppose that f : A → B and g : B → C are chain maps. Prove that if any two of the maps
f , g and g of are chain homotopy equivalences, then so is the third.

3. Suppose that f : A → B is a chain complex map. Define the mapping cylinder M(f)∗
to be the quotient of the direct sum M(B)∗ ⊕ A∗, where M(A) is the cylinder complex as above,
modulo the subcomplex given by the image of the map F : A∗ → M(A)∗ ⊕ B∗ sending a to
(

i0(a), −f(a)
)

. Let jt : A → M(f) denote the canonical mappings induced by the inclusions
it : A → M(A), let J : B → M(f) be induced by inclusion, and let q : M(f) → B denote the map
induced by projections; it follows that all these maps are chain maps (verify this!).

(a) Explain why q oJ is the identity on B, and show that J oq is chain homotopic to the identity
on M(f).

(b) Explain why f is chain homotopic to q oj0. — In other words, up to chain homotopy
equivalence, every chain map is homotopic to the composite of a chain complex inclusion and a
chain homotopy equivalence. [Hint: Why is f = q oj1?]

IV. Singular homology

These exercises are for all sections of the unit

1. Suppose that X is a nonempty space with the indiscrete topology, and let H : X×[0, 1] →
X be defined by H(x, t) = x if t < 1 and H(x, 1) = x0 for some x0 ∈ X. Prove that H is
continuous, and use this to show that the singular homology groups of a nonempty indiscrete space
are isomorphic to the singular homology groups of a one point space.

2. (a) Suppose that F is a free abelian group on a set X, and let p > 1 be an integer.
Explain why there is a short exact sequence

0 −−−−−→ F
p

−−−−−→ F −−−−−→F ⊗ Zp −−−−−→ 0

in which F ⊗ Zp is isomorphic to a vector space with formal basis X.

(b) If (C∗, d∗) is a chain complex, define the mod p homology groups H∗(C, Zp) to be the
homology groups of the Zp-vector space chain complex (C∗ ⊗ Zp, d∗ ⊗ Zp). Given a topological
space X, prove that there is an exact sequence of the form

Hk+1(X; Zp)
β

−→ Hk(X; Z)
p

−→ Hk(X; Z)
j∗
−→ Hk(X; Zp)

β
−→ Hk−1(X; Z)

which extends indefinitely to the left and right. The maps denoted by β are called Bockstein maps
and the sequence is called the Bockstein exact sequence for the short exact sequence associated to
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the inclusion map Z ∼= pZ ⊂ Z; the map j∗ is induced by the projection map from Z to Zp. —
Explain the naturality properties of this with respect to a continuous mapping f : X → Y .

3. Suppose that U is a nonempty bounded open subset of Rn. Let (P,K) be a large
polyhedron in Rn which contains U (for example, a sufficiently large hypercube), and for each k let
Qk be the union of all simplices in the kth barycentric subdivision of P which are entirely contained
in U . Let δ denote the maximum diameter of a simplex in K.

(a) Prove that if x ∈ U − Qk, then the distance from x to Rn − U is at most δ · (n/n + 1)k.
[Hint: Why does x lie on some simplex σ of the kth barycentric subdivision, and why must this
simplex contain some point y not in U? Why is the diameter of σ an upper estimate for the distance
between x and y and hence for the distance between x and R

n − U?]

(b) Prove that evey compact subset C ⊂ U is contained in some Qk. [Hint: Let η > 0 denote
the distance between C and Rn − U . Why is C ⊂ Qk if δ · (n/n + 1)k < η?]

(c) Use Theorems IV.1.6 and IV.2.11 to prove that each singular homology groups Hq(U) is
(at most) countable and that Hq(U) = 0 if q > n.

(d) Prove that every open subset in Rn is homeomorphic to a bounded open set (hence the
conclusion in (c) holds for all open subsets of Rn.

(e) Prove that if U is the complex plane with all nonnegative integers removed, then H1(U) is
a free abelian group on a countably infinite set of generators. [Hint: Let Un be the set of all points
in U whose real part is less than k, and let Vk be the set of all points x+yi such that k−1 < x < k
but x + yi 6= k. Why is Uk ∪Vk = Uk+1? What are the homology groups of Vk and Vk ∩Uk? Using
Mayer-Vietoris sequences, prove by induction that H1(Uk) is a free abelian group on k generators
and that the inclusion map Uk ⊂ Uk+1 induces an injection from H1(U1) to a direct summand
of H1(Uk+1). Why is every compact subset of U contained in some Uk? Combine this with the
previous argument to conclude that H1(U) has the specified form.]

NOTE. One can strengthen (c) to show that Hq(U) = 0 if q ≥ n (see Lemma 6.1 on page 147 of
Vick, Homology Theory).

4. (a) Let X be a nonempty topological space, and let n ≥ 0. Prove by induction on n that
Hq(S

n × X) ∼= Hq(X) ⊕ Hq−n(X) for all integers q. [Hint: Look at the Mayer-Vietoris sequence
arising from Sn × X = U × X ∪ V × X, where U = Sn − {e} and V = Sn − {−e} for some unit
vector e. What do we know about the homotopy types of U , V and U ∩V , and how can we exploit
this?]

(b) Let n1 and n2 be positive. Explain why Sn1 × Sn2 is not homeomorphic to Sn1+n2 .

(c) Let n1 and n2 be as in the preceding part of this exercise. Prove that Sn1 × Sn2 is not
homotopy equivalent to its suspension Σ (Sn1 × Sn2 ). [Hint: Use Exercise 20 on page 132 of
Hatcher.]

5. (a) Suppose that we are given simplicial complexes (P,K) and (Q,L) in Rn and Rm

respectively, and suppose that x and y are vertices of K and L respectively. Define the wedge

(P,K;x) ∨ (Q,L;y)

to be the simplicial complex whose underlying space is

P × {y} ∪ {x} × Q ⊂ Rn ×Rm ∼= Rn+m

12



and whose simplices have one of the forms A×{y} or {x}×Q, where A is a simplex of K or B is a
simplex of L. Find a formula for the Euler characteristic of the wedge in terms of χ(P ) and χ(Q).
[Hint: How many simplices are there in a fixed dimension k? There are two cases depending upon
whether or not k is positive. Check your formula using some examples.]

(b) Given an arbitrary integer p, prove that there is a finite connected simplicial complex whose
Euler characteristic whose Euler characteristic is equal to p. [Hint: There are obvious examples
when p is 0, 1 or 2. How can one combine this with the result in the first part?]

(c) Suppose that we are given simplicial complexes (Pi,Ki) for 1 ≤ i ≤ n with vertices xi ∈ Pi,
and define the wedge

∨n
i=1 (Pi,xi)

as in part (a). Prove that if (Y, y) is a pointed space then there is a 1–1 correspondence of base
point preserving homotopy classes

[∨n
i=1 (Pi,xi), (Y, y)] ∼=

n
∏

i=1

[(Pi,xi), (Y, y)]

where the map from the domain to the ith coordinate of the codomain is given by restriction to Pi.
(d) In the preceding notation, assume that each Pi is isomorphic to ∂∆2. Prove that H1 (∨i Pi) is
free abelian on n generators, and show that for every algebraic self-map ϕ of H1 (∨i Pi) there is a
continuous base point preserving self-map f of ∨i Pi whose induced map of homology is equal to
ϕ. [Hint: First prove the analogous result in which the fundamental group replaces H1.]

V. Geometric applications

These exercises are for all sections of the unit

1. Construct a continuous self-map f : S1 → S1 such that f is onto but the degree of f is
equal to zero. [Hint: Wind and rewind.]

2. Use the methods of Section V.2 to prove the following generalization of the Jordan Curve
Theorem; this is Theorem 63.5 on page 392 of Munkres, Topology :

If C1 and C2 are compact subsets of S2 such that each set S2 − Ci is connected and
C1 ∩ C2

∼= S0, then the complement of C1 ∪ C2 in S2 has exactly two components.

NOTES. In Munkres, this result is applied to prove that two specific 1-dimensional polyhedra
(the gas-water-electricity network and the complete graph on five vertices) are not homeomorhic
to subsets of R

2. The relevant pages of Munkres are posted in this directory as the file planar-

graphs.pdf.

Kuratowski’s Theorem. At the end of Section 64, Munkres mentions a celebrated result of
C. Kuratowski and L. S. Pontryagin, which states that every graph which cannot be realized as
a subset of R2 must contain a homeomorphic copy of either the utilities network or the complete
graph on five vertices. Here is an online reference for the proof:

http://cs.princeton.edu/∼ymakaryc/papers/kuratowski.pdf
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Further background and additional references are given at the following online sites:

http://mathworld.wolfram.com/KuratowskiReductionTheorem.html

http://en.wikipedia.org/wiki/Planar graph

3. Let F be a finite family of simple closed curves in R2. Prove that there is an innermost
curve Γ0 ∈ F in the sense that no curve in F lies in the bounded component of R2 − Γ0. [Hint:

Define a binary relation R on F such that Γ R Γ′ if and only if Γ lies in the closure of the bounded
component of R2 − Γ. Prove that ρ defines a partial ordering of F. Why must there be a minimal
element?]

4. Suppose that f : Sn → Sn is a continuous self-map, and let ρ : Sn → Sn be an
orthogonal reflection. Prove that either f has a fixed point or else x ∈ Sn such that f(x) = ρ(x).
[Hint: Compute the Lefschetz numbers of f and f oρ.]

5. (a) Suppose that (P,K) is a simplicial complex and f : P → P is a continuous map
which is homotopic to a constant. Prove that f has a fixed point. [Hint: What is its Lefschetz
number?]

(b) Give an example to show that the näıve converse to the Lefschetz Fixed Point Theorem is
false; namely, if P is given as above and f : P → P has Lefschetz number equal to zero, then it
does not necessarily follow that f has no fixed points. [Note: However, in many cases it follows
that if the Lefschetz number is zero then f is homotopic to a map without fixed points; one general
reference is E. Fadell, Recent advances in fixed point theory , Bulletin of the American Mathematical
Society 76 (1970), 1—29 — this paper is freely available online.]

6. Let P be a 1-dimensional polyhedron, and suppose that x ∈ P is an n-fold branch point
in the sense of Exercise I.2.3. Prove that H1(P, P −{x}) is free abelian on n generators. [Hint: Let
A be the set of all edges which contain x as a vertex; prove that the union of the open edges in A,
with the endpoints removed, together with {x}, is open — for example, show that its complement
is the union of all edges which do not have x as a vertex and all points other than x which do not
lie on any edge. Verify that the conclusion holds for (U,U − {x}) and use excision to derive the
result as stated in the problem.]

7. If X is a topological space and x ∈ X, then the local homology groups of X at x are
given by H∗(X,X − {x}).

(a) Prove that if U is an open neighborhood of x in X, then H∗(U,U −{x}) ∼= H∗(X,X−{x}).

(b) Prove that if f : X → Y is a homeomorphism then for all values of a the local homology
groups Hq(X,X −{x}) are isomorphic to the corresponding local homology groups Hq(Y, Y −{y}).

(c) Let (X, E) denote the finite cell complex in R3 whose 2-cells are the upper and lower
hemispheres D2

± ⊂ S2 (last coordinate nonnegative or nonpositive) whose 1-cells are the upper and
lower semicircles of S1 plus the line segment joining the points (± 1, 0, 0), and whose 0-cells are
the latter points. Compute the local homology groups of X for all x ∈ X; there are three cases,
depending upon whether or not x lies on the extra 1-cell and whether of not x is a 0-cell.

(d) Prove that that the space X in the preceding part of this exercise is not a topological
manifold. [Hint: The local homology groups for a topological n-manifold are described in the
proof of Theorem IV.2.16.]
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8. For most of the standard examples of closed curves in the plane, it is fairly easy to figure
out which points lie in the bounded component of the curve’s complement and which lie in the
unbounded component. However, for more complicated examples like the one in fishmaze.pdf,
it is not immediately clear which points lie in which component. This exercise provides a test for
determining whether two points not on a planar closed curve are in the same component of the
complement. As suggested by the drawing in fishmaze2.pdf, this rule can be used effectively to
answer such questions.

(a) Suppose that Γ is a smooth regular simple closed curve in R2 with parametrization γ such
that γ(0) = p, and let β(t) be a regular smooth parametrized curve (β ′ 6= 0 always) such that
β(0) = γ(0) and the vectors β ′(0), γ′(0) form a vasis for R

2. Prove that there is some ε > 0 such
that β maps (−ε, 0) and (0, ε) to different components of R2 − Γ. [Hint: Use the Inverse function
Theorem to change coordinates so that near t = 0 the curve γ transforms into a horizontal line.
Let W be a small neighborhood of the image point p such W − Γ has two components, and using
the change of coordinates explain why the restrictions of β to (−ε, 0) and (0, ε) lie in different
components of W − Γ. Use the fact that Γ is the frontier of both components of R2 − Γ to show
that different components of W − Γ lie in different components of R2 − Γ.]

(b) Let Γ and γ be as above, and let α : [0, 1] → R2 be a piecewise smooth curve in R2 joining
two points in R2 − Γ. Suppose that α and γ have transverse intersections in the following sense:
There are only finitely many common points, the curve α is smooth at these common points, and
at each such point the vectors α′ and γ′ are linearly independent. — Prove that α(0) and α(1) lie
in the same component of R2 − Γ if the number of common points is even, and α(0) and α(1) lie
in different components of R

2 − Γ if the number of common points is odd.

VI. Cohomology

These exercises are for all sections of the unit

1. Suppose that i : A → X is a retract, and let r : X → A be a one-sided inverse
such that r oi = idA. Prove that for every field F and integer q the induced cohomology map
i∗ : Hq(X; F) → Hq(A; F) is onto and its kernel is a direct summand.

2. Suppose that (P,K) is a polyhedron in R3, let U be an open subset of R3 containing
P , and let F and g be (respectively) a smooth vector field and smooth function on U (strictly
speaking, F is a smooth 3-dimensional vector valued function on U). — Given a free generator
α = v0 · · · vq for Cq(P,K) let T (α) : ∆q → P be the usual affine q-simplex defined by

T (t0, · · · , tq) =
∑

i

ti vi .

Now define cochains for the complex C∗(P ;K) as follows:
(a) Eg ∈ C0(P,K; R) is given on free generators by evaluating a vertex v ∈ K at v.
(b) LF ∈ C1(P,K; R) is given on free generators by taking a formal 1-simplex α = v0v1 and

forming the line integral
∫

F · d s along the curve T (α).
(c) SF ∈ C2(P,K; R) is given on free generators by taking a formal 2-simplex α = v0v1v2

and forming the surface (flux) integral
∫

F ·dS along the parametrized surface T (α), with
the preferred normal direction given by (v1 − v0) × (v2 − v0).
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(d) Vg ∈ C3(P,K; R) is given on free generators by taking a formal 3-simplex α and forming
the triple (volume) integral

∫

g d V .

Using standard theorems from vector analysis, prove the following identities:

δEg = L∇g , δLF = S∇×F , δSF = V∇·F

In particular, LF is a cocycle if ∇× F = 0, and SF is a cocycle if ∇ · F = 0.

3. Given a space X, let {Xα} denote its arc or path components, and for each α let
iα : Xα → X be the inclusion map. Prove that for each field F there is an isomorphism

H∗(X; F) →
∏

α

H∗(Xα; F)

whose projection onto the α factor is given by i∗α. [Hint: The singular chain complex of X is the
direct sum of the singular chain complexes for the subspaces Xα. This yields a product isomorphism
on the cochain complex level. Why does this pass to an isomorphism in cohomology?]

4. The file cellcpxRPn.pdf gives a cellular chain complex for computing the singular
homology of RPn.

(a) Given a finite cell complex (X, E) with associated cellular chain complex C∗(X, E), explain
why H∗(X; F) is isomorphic to H∗(C(X, E); F).

(b) Compute the dimensions of the vector spaces H i(RPn; F) where F runs through the fields
Q or Zp, where p is prime (there will be two cases depending upon whether p = 2 or p is odd).

(c) Let f : RP2n → S2n be the map which collapses the (2n − 1)-skeleton RP2n−1 to a point.
Explain why f defines an isomorphism from H2n(RP2n, RP2n−1) to H2n(S2n,pt.).

(d) To continue the discussion in (c), using cellular cochains explain why the map

H2n(RP2n, RP2n−1; Z2) → H2n(RP2n; Z2)

is an isomorphism, so that f induces an isomorphism in Z2 cohomology. [Hint: Show that
if X is an m-dimensional cell complex and F is a field, then Hm(X; F) is isomorphic to the
quotient of Hm(X,Xm−1; bbF ) modulo the image of the composite Hm−1(Xm−1, Xm−2; F) →
Hm−1(Xm−1; F) → Hm(X,Xm−1; F).

(e) To complement the discussion in (c) and (d), explain why f induces the zero map in F

cohomology for all the other fields F listed above.
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