
Preface

Perhaps the simplest motivation for algebraic topology is the following basic question:

If m and n are distinct positive integers, is R
m ever homeomorphic to R

n?

Results from point set topology imply the answer is NO if one of m and n is equal to 1. If
a homeomorphism h : R

m → R existed then for each x ∈ R
m we could conclude that R

n − {x} is
homeomorphic to R− {h(x)}. Since Rm − {x} is connected for all x ∈ R if m > 1 while R − {t}
is not connected for any choice of t ∈ R, it follows that Rm − {x} is never homeomorphic to
R− {t} if m > 1 and hence Rm cannot be homeomorphic to R. Similarly, results on fundamental
groups imply that for all relevant choices of x the set Rm−{x} is simply connected if m > 2 while
R2 − {x} has an infinite cyclic fundamental group, so we also know that Rm is not homeomorphic
to R2 provided m > 2. One basic goal of an introductory course in algebraic topology is to show
that Rm is never homeomorphic to Rn if m 6= n.

The idea behind proving such results is to define certain abelian groups which give an algebraic
picture of a given topological space; in particular, if two topological spaces are homeomorphic,
then their associated groups will be algebraically isomorphic. Unfortunately, the definitions for
these homology groups are less straightforward than the definition of the fundamental group,
and much of the work in this course involves the construction of such groups and the proofs that
they have good formal properties.

In analogy with standard results for fundamental groups, the homology groups of two spaces
will be isomorphic if the spaces satisfy a condition that is somewhat weaker than the existence of
a homeomorphism between them; namely, an the groups are isomorphic if the two spaces have the
same homotopy type as defined on page 363 of the book by Munkres cited below.

Since the constructions for the associated groups are somewhat complicated, it is natural to
expect that they should be useful for more than simply answering the homeomorphism question for
Euclidean spaces. In particular, one might ask if these groups (and a course in algebraic topology)
can shed new light on some questions left open in undergraduate or beginning graduate courses in
mathematics.

1. The material in introductory graduate level courses does not really give much insight into
the popular characterization of topology as a “rubber sheet geometry.” In other words,
topology is generally viewed as the study of properties that do not change under various
sorts of bending or stretching operations. Some aspects of this already appear in the study
of fundamental groups, and one objective of this course is to develop these ideas much
further.

2. As a refinement of the problem at the beginning of this preface, one can ask if there is
some topological criterion which characterizes the algebraic notion of n-dimensionality, at
least for spaces that are relatively well-behaved.
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3. An algebraic topology course should also yield better insight into several issues that arise
in undergraduate courses, including (a) the Fundamental Theorem of Algebra, (b) various
facts about planar and nonplanar networks, (c) insides and outsides of plane curves and
closed surfaces in 3-dimensional space, and (d) Euler’s Formula for “nice” polyhedra in
R3; namely, if P is a polyhedron bounding a convex body in R3, then the numbers V , E
and F of vertices, edges and faces satisfy the equation E + 2 = V + F .

4. Some of the basic results on the topology of the edge-path graphs in Mathematics 205B
should be placed into a broader context. In particular, the notion of Euler characteristic
should be extended to a larger class of spaces.

5. If time permits, another goal will be to give a unified approach to certain results in
multivariable calculus involving the ∇ operator, Green’s Theorem, Stokes’ Theorem and
the Divergence Theorem, and to formulate analogs for higher dimensions.

Throughout the course we shall use the following text for the basic graduate topology courses
as a reference for many topics and definitions:

J. R. Munkres. Topology (Second Edition), Prentice-Hall, Saddle River NJ, 2000.
ISBN: 0–13–181629–2.

The official text for this course is the following book:

A. Hatcher. Algebraic Topology (Third Paperback Printing), Cambridge University

Press, New York NY, 2002. ISBN: 0–521–79540–0.

This book can be legally downloaded from the Internet at no cost for personal use, and here is the
link to the online version:

www.math.cornell.edu/∼hatcher/AT/ATpage.html
Here are four other references. The first is a book that has been used as a text in the past,

the second is a fairly detailed history of the subject during its formative years, and the last two are
classic (but not outdated) books; the first also has detailed historical notes.

J. W. Vick. Homology Theory . (Second Edition). Springer–Verlag, New York etc.,
1994. ISBN: 3–540–94126–6.

J. Dieudonné. A History of Algebraic and Differential Topology (1900 − 1960).
Birkhäuser Verlag, Zurich etc., 1989. ISBN: 0–817–63388–X.

S. Eilenberg and N. Steenrod. Foundations of Algebraic Topology . (Second Edition).
Princeton University Press, Princeton NJ, 1952. ISBN: 0–691–07965–X.

E. H. Spanier. Algebraic Topology, Springer–Verlag, New York etc., 1994.

The amazon.com sites for Hatcher’s and Spanier’s books also give numerous other texts in
algebraic topology that may be useful. Finally, there are two other books by Munkres that we
shall quote repeatedly throughout these notes. The first will be denoted by [MunkresEDT] and the
second by [MunkresAT]; if we simply refer to “Munkres,” it will be understood that we mean the
previously cited book, Topology (Second Edition).

J. R. Munkres. Elementary differential topology . (Lectures given at Massachusetts
Institute of Technology, Fall, 1961. Revised edition. Annals of Mathematics Studies, No.
54.) Princeton University Press, Princeton, NJ , 1966. ISBN: 0–691–09093–9.

J. R. Munkres. Elements of Algebraic Topology . Addison-Wesley, Reading, MA, 1984.
(Reprinted by Westview Press, Boulder, CO, 1993.) ISBN: 0–201–62728–0.
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Overview of the course

One important feature of homology groups is that if f : X → Y is a continuous mapping of
topological spaces, then there is an associated homomorphism f∗ from the homology groups of X to
the homology groups of Y ; this is again similar to the situation for fundamental groups of pointed
spaces, and it plays an important role in addressing the issues listed above. In fact, algebraic
topology turns out to be an effective means for analyzing the following central problem:

Given two “reasonably well-behaved” spaces X and Y , describe the homotopy
classes of continuous mappings from X to Y .

In general, the descriptions of the homotopy classes can be quite complicated, and only a few cases
of such problems can be handled using the methods of a first course, but we shall mention a few
special cases at various points in the course.

Many of the basic properties of homology groups and homomorphisms are best stated using
the formalisms of Category Theory, and many of the constructions and theorems in algebraic
topology are best stated within the framework of Homological Algebra. We shall develop these
subjects in the course to the extent that we need them.
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Prerequisites

The name “algebraic topology” suggests that the subject uses input from both algebra and
topology, and this is in fact the case; since topology began as a branch of geometry, it is also
reasonable to expect that some geometric input is also required. Our purpose here is to summarize
the main points from prerequisite courses that will be needed. Additional background material
which is usually not covered explicitly in the prerequisites will be described in the first unit of these
notes.

Set theory

Everything we shall need from set theory is contained in the following online directory:

http://math.ucr.edu/∼res/math144
In particular, a fairly complete treatment is contained in the documents setsnotesn.pdf, where
1 ≤ n ≤ 8.

There are two features of the preceding that are somewhat nonstandard. The first is the
definition of a function from a set A to another set B. Generally this is given formally by the
graph, which is a subset G ⊂ A × B such that for each a ∈ A there is a unique b ∈ B such that
(a, b) ∈ G. Our definition of function will be a triple f = (A,G,B), where G ⊂ A × B satisfies
the condition in the preceding sentence. The reason for this is that we must specify the target
set or codomain of the function explicitly; in fact, the need to specify the codomain has already
arisen at least implicitly in prerequisite graduate topology courses, specifically in the definition of
the fundamental group. A second nonstandard feature is the concept of disjoint union or sum
of an indexed family { Xα } of sets. The important features of the disjoint sum, which is written
qα Xα, are that it is a union of subsets Yα which are canonically in 1–1 correspondence with the
sets Xα and that Yα ∩ Yβ = ∅ if α 6= β. Another source of information on such objects is Unit V
of the online notes for Mathematics 205A which are cited below.

Topology

This course assumes familiarity with the basic material in graduate level topology courses
through the theory of fundamental groups and covering spaces (in other words, the material in
Mathematics 205A and 205B). Everything we need from the first of these courses can be found in
the following online directory:

http://math.ucr.edu/∼res/math205A
In particular, the files gentopnotes2008.* contain a fairly complete set of lecture notes for the
course. This material is based upon the textbook by Munkres cited in the Preface. Two major
differences between the notes and Munkres appear in Unit V. The discussion of quotient topologies is
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somewhat different from that of Munkres, and in analogy with the previously mentioned discussion
of set-theoretic disjoint sums there is a corresponding construction of disjoint sum for an indexed
family of topological spaces.

There is a similar directory for the second course, which deals with the basic notions of homo-
topy, fundamental groups and covering spaces:

http://math.ucr.edu/∼res/math205B
There is no self-contained set of notes in this directory, but there are comments and (additional)
exercises to supplement the coverage in Munkres and indicate the sections which will be needed for
this course. In addition to the sections mentioned in these references, it might be worthwhile to
look also at the supplementary exercises for Chapter 13.

Chapter 14 of Munkres is not a required part of the material covered in the Department’s
qualifying exam, but it is sometimes covered in 205B and at some points in this course the topics
covered in Chapter 14 are relevant, and we shall mention them when it seems appropriate or useful.

Algebra

As in the later parts of Munkres, we shall assume some familiarity with certain topics in group
theory. Nearly everything we need is in Sections 67 – 69 of Munkres, but we shall also need the
following basic result:

STRUCTURE THEOREM FOR FINITELY GENERATED ABELIAN GROUPS. Let
G be a finitely generated abelian group (so every element can be written as a monomial in integral
powers of some finite subset S ⊂ G). Then G is isomorphic to a direct sum

( H1 ⊕ · · · ⊕ Hb ) ⊕ ( K1 ⊕ · · · ⊕ Ks )

where each Hi is infinite cyclic and each Kj is finite of order tj such that tj+1 divides tj for all j.
— For the sake of uniformity set tj = 1 if j > s. Then two direct sums as above which are given
by (b; t1, · · · ) and (b′; t′1, · · · ) are isomorphic if and only if b = b′ and tj = t′j for all j.

A proof of this fundamental algebraic result may be found in Sections II.1 and II.2 of the
following standard graduate algebra textbook:

T. Hungerford. Algebra. (Reprint of the 1974 original edition, Graduate Texts in
Mathematics, No. 73.) Springer-Verlag, New York–Berlin–etc., 1980. ISBN: 0–387–
90518–9.

Material from standard undergraduate linear algebra courses will also be used as needed.

Analysis

We shall assume the basic material from an upper division undergraduate course in real vari-
ables as well as material from a lower division undergraduate course in multivariable calculus
through the theorems of Green and Stokes as well as the 3-dimensional Divergence Theorem. The
classic text by W. Rudin (Principles of Mathematical Analysis, Third Edition) is an excellent ref-
erence for real variables, and the following multivariable calculus text contains more information
on the that subject than one can usually find in the usual 1500 page calculus texts (the book is not
perfect, but especially at the graduate level it is useful as a background reference).

J. E. Marsden and A. J. Tromba. Vector Calculus (Fifth Edition), W. H. Freeman

& Co., New York NY, 2003. ISBN: 0–7147–4992–0.
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I . Foundational and Geometric Background

Aside from the formal prerequisites, algebraic topology relies on some background material
from other subjects that is generally not covered in prerequisites. In particular, two concepts
from the foundations of mathematics, namely categories and functors, play a central role in
formulating the basic concepts of algebraic topology. Furthermore, since algebraic topology places
heavy emphasis on spaces that can be constructed from certain fundamental building blocks, some
relatively elementary but fairly detailed properties of the latter are indispensable. The purpose of
this unit is to develop enough of category theory so that we can use it to formulate things efficiently
and to describe the topological and geometric properties of a class of well-behaved spaces called
polyhedra that will be needed in the course.

I.1 : Categories and functors

(Hatcher, § 2.3)

If mathematics is the study of abstract systems, then category theory may be viewed as an
abstract formal setting for working with such systems. In fact, the theory was originally developed
by S. Eilenberg (1919–1998) and S. MacLane (1909–2005) in the 1940s to provide an effective con-
ceptual framework for handling various constructions and phenomena related to algebraic topology
(including some from the theory of groups). The formal definition may be viewed as a general-
ization of familiar properties of ordinary set-theoretic functions. There is a great deal of overlap
between the discussion here and the file categories.pdf in the math205A directory. There is a
classic book by P. Freyd (1936–), Abelian Categories: An Introduction to the Theory of Functors,
which is still an extremely readable introduction to category theory and its role in abstract algebra,
and it is available online at the following site:

http://www.emis.de/journals/TAC/reprints/articles/3/tr3/pdf

Definition. A CATEGORY is a system C consisting of

(a) a class Obj (C) of sets called the objects of C,

(b) for each ordered pair of objects X and Y an associated set Morph C(X,Y ) called the
morphisms from X to Y ,

(c) for each ordered triple of objects X, Y and Z, an associated map called a composition
pairing ϕ : Morph C(X,Y )×Morph C(Y,Z) −→ Morph C(X,Z), whose value for (f, g) is
generally written g of , such that the following hold:

(1) The sets Morph C(X,Y ) and Morph C(Z,W ) are disjoint unless
X = Z and Y = W .

(2) For each object X there is a unique identity morphism 1X =
idX ∈ Morph C(X,X) such that for each f ∈ Morph C(X,Y ) and g ∈
Morph C(Z,X) we have f o1X = f and 1X

og = g.

(3) The composition pairings satisfy an associative law; i.e., if
f ∈ Morph C(X,Y ), g ∈ Morph C(Y,Z), and h ∈ Morph C(Z,W ), then
(h og) of = h o(g of).
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By the assumptions, for each f ∈ Morph C(X,Y ) the objects X and Y are uniquely determined,
and they are called the domain and codomain of f respectively. When working within a given
category we generally use familiar notation like f : X → Y to indicate that f ∈ Morph C(X,Y ).

As in set theory, at some points one must take care to avoid difficulties with classes that are
“too large” to be sets (for example, we cannot discuss the set of all sets), but in practice it is always
possible to circumvent such problems by careful choices of definitions and wordings (for example,
using the theory of Grothendieck universes), so we shall generally not dwell on such points.

Examples of categories

By the remarks preceding the definition of a category, it is clear that we have a category SETS
whose objects are given by all sets, whose morphisms are set-theoretic functions from one set to
another (with the conventions mentioned in the Prerequisites!), and whose composition is merely
ordinary composition of mappings. Here are some further examples:

1. Given a field F, there is the category VECF whose objects are vector spaces, whose
morphisms are F-linear transformations, and whose composition is ordinary composition.
The important facts here are that the identity on a vector space is a linear transformation,
and the composite of two linear transformations is a linear transformation.

2. There is also a category GRP whose objects are groups and whose morphisms are group
homomorphisms (with the usual composition). Once again, the crucial properties needed
to check the axioms for a category are that identity maps are homomorphisms and the
composite of two homomorphisms is a homomorphism.

3. Within the preceding example, there is the subcategory ABGRP whose objects are
abelian groups, with the same morphisms and compositions. In this category, the set
of morphisms from one object to another has a natural abelian group structure given
by pointwise addition of functions, and the resulting abelian group of homomorphisms is
generally denoted by Hom(X,Y ).

4. More generally, if C is a category, then a subcategory A is a collection of morphisms and
objects which is closed under (i) taking domains and codomains of objects, (ii) taking
identity morphisms of objects, (iii) taking composites of morphisms. It is said to be a
full subcategory if for each pair of objects X and Y in A we have Morph A(X,Y ) =
Morph C(X,Y ). It follows that ABGRP is a full subcategory of GRP. On the other hand,
if we let GRP1−1 be the category whose objects are groups and and whose morphisms
are injective homomorphisms, then GRP1−1 is a subcategory of GRP but it is not a full
subcategory.

5. If P is a partially ordered set with ordering relation ≤, then one has an associated category
whose objects are the elements of P and such that Morph (x, y) consists of a single point
if x ≤ y and is empty otherwise. This is an example of a small category in which the
class of objects is a set.

6. One can also use partially ordered sets to define a category POSETS whose objects are
partially ordered sets and whose morphisms are monotonically nondecreasing functions
from one partially ordered set to another; as in most other cases, composition has its
usual meaning.
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7. If G is a group, then G also defines a small category as follows: There is exactly one object,
the morphisms of this object to itself are given by the elements of G, and composition is
given by the multiplication in G.

8. There is a category TOP whose objects are topological spaces, whose morphisms are
continuous maps between topological spaces, and whose composition is the usual notion.
Again, the crucial properties needed to verify the axioms for a category are that identity
maps are continuous and composites of continuous maps are also continuous.

9. There are also categories whose objects are topological spaces and whose morphisms are
open maps or closed maps. The categories with various types of morphisms are distinct.
Of course, it is also possible to take combinations of such conditions and obtain structures
like the category of spaces with continuous open mappings as the morphisms.

10. More generally, given any class of continuous mappings that is closed under taking iden-
tities and compositions, one can define a category of topological spaces with such maps
as the morphisms. Two examples are maps that are proper (inverse images of compact
subsets are compact) or light (inverse images of points are discrete sets; see Exercise II.3.4
in gentopexercises2008.pdf from the math205A directory for more on the latter).

11. One also has a category MET–UNIF whose objects are metric spaces and whose mor-
phisms are uniformly continuous mappings (with the usual composition).

12. Similarly, there is the category MET–LIP whose objects are metric spaces and whose
morphisms are Lipschitz mappings: i.e., there is a constant M such that

d
(
f(x1), f(x2)

)
≤ M · d(x, y)

for all x and y in the domain (such an inequality is called a Lipschitz condition). Standard
results of (abstract) multivariable calculus show that if K is a compact convex set and
f : K → Rm extends to a function on an open neighborhood W of K whose coordinates
have continuous first partial derivatives, then f satisfies a Lipschitz condition.

13. Still further in the same direction, there is the category MET–ISO whose objects are
metric spaces and whose morphisms are isometries (but not necessarily surjective).

14. (A fundamentally important general construction.) Given an arbitrary category C, one
has the dual or opposite category D = COP with the same objects as C, but with
Morph D(X,Y ) = Morph C(Y,X) (note the reversal!) and the composition pairing ∗ de-
fined by g ∗ f = f og. Note that if D = COP then C = DOP.

In most of the preceding examples of categories, there is a fundamental notion of isomor-
phism, and in fact one can formulate this abstractly for an arbitrary category:

Definition. Let C be a category, and let X and Y be objects of C. A morphism f : X → Y is
an isomorphism if there is a morphism g : Y → X (an inverse) such that g of = 1X and f og = 1Y .

This generalizes notions like an invertible linear transformation, a group isomorphism, and a
homeomorphism of topological spaces.

PROPOSITION 1. Suppose that f : X → Y is an isomorphism in a category C and g and h
are inverses to f . Then h = g.

Proof. Consider the threefold composite h of og. Since h of = 1X , this is equal to g, and since
f og = 1Y , it is also equal to h.
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Functors

The examples of categories illustrate a basic principle in modern mathematics: Whenever one
defines a type of mathematical system, there is usually a corresponding type of morphism for such
systems (and in some cases there are several reasonable choices for morphisms). Since a category is
an example of a mathematical system, it is natural to ask whether there is a corresponding notion
of morphisms in this case too. In fact, there are two concepts of morphism that turn out to be
important and useful. We shall start with the simpler one.

Definition. Let C and D be categories. A covariant functor assigns (i) to each object X of C
an object T (X) of D, (ii) to each morphism f : X → Y in C a morphism T (f) : T (X)→ T (Y ) in
D such that the following hold:

(1) For each object X in C we have T (1X) = 1T (X).

(2) For each pair of morphisms f and g in C such that g of is defined, we have T (g of) =
T (g) oT (f).

HISTORICAL TRIVIA. Eilenberg and MacLane “borrowed” the word category from the philo-
sophical writings of the 18th century German philosopher I. Kant (1724–1804) and the word func-
tor from the philosophical writings of the 20th century German-American philosopher R. Carnap
(1891–1970), who was strongly influenced by Kant’s writings on the philosophy of science.

Examples of covariant functors

Numerous constructions from undergraduate and elementary graduate courses can be inter-
preted as functors; in many cases this does not shed much additional light on the objects con-
structed, but in other cases the concept does turn out to be extremely useful.

1. Given a category C, there is the identity functor from C to itself, which takes all objects
and morphisms to themselves.

2. Given a category C and a (possibly different) nonempty category D, for each object A of
D there is a constant functor kA from C to D which sends every object of C to A and
every morphism to the identity morphism 1A.

3. In categories where the objects are given by sets with some extra structure and the mor-
phisms are ordinary functions with additional properties, there are forgetful functors
which take objects to the underlying sets and morphisms to the underlying mappings
of sets. For example, there are forgetful functors from VECF, GRP, POSETS, and
TOP to SETS. Likewise, there is an obvious forgetful functor from MET–UNIF to
TOP which takes a metric space to its underlying topological space and simply views a
uniformly continuous mapping as a continuous mapping.

4. There is a power set functor P∗ on the category SETS defined as follows: The set
P∗(X) is just the set of all subsets (also known as the power set), and if f : X → Y is a
set-theoretic function, then P∗(f) : P∗(X)→ P∗(Y ) takes an element A ∈ P (X) — which
by definition is just a subset of X — to its image f [A] ⊂ Y . A short argument is needed to
verify this construction actually defines a covariant functor, but it is elementary. First, we
need to check that for every setX we have P∗(1X) = 1P (X); this follows because 1X [A] = A
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for all A ⊂ X. Next, we must check that P∗(g of) = P∗(g) oP∗(f) for all composable f
and g. But this is a consequence of the elementary identity g[ f [A] ] = g of [A].

5. If we are given two partially ordered sets and a weakly order-preserving mapping f from
the first to the second such that u ≤ v implies f(u) ≤ f(v), then f may be interpreted as
a covariant functor on the associated categories.

6. If we are given two groups and a homomorphism f from the first to the second, then f
may be interpreted as a covariant functor on the associated categories.

7. Finally, we shall give a more substantial example that played a central role in Mathematics
205B. Define a new category TOP∗ of pointed topological spaces whose objects are pairs
(X, y), where X is a topological space and y ∈ X; the point y is said to be the basepoint of
the pointed space. A morphism f : (X, y) → (Z,w) in this category will be a continuous
mapping from X to Z (usually also denoted by f) which maps y to w (i.e., a basepoint
preserving continuous mapping). The fundamental group π1(X, y) then has a natural
interpretation as a covariant functor from TOP∗ to GRP, for if f is a morphism of pointed
spaces, then then one has an associated homomorphism f∗ from π1(X, y) to π1(Z,w), and
these have the required properties that 1(X,y)∗ is the identity and (g of)∗ = g∗ of∗.

Contravariant functors and examples

Experience shows there are many instances in which it is useful to work with functors that
reverse the order of function composition; such objects are called contravariant functors.

Definition. Let C and D be categories. A contravariant functor assigns (i) to each object X of
C an object U(X) of D, (ii) to each morphism f : X → Y in C a morphism U(f) : U(Y )→ U(X)
in D (note that the domain and codomain are the opposites of those in the covariant case!) such
that the following hold:

(1) For each object X in C we have U(1X) = 1U(X).

(2) For each pair of morphisms f and g in C such that g of is defined, we have U(g of) =
U(f) oU(g).

The simplest examples of contravariant functors are given by the pseudo-identity functors,
which map the objects and morphisms in the category C to their obvious counterparts in the
opposite category COP. In fact, there is an obvious correspondence between contravariant functors
from C to D and covariant functors from C to DOP, or equivalently covariant functors from COP

to D. The best way to motivate the definition is to give some less trivial examples.

1. Let C be the category of all vector spaces over some field, and consider the construction
which associates to each vector space its dual space V ∗ of linear mappings from V to
the scalar field F . There is a simple way of defining a corresponding construction for
morphisms; if L : V → W is a linear transformation, consider the linear transformation
L∗ : W ∗ → V ∗ whose value on a linear functional h : W → F is given by L∗(h) = h oL,
which is a linear functional on V . Standard results in linear algebra show that L∗ is a
linear transformation, that L∗ is an identity map if L is an identity map, and if L is a
composite L1

oL2, then we have L∗ = L∗2
oL∗1.

2. There is a contravariant power set functor P ∗ on the category SETS defined as follows:
The set P ∗(X) is just the set of all subsets, but now if f : X → Y is a set-theoretic
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function, then P ∗(f) : P ∗(Y )→ P ∗(X) takes an element B ∈ P (Y ) — which by definition
is just a subset of Y — to its inverse image f−1[B] ⊂ X. As in the case of P∗, a short
elementary argument is needed to verify this construction actually defines a contravariant
functor. The construction preserves identity maps because 1−1

X [B] = B for all B ⊂ X,
and the identity P ∗(g of) = P ∗(f) oP ∗(g) is essentially a restatement of the elementary
identity f−1[ g−1[B] ] = (g of)−1[B].

3. Example 2 actually yields a little more. Define a Boolean algebra to be a set with two
binary operations ∩ and ∪, a unary operation x→ x′, and special elements 0 and 1 such
that the system satisfies the usual properties for unions, intersections, and complementa-
tion for the algebra P (X) of subsets of a set X, where 0 corresponds to the empty set and
1 corresponds to X. One then has an associated category BOOL–ALG whose objects are
Boolean algebras and whose morphisms preserve unions, intersection, complementation,
and the special elements. Obviously each power set P (X) is a Boolean algebra, and in
fact P ∗ defines a contravariant functor from SETS to BOOL–ALG. — In contrast, the
covariant functor P∗ does NOT define such a functor because P∗(f) does not preserves in-
tersections even though it does preserve unions (for example, we can have f [A]∩f [B] 6= ∅
when A ∩B = ∅).

4. The desirability of having both contravariant and covariant functors is illustrated by the
following examples. Given a category C, modulo foundational questions we can informally
view the set Morph C(X,Y ) of morphisms from X to Y as a function of two variables
on C. What happens if we hold one of these variables constant to get a single variable
construction? — Suppose first that we hold X constant and set AX(Y ) = Morph C(X,Y ).
Then we can make AX into a covariant functor aas follows: Given a morphism g : Y → Z,
let AX(g) take f ∈ AX(Y ) = Morph C(X,Y ) to the composite g of . The axioms for a
category then imply that AX(1Y ) is the identity and that AX(h og) = AX(h) oAX(g) if
g and h are composable. — Now suppose that we hold Y constant and set BY (X) =
Morph C(X,Y ). Then we can make BY into a contravariant functor as follows: Given a
morphism k : W → X, let BY (g) take f ∈ BY (X) = Morph C(X,Y ) to the composite f ok.
The axioms for a category then imply that BY (1X) is the identity and that BY (k oh) =
BY (h) oBY (k) if h and k are composable.

5. Given a topological space X, let CComp(X) and AComp(X) denote the sets of com-
ponents and arc components of X respectively. These constructions extend to covariant
functors from the category of topological spaces and continuous maps to the category of
sets because a continuous map f : X → Y sends a component or arc component of X
into a single component or arc component of Y . Similarly, there is a notion of quasicom-
ponents for topological space of a space is contained in a quasicomponent. component
or arc component of Y . Similarly, there is a notion of quasicomponents for topological
space such that each connected component lies in a quasicomponent (but the converse
might not hold). This notion is described in Exercise 10 on page 163 of Munkres (see also
Exercise 4 on page 236). One can show that if f : X → Y is continuous, the image of a
quasicomponent of X is contained in a quasicomponent of Y (prove this!), it follows that
one has a third functor QComp(X).

6. In Example 4, suppose that C is the category of topological spaces and continuous map-
pings, and let Y be the real numbers or complex with the usual topology. In this case
the contravariant functor BY has the algebraic structure of a commutative ring with unit
given by pointwise multiplication of continuous real valued functions, and if f : W → X
is continuous then BY (f) is in fact a homomorphism of commutative rings with unit.
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Therefore, if we define a category of continuous rings with unit (whose morphisms are
unit preserving homomorphisms), it follows that BY defines a functor from topological
spaces and continuous mappings to commutative rings with unit. — In contrast, there is
no natural, comparable structure for the covariant functor AX if X is the real numbers.

Properties of functors

One of the most important properties of functors is that they send isomorphic objects in one
one category to isomorphic objects in the other.

PROPOSITION 2. Let C and D be categories, let T : C → D be a (covariant or contravari-
ant) functor, and let f : X → Y be an isomorphism in C. Then T (f) is an isomorphism in D.
Furthermore, if g is the inverse to f , then T (g) is the inverse to T (f).

Proof. CASE 1. Suppose the functors are covariant. Then we have

1T (X) = T (1X) = T (g of) = T (g) oT (f)

1T (Y ) = T (1Y ) = T (f og) = T (f) oT (g)

and hence T (g) is inverse to T (f).

CASE 2. Suppose that the functors are contravariant. Then we have

1T (X) = T (1X) = T (g of) = T (f) oT (g)

1T (Y ) = T (1Y ) = T (f og) = T (g) oT (f)

and hence T (g) is inverse to T (f).

The next result states that a composite of two functors is also a functor.

PROPOSITION 3. Suppose that C, D and E are categories and that F : C → D and
G : D → E are functors (in each case, the functor may be covariant or contravariant). Then the
composite G oF also defines a functor; this functor is covariant if F and G are both covariant or
contravariant, and it is contravariant if one of F, G is covariant and the other is contravariant.

This result has a curious implication:

COROLLARY 4. There is a “category of small categories” SMCAT whose objects are small
categories and whose morphisms are covariant functors from one small category to another.

SEMANTIC TRIVIA. (For readers who are familiar with contravariant and covariant tensors.) In
the applications of linear algebra to differential geometry and topology, one often sees objects called
contravariant tensors and covariant tensors, and for finite-dimensional vector spaces these are given
by finitely iterated tensor products V ⊗ · · · ⊗ V of V with itself in the contravariant case and
similar objects involving V ∗ in the covariant case; for our purposes it will suffice to say that if
U and W are vector spaces with bases {ui } and {wj } respectively, then their tensor product
U ⊗W is a vector space having a basis of the form {ui ⊗wj } where i and j are allowed to vary
independently (hence the dimension of U ⊗W is [dimU ] · [dimW ]). Since the identity functor on
the category of vector spaces is covariant and the dual space functor is covariant, at first it might
seem that something is the opposite of what it should be. However, the classical tensor notation
refers to the manner in which the coordinates transform; now coordinates for a vector space may
be viewed linear functionals on that space, or equivalently as elements of the dual space, which is
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contravariant. Therefore individual coordinates on V ⊗ · · · ⊗ V correspond to elements of the
dual space of the latter, and in fact the construction which associates the space (V ⊗ · · · ⊗ V )∗

to V defines a contravariant functor on the category of finite-dimensional vector spaces over the
given scalars; likewise, the construction which associates the space (V ∗ ⊗ · · · ⊗ V ∗)∗ to V defines
a covariant functor on the category of finite-dimensional vector spaces over the given scalars.

Natural transformations

The final concept in category theory to be considered here is the notion of natural trans-
formation from one functor to another. In fact, the motivation for category theory in the work
of Eilenberg and MacLane was a need to discuss “natural mappings” in a mathematically precise
manner. There are actually two definitions, depending whether both functors under consideration
are covariant or contravariant.

Definition. Let C and D be categories, and let F and G be covariant functors from C to D. A
natural transformation θ from F to G associates to each object X in C a morphism θX : F (X)→
G(X) such that for each morphism f : X → Y we have θY

oF (f) = G(f) oθX .

The morphism identity is often expressed graphically by saying the the diagram

F (X)
F (f)−−−−−→ F (Y )

yθX

yθY

G(X)
G(f)−−−−−→ G(Y )

is a commutative diagram. The idea is that all paths of arrows from one object-vertex to another
yield the same function.

The definition of a natural transformation of contravariant functors is similar.

Definition. Let C and D be categories, and let T and U be contravariant functors from C
to D. A natural transformation θ from F to G associates to each object X in C a morphism
θX : T (X)→ U(X) such that for each morphism f : X → Y we have θX

oT (f) = U(f) oθY .

Here is the corresponding commutative diagram:

T (Y )
T (f)−−−−−→ T (X)

yθY

yθX

U(Y )
U(f)−−−−−→ U(X)

Once again we need to give some decent examples

1. Given any functor T : C → D, there is an obvious identity transformation jT from T to
itself; specifically, jT

X is the identity map on T (X).

2. Let C be one of the categories as above for which reasonable products and diagonal maps
can be defined. Then there is a natural diagonal transformation ∆ from the identity to
the diagonal functor such that for each object X the mapping ∆X : X → X ×X is the
diagonal map.

3. On the category of vector spaces over some field F , one can iterate the dual space functor
to obtain a covariant double dual space functor (V ∗)∗. There is a natural transformation
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eV : V → (V ∗)∗ defined as follows: For each v ∈ V , let eV (v) : V ∗ → F be the linear
function given by evaluation at v; in other words, the value of eV (v) on a linear functional
f is given by f(v). If V is finite-dimensional, this map is an isomorphism (a natural
isomorphism).

Note that if V is finite-dimensional then V and its dual space V ∗ are isomorphic, but the
isomorphism depends upon some additional data such as the choice of a basis, an inner product, or
more generally a nondegenerate bilinear form. In contrast, the natural isomorphism eV does not
depend upon any such choices.

4. In the category of sets or topological spaces and continuous mappings, let A be an arbitrary
object and define functors LA and RA such that LA(X) = A×X and RA(X) = X × A.
One can make these into covariant functors by sending the morphism f : X → Y to
LA(X) = 1A × f and RA(f) = f × 1A. There is an obvious natural transformation
t : L + A → RA such that tA(X) : A × X → X × A sends (a, x) to (x, a) for all a ∈ A
and x ∈ X, and it is an elementary exercise to verify that this is a natural transformation
such that each map tA(X) is an isomorphism; in other words, tA is a natural isomorphism
from the functor LA to the functor RA.

5. For the morphism examples AX and BY discussed previously, if h : W → X is a morphism
in the category, then it defines a natural transformation h∗ : AX → AW which sends
f ∈ AX(Y ) to f oh ∈ AW (Y ); the naturality condition follows from associativity of
composition. Similarly, if g : Y → Z is a morphism then there is a natural transformation
g∗ : BY → BZ sending f to g of ; once again, the key naturality condition follows from
the associativity of composition. Furthermore, h∗ is a natural isomorphism if h is an
isomorphism and g∗ is a natural isomorphism if g is an isomorphism,

6. For the arc component, connected component and quasicomponent functors described
above, there are natural transformations θ : AComp→ CComp reflecting the fact that
every arc component of a topological space X is contained in a connected component and
ψ : CComp→ QComp reflecting the fact that every connected component of a space is
contained in a quasicomponent.

A basic exercise in category theory is to prove the following:

PROPOSITION 5. There are 1− 1 correspondences between natural transformations from AX

to AW and morphisms from W to X and between natural transformations from BY to BZ and
morphisms from Y to Z.

Sketch of proof. The main point is to retrieve the function from the natural transformation.
Given θ : AX → AW , one does this by considering the image of 1X , and given ϕ : BY → BZ , one
does this by considering the image of 1Y .

Finally, we have the following result on natural isomorphisms (i.e., natural transformations θ
such that each map θX is an isomorphism):

PROPOSITION 6. Let θ : F → G be a natural transformation such that for each object X
the map θX is an isomorphism. The there is a natural transformation ϕX : G → F such that for
each X the map ϕX is inverse to θX .

Proof. The main thing to check is that the relevant diagrams are commutative; we shall only do
the case where F and G are covariant, leaving the other case to the reader. Since θX

oϕX is the
identity on G(X) and ϕX

oθX is the identity on F (X), we have

θY
oϕY

oG(f) = G(f) = g(f) oθX
oϕX = θY

oF (f) oϕX

14



and if we compose with the inverse θX on the left of these expressions we obtain

ϕY
oG(f) = F (f) oϕX

which is the naturality condition.

We say that two functors are naturally isomorphic if there is a natural isomorphism from one
to the other.

Equivalences of categories

One can obviously define an isomorphism of categories to be a covariant functor T : C → D
for which there is an inverse covariant functor U : D→ C such that the composites T oU and U oT
are the identities on C and D respectively. However, for many purposes one needs a less rigid
notion of category equivalence.

Definition. A covariant functor T : C→ D is a category equivalence (or equivalence of categories)
if there is a covariant functor U : D → C such that the composites T oU and U oT are naturally

isomorphic to the identities on C and D respectively.

In particular, if T and U define an equivalence of categories, then every object in D is isomor-
phic to an object of the form T (X), and conversely every object in C is isomorphic to an object of
the form U(A).

I.2 : Barycentric coordinates and polyhedra

(Hatcher, § 2.1)

Drawings to illustrate many of the concepts in this and other sections of the notes can be found
in the following document(s):

http://math.ucr.edu/∼res/math246A/algtop1figures01w09.pdf
A more leisurely and detailed discussion of barycentric coordinates, and more generally the

use of linear algebra to study geometric problems, is contained in Section I.4 of the following online
document, in which ∗ is one of the options in the preceding paragraph:

http://math.ucr.edu/∼res/math133/geometrynotes1.pdf
The file math133exercises1.pdf in the same directory has further material on these topics,

and pages 13–30 of

http://math.ucr.edu/∼res/progeom/pgnotes02.pdf
go further into the geometric uses of barycentric coordinates. Another standard reference is Chapter
I of the following book:

J. F. P. Hudson. Piecewise Linear Topology . W. A. Benjamin, New York , 1969.
(Online: http://www.maths.ed.ac.uk/∼aar/surgery/hudson.pdf)

An extremely detailed study of the topics in this section appears in the following online book:

http://www.cis.penn.edu/∼jean/gbooks/convexpoly.html

15



Finally, Eilenberg and Steenrod also covers the portions this material needed for algebraic and
geometric topology in greater detail.

Affine independence and barycentric coordinates

The crucial algebraic information is contained in the following result.

PROPOSITION 1. Suppose that the ordered set of vectors v0, · · · ,vn lie in some vector space
V . Then the vectors v1 − v0, · · · ,vn − vn are linearly independent if and only if every vector
x ∈ V has at most one expansion of the form t0v0 + · · · + tnvn such that t0 + · · · + tn = 1.

A finite ordered set of vectors satisfying either (hence both) conditions is said to be affinely
independent. Note that since the second condition does not depend upon the choice of ordering, a
set of vectors is affinely independent if and only if for some arbitrary j the vectors vi − vj (where
i 6= j) is linearly independent. A linear combination in which the coefficients add up to 1 is called
an affine combination.

Sketch of proof. To show the first statement implies the second, use the fact that x − v0

has at most one expansion as a linear combination of v1 − v0, · · · ,vn − vn. To prove the
reverse implication, show that if x − v0 has more than one expansion as a linear combination of
v1−v0, · · · ,vn−vn, then x has more than one expansion as an affine combination of v0, · · · ,vn.

COROLLARY 2. If S = {v0, · · · ,vn } is affinely independent, then every nonempty subset of
S is affinely independent.

This follows immediately from the uniqueness of expansions of vectors as affine combinations
of vectors in S.

The coefficients ti are called barycentric coordinates. If we put physical weights of ti
units at the respective vertices vi, then the center of gravity for the system will be at the point
t0v0 + · · · + tnvn. If, say, n = 2, then this center of gravity will be inside the triangle with the
given three vertices if and only if each ti is positive, and it will be on the triangle defined by these
vertices if and only if each ti is nonnegative and at least one is equal to zero. A discussion of this
physical interpretation in the 2-dimensional case appears in the following online document:

http://math.ucr.edu/∼ res/math133/centroids.pdf

We should note that the discussion in this online reference can be extended to arbitrary (finite)
dimensions.

More generally, if v0, · · · ,vn are affinely independent then the n-simplex with vertices
v0, · · · ,vn is the set of all points expressible as affine combinations such that each coefficient is
nonnegative (i.e., convex combinations).

Frequently the n-simplex described above will be denoted by v0 · · · vn. Note that if n = 0,
then a 0-simplex consists of a single point, while a 1-simplex is a closed line segment, a 2-simplex
is given by a triangle and the points that lie “inside” the triangle (also called a solid triangular
region), and a 3-simplex is given by a pyramid with a triangular base (i.e., a tetrahedron) together
with the points inside this pyramid (also called a solid tetrahedral region).

The following definition will also play an important role in our discussions.

Definition. If v0, · · · ,vn form the vertices of a simplex v0 · · · vn, then the faces of this
simples are the simplices whose vertices are given by proper subsets of {v0, · · · ,vn }; note that
such proper subsets are affinely independent by Corollary 2. If a proper subset T ⊂ S has k + 1
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elements, then we shall say that the simplex ∆(T ) whose vertices are given by T is a k-face of the
original n-simplex, which in this notation is equal to ∆(S).

Definition. The standard n-simplex ∆n is the set of all points (t0, · · · , tn) ∈ Rn+1 such that
tj ≥ 0 for all j and

∑
j tj = 1. Note that the set of unit vectors { e0, · · · , en } is affinely

independent because the set { e1 − e0, · · · , en+1 − e0 } is linearly independent.

Sets with simplicial decompositions

In calculus textbooks, the derivation of Green’s Theorem is often completed only for special
sorts of closed regions such as the simplex whose vertices are (0, 0), (1, 0) and (1, 1). One then
finds discussions indicating how the general case can be retrieved from special cases by splitting
a general region into pieces that are nicely homeomorphic to closed regions of the special type; in
particular, there is one such discussion on page 523 of the text by Marsden and Tromba, and it is
taken further in the online document with figures for these notes (see Figure I.2.8 in the document
algtop1figures01w09.pdf).

Here are the formal descriptions.

Definition. A subset P ⊂ Rm is a polyhedron if

(i) P is a finite union of simplices A1, · · · , Aq,

(ii) For each pair of indices i 6= j, the intersection Ai ∩Aj is a common face.

The simplices A1, · · · , Aq are said to form a simplicial decomposition of P , and if K is the
collection of simplices given by the Aj and all their faces, then the ordered pair (P,K) is called a
(finite) simplicial complex.

If X is an arbitrary topological space, then a (finite) triangulation of X consists of a simplicial
complex (P,K) and a homeomorphism t : P → X.

With these definitions, we can say that Green’s Theorem holds for “decent” closed plane regions
because Such regions have nice triangulations.

SIMPLE EXAMPLE. Consider the solid rectangle in the plane given by [a, b] × [c, d], where a < b
and c < d. Everyday geometrical experience shows this can be split into two 2-simplices along a
diagonal, and in fact it is the union of two 2-simplices, one with vertices (a, c), (a, d) and (b, d),
and the other with vertices (a, c), (b, c) and (b, d). A point (x, y) which lies in the solid rectangle
will be in the first simplex if and only if

(y − c)(b− a) ≤ (d− c)(x− a)

and this point will be in the second simplex if and only if

(y − c)(b− a) ≥ (d− c)(x− a)

Generalizations of this example will play an important role in the standard approach to algebraic
topology.

If (P,K) is a simplicial complex, then a subset L ⊂ K is said to be a subcomplex if σ ∈ L
implies that every face of σ also lies in L. The union of the simplices in L is a closed subspace of
P which is denoted by |L|. With this notation we have P = |K|.
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LINEAR GRAPHS. The final chapter of Munkres studies 1-dimensional complexes (called linear
graphs on p. 394) in considerable detail, and the commentaries file in the 205B directory contains
some comments (see the discussion for Section 64 which begins at the bottom of page 29 and
continues into page 30). One way of viewing this section and the next is to think of them as laying
the foundations for effective study of similar objects in higher dimensions.

The study of 1-dimensional complexes is the subject called graph theory ; it is significant for
both its theory and applications, but all of this is well beyond the scope of this course. Here are
some written and electronic references:

J. A. Bondy and U. S. R. Murty. Graph Theory: An Advanced Course. Springer-
Verlag, New York-etc., 2008. ISBN: 1-846-28969-6.

G. Chartrand. Introductory Graph Theory [UNABRIDGED]. Dover Publications,
New York, 1984. ISBN: 0-486-24775-9.

http://en.wikipedia.org/wiki/Graph theory

http://www.utm.edu/departments/math/graph/

http://www.math.fau.edu/locke/GRAPHTHE.HTM

http://www.math.uni-hamburg.de/home/diestel/books/[continue]
graph.theory/GraphTheoryIII.counted.pdf

SIMPLICIAL COMPLEXES AND ∆-COMPLEXES. Our definition of simplicial complex is more re-
strictive than Hatcher’s definition; this is explained on page 107 of Hatcher (see the third paragraph
following Example 2.5). Each concept has its advantages and disadvantages. However, terms like
∆-complex or ∆-set are often also used for other constructions, and one should not assume that
the meanings in other publications are “obviously” equivalent to the meaning in Hatcher.

Decompositions of prisms

The rectangular example has the following important generalization:

PROPOSITION 3. Suppose that A ⊂ Rm is a simplex with vertices v0, · · · ,vn. Then
A× [0, 1] ⊂ Rm+1 has a simplicial decomposition with exactly n+ 1 simplices of dimension n+ 1.

Proof. For each i between 0 and n let xi = (vi, 0) and yi = (vi, 1). We claim that the vectors

x0, · · · ,xi,yi · · · ,yn

are affinely independent and the corresponding simplices

x0 · · · xiyi · · · yn

(where 0 ≤ i ≤ n) form a simplicial decomposition of A× [0, 1].

An illustration for the case n = 2 is given in Figure I.2.11 of algtop1figures01w09.pdf).

To prove affine independence, take a fixed value of i and suppose we have

∑

j<i

tj xj + axi + byi +
∑

j>i

tj yj =
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∑

j<i

t′j xj + a′ xi + b′ yi +
∑

j>i

t′j yj

where the coefficients in each expression add up to 1; the summation will be taken to be zero if the
limits reduce to j < 0 or j > n. If we view R

m+1 as R
m × R and project down to R

m we obtain
the equation

∑

j<i

tj vj + (a+ b)xi +
∑

j>i

tj vj =
∑

j<i

t′j vj + (a′ + b′)vi +
∑

j>i

t′j vj

and by the affine independence of the vectors vk it follows that tj = t′j if j 6= i and also that
a + b = a′ + b′. On the other hand, if we project down to the second coordinate (the copy of R),
then we obtain

b +
∑

j>i

tj = b′ +
∑

j>i

t′j

and since tj = t′j for all j it follows that b = b′. Finally, since the sum of all the coefficients is
equal to 1, the preceding observations imply that 1− a = 1− a′, and therefore we also have a = a′.
Therefore the vectors

x0, · · · ,xi,yi · · · ,yn

are affinely independent.

We shall next check that every point (z, u) ∈ A× [0, 1] lies in one of the simplices

x0 · · · xiyi · · · yn

listed above. Write z =
∑

j tj vj where tj ≥ 0 for all j and
∑

tj = 1. It follows that u ≤ 1 =∑
j≥0 tj ; let i ≤ n be the largest nonnegative integer such that u ≤ ∑j≥i tj . We claim that (z, u)

lies in the simplex x0 · · · xiyi · · · yn. Let b =
∑

j≥i (tj − u), and let a = u−
(∑

j>i tj

)
= ti−b.

Then we have a, b ≥ 0, and

(z, u) =
∑

j<i

tj xj + axi + byi +
∑

j>i

tj yj

where all the coefficients are nonnegative and add up to 1.

To conclude the proof, we need to show that the intersection of two simplices as above is a
common face. Suppose that k < i and

(z, u) ∈
(
x0 · · · xiyi · · · yn

)
∩
(
x0 · · · xkyk · · · yn

)
.

Then we must have

∑

j≤i

pj xj +
∑

j≥i

qj yj =
∑

j≤k

p′j xj +
∑

j≥k

q′j yj

where all the coefficients are nonnegative and the coefficients on each side of the equation add up to
1. If we project down to Rm we obtain pj +qj = p′j +q′j for all j (by convention, we take a coefficient
to be zero if it does not lie in the corresponding summation as above). It follows immediately that
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pj = p′j if j < k, while pj = q′j if k < j < i and qj = q′j if j > i. Furthermore, if we project down
to the last coordinate we see that

u =
∑

j≥i

qj =
∑

j≥k

q′k .

Since qj = q′j if j > i, it follows that

qi =
∑

k≤j≤i

q′j

and since all the coefficients are nonnegative, it follows that qi ≥ q′i. On the other hand, we also
have q′i = p′i + q′i = pi + qi, and hence we conclude that qi = q′i and pi = 0. Applying the first of
these, we see that

0 =
∑

k≤j<i

q′j

and hence the nonnegativity of the coefficients implies that q ′j = 0 for all j such that k ≤ j < i.
We also know that p′j = 0 for j > k, and therefore it follows that p′j + q′j = 0 when k < j < i The
equations pj + qj = p′j + q′j and the nonnegativity of all terms now imply that pj = qj = 0 when
k < j < i.

The conclusions of the preceding paragraph imply that the point (z, u) actually lies on the
simplex

x0 · · · xkyi · · · yn

and since the latter is a common face of x0 · · · xiyi · · · yn and x0 · · · xkyk · · · yn it follows that
the (n+ 1)-simplices

x0 · · · xiyi · · · yn

(where 0 ≤ i ≤ n) form a simplicial decomposition of A× [0, 1].

COROLLARY 4. If P ⊂ Rm is a polyhedron, then A× [0, 1] ⊂ Rm+1 is also a polyhedron.

Before discussing the proof of this we note one important special case.

COROLLARY 5. For each positive integer m, the hypercube [0, 1]m ⊂ Rm is a polyhedron.

Proof of Corollary 5 from Corollary 4. If m = 1 this follows because the unit interval is a
1-simplex; by Corollary 4, if the result is true for m = k then it is also true for m = k+1. Therefore
the result is true for all m by induction.

Proof of Corollary 4. Let K be a simplicial decomposition for P , and let K∗ be obtained from
K by including all the faces of simplices in K. Choose a linear ordering of the vertices in K∗ (note
that there are only finitely many). For each vertex v of K∗, as before let x = (v, 0) and y = (v, 1).
Then P × [0, 1] is the union of all simplices of the form

x0 · · · xiyi · · · yn

where vi < vi+1 with respect to the given linear ordering of the vertices in K∗, and furthermore
the vertices vi are the vertices of a simplex in K∗. The set P × [0, 1] is the union of these simplices
by Proposition 3 and the fact that P is the union of the simplices v0 · · · vn. The fact that these
simplices form a simplicial decomposition will follow from the construction and the next result.

LEMMA 6. Suppose that we have two polyhedra P1 and P2 in Rq , and there exist simplicial
decompositions K1 and K2 such that the following hold:
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(i) Both K1 and K2 are closed under taking faces of simplices.

(ii) The set L1 of all simplices in K1 contained in P1 ∩ P2 equals the set L2 of all simplices in
K2, and this collection determines a simplicial decomposition of P1 ∩ P2.

Then K1 ∪K2 determines a simplicial decomposition of P1 ∪ P2.

The hypothesis clearly applies to the construction in Proposition 3, so Corollary 4 indeed
follows once we prove Lemma 6.

Proof of Lemma 6. It follows immediately that P1∪P2 is the union of the points of the simplices
in K1 ∪K2. Suppose now that we are given an intersection of two simplices in the latter. This
intersection will be a common face if both simplices lie in either K1 or K2, so the only remaining
cases are those where one simplex α lies in K1 and the other simplex β lies in K2.

We know that α ∩ β is convex. Furthermore, by the hypotheses we know that α ∩ β must be
a union of simplices that are faces of both α and β. Therefore it follows that every point in α ∩ β
is a convex combination of the vertices which lie in α ∩ β, and consequently α ∩ β is the common
face determined by all vertices which lie in α ∩ β.

GENERALIZATIONS — CONVEX LINEAR CELLS. [Also known as CONVEX POLYTOPES] These
are closed bounded subsets of some R

n defined by a finite number of linear equations or inequalities.
Note that sets defined by finite systems of this type are automatically convex. Prisms, simplices
and cubes are obvious examples, but of course there are also many others. For every such object,
there is a finite set E of extreme points such that the cell is the set of all convex combinations
of the extreme points; in other words, for each x in the cell and each extreme point e there are
scalars te such that te ≥ 0,

∑
e te = 1, and x =

∑
e te e. A basic theorem states that every convex

linear cell has a simplicial decomposition for which E is the set of vertices. Proofs of this statement
appear in [MunkresEDT] and the book by Hudson; we shall discuss some additional facts about
such objects later in these notes.

Some easily stated but challenging problems on convex polytopes in R3 are contained in the
file wswGeometrytest.pdf, and solutions to these exercises using vector geometry are given in the
file wswvectorproofs.pdf.

DEFAULT HYPOTHESIS. Unless specifically indicated otherwise, we shall assume that the set of
simplices in a simplicial decomposition K is closed under taking faces. In order to justify this, we
need to know that if K∗ is obtained from K by adding all the faces of simplices in the latter, then
the intersection of two simplices in K∗ is a (possibly empty) common face. — To see this, suppose
that α and β are simplices in K∗, where α and β are faces of the simplices α′ and β′ in K. If
x ∈ α ∩ β, then x is a convex combination of vertices in α′ ∩ β′, and in fact these vertices must lie
in both α and β. Since α ∩ β is convex, it follows that α ∩ β must be the simplex whose vertices
lie in α and in β.

I.3 : Subdivisions

(Hatcher, § 2.1)

For many purposes it is convenient or necessary to replace a simplicial decomposition K of a
polyhedron P by another decomposition L with smaller simplices. More precisely, we would like
the smaller simplices in L to determine simplicial decompositions for each of the simplices in K.
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Simple examples

1. If P is a 1-simplex with vertices x and y, and K is the standard decomposition given by
P and the endpoints, then there is a subdivision L given by trisecting P ; specifically, the
vertices are given by x, y, z = 2

3x + 1
3y, and w = 1

3x + 2
3y, and the 1-simplices are xw,

wz and zy. This is illustrated as Figure I.3.1 in the file algtop1figures01w09.pdf.

2. Similarly, if [a, b] is a closed interval in the real line and we are given a finite sequence
a = t0 < · · · < tm = b, then these points and the intervals [tj−1, tj ], where 1 ≤ j ≤ n,
form a subdivision of the standard decomposition of [a, b].

3. If P is the 2-simplex with vertices x, y and z, and K is the standard decomposition given
by P and its faces, then there is an obvious decomposition L which splits P into two
simplices xyz and xyw, where w = 1

2y + 1
2z is the midpoint of the 1-simplex yz. Similar

eamples exist if we take z = ay + (1 − a)z, where a is an arbitrary number such that
0 < a < 1 (see Figure I.3.2 in the file algtop1figures01w09.pdf).

Definition of subdivisions

Each of the preceding examples is consistent with the following general concept.

Definition. Let (P,K) be a simplicial complex, and let L be a simplicial decomposition of P .
Then L is called a (linear) subdivision of K if every simplex of L is contained in a simplex of K.

The following observation is very elementary, but we shall need it in the discussion below.

PROPOSITION 0. Suppose P is a polyhedron with simplicial decompositions K, L and M
such that L is a subdivision of K and M is a subdivision of L. Then M is also a subdivision of K.

Figure I.3.3 in algtop1figures01w09.pdf depicts two subdivisions of a 2-simplex that are
different from the one in Example 3 above. As indicated by Figure I.3.4 in the same document, in
general if we have two simplicial decompositions of a polyhedron then neither is a subdivision of
the other. However, it is possible to prove the following:

If K and L are simplicial decompositions of the same polyhedron P , then there
is a third decomposition which is a subdivision of both K and L.

Proving this requires more machinery than we need for other purposes, and since we shall not need
the existence of such subdivisions in this course we shall simply note that one can prove this result
using methods from the second part of [MunkresEDT]:

SUBDIVISION AND SUBCOMPLEXES. These two concepts are related by the following ele-
mentary results.

PROPOSITION 1. Suppose that (P,K) is a simplicial complex and that (P1,K1) is a subcom-
plex of (P,K). If L is a subdivision of K and L1 is the set of all simplices in L which are contained
in P1, then (P1,L1) is a subcomplex of (P,L).

Recall our Default Hypothesis (at the end of Section I.2) that all simplicial decompositions
should be closed under taking faces unless specifically stated otherwise.

COROLLARY 2. Let P , K and L be as above, and let A ⊂ P be a simplex of K. Then L
determines a simplicial decomposition of A.
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Barycentric subdivisions

We are particularly interested in describing a systematic construction for subdivisions that
works for all simplicial complexes and allows one to form decompositions for which the diameters
of all the simplices are very small. This will generalize a standard method for partitioning an interval
[a, b] into small intervals by first splitting the interval in half at the midpoint, then splitting the
two subintervals in half similarly, and so on. If this is done n times, the length of each interval in
the subdivision is equal to (b− a)/2n, and if ε > 0 is arbitrary then for sufficiently large values of
n the lengths of the subintervales will all be less than ε.

The generalization of this to higher dimensions is called the barycentric subdivision.

Definition. Given an n-simplex A ⊂ Rm with vertices v0, · · · ,vn, the barycenter bA of A is
given by

bA =
1

n+ 1

n∑

i=0

vi .

If n ≤ m ≤ 3, this corresponds to the physical center of mass for A, assuming the density in A is
uniform.

Definition. If P ⊂ R
m is a polyhedron and (P,K) is a simplicial complex, then the barycentric

subdivision B(K) consists of all simplices having the form b0 · · · bk, where (i) each bj is the
barycenter of a simplex Aj ∈ K, (ii) for each j > 0 the simplex Aj−1 is a face of Aj .

In order to justify this definition, we need to prove the following result:

PROPOSITION 3. Let A be an n-simplex, suppose that we are given simplices Aj ⊂ A such
that Aj−1 is a face of Aj for each j, and let bj be the barycenter of Aj . Then the set of vertices
{b0, · · · ,bq} is affinely independent.

Proof. We can extend the sequence of simplices {Aj } to obtain a new sequence C0 ⊂ · · · ⊂
Cn = A such that each Ck is obtained from the preceding one Ck−1 by adding a single vertex, and
it suffices to prove the result for the corresponding sequence of barycenters. Therefore we shall
assume henceforth in this proof that each Aj is obtained from its predecessor by adding a single
vertex and that A is the last simplex in the list.

It suffices to show that the vectors bj − b0 are linearly independent. For each j let vji
be the

vertex in Aj that is not in its predecessor. Then for each j > 0 we have

bj − b0 =


 1

j + 1

∑

k≤j

vik


 − v0 =

1

j + 1

∑

k≤j

(vik
− vi0) .

which is a linear combination of the linearly independent vectors vi1 −vi0 , · · · ,vij
−vi0 such that

the coefficient of the last vector in the set is nonzero.

If we let uk = vik
− vi0 , then it follows that for all k > 0 we have bk − b0 = akuk + yk,

where yk is a linear combination of u1, · · · ,uk−1 and ak 6= 0. Since the vectors uj are linearly
independent, it follows that the vectors bk − b0 (where 0 < k ≤ n) are linearly independent and
hence the vectors b0, · · · ,bn are affinely independent.

The simplest nontrivial examples of barycentric subdivisions are given by 2-simplices, and
Figure I.3.6 in algtopfigures gives a typical example. We shall enumerate the simplices in such a
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barycentric subdivision using the definition. For the sake of definiteness, we shall call the simplex
P and the vertices v0, v1 and v2.

(i) The 0-simplices are merely the barycenters bA, where A runs through all the nonempty
faces of P and P itself. There are 7 such simplices and hence 7 vertices in B(K).

(ii) The 1-simplices have the form bAbC , where A is a face of C. There are three possible
choices for the ordered pair (dimA,dimC); namely, (0, 1), (0, 2) and (1, 2). The number
of pairs {A, C} for the case (0, 1) is equal to 6, the number for the case (0, 2) is equal to
3, and the number for the case (0, 1) is also equal to 3, so there are 12 different 1-simplices
in B(K).

(iii) The 2-simplices have the form bAbCbE , where A is a face of C and C is a face of E.
There are 6 possible choices for {A, C, E}.

Obviously one could carry out a similar analysis for a 3-simplex but the details would be more
complicated.

Of course, it is absolutely essential to verify the that barycentric subdivision construction
actually defines simplicial decompositions.

THEOREM 4. If (P,K) is a simplicial complex and B(K) is the barycentric subdivision of
K, then (P,B(K) ) is also a simplicial complex (in other words, the collection B(K) determines a
simplicial decomposition of P ).

Proof. We shall concentrate on the special case where P is a simplex. The general case can be
recovered from the special case and Lemma I.2.6.

Suppose now that P is a simplex with vertices vertices v0, · · · ,vn. We first show that P is
the union of the simplices in B(K). Given x ∈ P , write x as a convex combination

∑
j tj vj, and

rearrange the scalars into a sequence

tk0
≥ tk1

· · · ≥ tkn

(this is not necessarily unique, and in particular it is not so if tu = tv for u 6= v). For each i between
0 and n, let Ai be the simplex whose vertices are vk0

, · · · ,vki
. We CLAIM that x ∈ b0 · · · bn,

where bi is the barycenter of Ai.

Let si = tki
− tki+1

for 0 ≤ i ≤ n − 1 and set sn = tkn
. Then si ≥ 0 for all i, and it is

elementary to verify that

x =
n∑

i=0

(i+ 1) si bi , where
n∑

1=0

(i+ 1) si =
n∑

i=0

tki
= 1 .

Therefore x ∈ b0 · · · bn, so that every point in A lies on one of the simplices in the barycentric
subdivision.

To conclude the proof, we must show that the intersection of two simplices in B(K) is a
common face. First of all, it suffices to show this for a pair of n-dimensional simplices; this follows
from the argument following the Default Hypothesis at the end of Section I.2.

Suppose now that α and γ are n-simplices in B(K). Then the vertices of α are barycenters of
simplices A0, · · · , An where Aj has one more vertex than Aj−1 for each j, and the vertices of γ are
barycenters of simplices C0, · · · , Cn where Cj has one more vertex than Cj−1 for each j. Label the
vertices of the original simplex as vi0 , · · · ,vin

where Aj = vi0 · · · vij
and also as vk0

, · · · ,vkn
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where Cj = vk0
· · · vkj

. The key point is to determine how (i0, · · · , in) and (k0, · · · , kn) are
related.

If x lies on the original simplex and x is written as a convex combination
∑

j tj vj , then we
have shown that x ∈ A if ti0 ≤ · · · ≤ tin

. In fact, we can reverse the steps in that argument to show
that if x ∈ A then conversely we have ti0 ≤ · · · ≤ tin

. Similarly, if x ∈ C then tk0
≤ · · · ≤ tkn

.
Therefore if x ∈ A ∩ C then tij

= tkj
for all j. Choose m0, · · · ,mq ∈ {0, · · · , n} such that

tmj
> tmj+1

, with the convention that tn+1 = 0, and split {0, · · · ,n } into equivalence classes
M0, · · · ,Mq such that Mj is the set of all u such that tu = tmj

. It follows that x lies on the
simplex z0 · · · zq , where zj is the barycenter of the simplex whose vertices are M0 ∪ · · · ∪Mj .
The vertices of this simplex are vertices of both A and C. Since A ∩C is convex, this implies that
it is the simplex whose vertices are those which lie in A ∩ C, and thus A ∩ C is a face of both A
and C.

Terminology. Frequently the complex (P,B(K)) is called the derived complex of (P,K). The
barycentric subdivision construction can be iterated, and thus one obtains a sequence of decom-
positions Br(K). The latter is often called the rth barycentric subdivision of K and (P,Br(K)) is
often called the rth derived complex of (P,K).

Diameters of barycentric subdivisions

Given a metric space (X,d), its diameter is the least upper bound of the distances d(y, z),
where y, z ∈ X; if the set of distances is unbounded, we shall follow standard usage and say that
the diameter is infinite or equal to ∞.

PROPOSITION 5. Let A ⊂ Rn be an n-simplex with vertices v0, · · · ,vn. Then the diameter
of A is the maximum of the distances |vi − vj |, where 0 ≤ i, j ≤ n.

Proof. Let x,y ∈ A, and write these as convex combinations x =
∑

j tj vj and y =
∑

j sj vj .
Then

x− y =

(
∑

i

si

)
x −


∑

j

tj


 y =

∑

i,j

sitj vj −
∑

i,j

sitj vi .

Since 0 ≤ si, tj ≤ 1 for all i and j, we have 0 ≤ sitj ≤ 1 for all i and j, so that

d(x, y) = |x− y| ≤
∣∣∑

i,j

sitj (xj − xi)
∣∣ ≤

∑

i,j

sitj |vi − vj | ≤
∑

i,j

sitjmax |vk − v`| = max |vk − v`|

as required.

Definition. If K is a simplicial decomposition of a polyhedron P , then the mesh of K, written
µ(K), is the maximum diameter of the simplices in K.

PROPOSITION 6. In the preceding notation, the mesh of K is the maximum distance |v−w|,
where v and w are vertices of some simplex in K.

The main result in this discussion is a comparison of the mesh of K with the mesh of B(K).

PROPOSITION 7. Suppose that (P,K) be a simplicial complex and that all simplices of K
have dimension ≤ n. Then

µ(B(K) ) ≤ n

n+ 1
· µ(K) .
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Before proving this result, we shall derive some of its consequences.

COROLLARY 8. In the preceding notation, if r ≥ 1 then

µ(Br(K) ) ≤
(

n

n+ 1

)r

· µ(K) .

COROLLARY 9. In the preceding notation, if ε > 0 then there exists an r0 such that r ≥ r0
implies µ(Br(K) ) < ε.

Corollary 9 follows from Corollary 8 and the fact that

lim
r→∞

(
n

n+ 1

)r

= 0 .

Proof of Proposition 7. By Proposition 5 and the definition of barycentric subdivision we
know that µ(B(K) ) is the maximum of all distances |bA−bC |, where bA and bC are barycenters
of simplices A, C ∈ K such that A ⊂ C. Suppose that A is an a-simplex and C is a c-simplex, so
that 0 ≤ a < c ≤ n. We then have

|bA − bC | =

∣∣∣∣∣
1

a+ 1

∑

v∈A

v − 1

c+ 1

∑

w∈C

w

∣∣∣∣∣

and as in the proof of Proposition 5 we have

1

a+ 1

∑

v∈A

v − 1

c+ 1

∑

w∈C

w =
1

(a+ 1)(c + 1)

∑

v,w

(v −w) .

There are (a + 1) terms in this summation which vanish (namely, those for which w = v), and
therefore we have

|bA − bC | =

∣∣∣∣∣∣
1

(a+ 1)(c + 1)

∑

v 6=w

(v −w)

∣∣∣∣∣∣
≤ 1

(a+ 1)(c+ 1)

∑

v 6=w

|v −w| ≤

1

(a+ 1)(c + 1)
·
(
maxv,w

)
|v −w| ·

[
(a+ 1)(c+ 1)− (a+ 1)

]
=

(
maxv,w |v −w|

)
·
(

1 − 1

c+ 1

)
≤

(
1 − 1

n+ 1

)
.

At the last step we use c ≤ n and the fact that the function 1− (x/n) is an increasing function of
x if x > 0. The inequality in the corollary follows directly from the precedng chain of inequalities.

One further consequence of Proposition 7 will be important for our purposes.

COROLLARY 10. Let (P,K) be a simplicial complex, and let W be an open covering of P .
Then there is a positive integer r0 such that r ≥ r0 implies that every simplex of µ(Br(K) ) is
contained in an element of W.

Proof. By construction, P is a compact subset of a the metric space Rm. Therefore the Lebesgue
Covering Lemma implies the existence of a real number η > 0 such that every subset of diameter

26



< η is contained in an element ofW. If we choose r0 > 0 such that r ≥ r0 implies µ(Br(K) ) < η,
then Br(K) will have the required properties.

I.4 : Cones and suspensions

(Hatcher, 0)

These two basic constructions are described on pages 8–9 of Hatcher. We shall say a little
more about them and apply them to construct a homeomorphism from the standard n-disk and
(n− 1)-sphere to the standard n-simplex and its boundary.

The constructions and their properties

Definition. Let X be a topological space. The cone on X, usually written C(X), is the quotient
of X × [0, 1] modulo the equivalence relation whose equivalence classes are all one point subsets of
the form { (x, t) }, where t 6= 0, and the subset X × {0}.

The first result explains the motivation for the name.

PROPOSITION 1. If X is a compact subset of R
n, then C(X) is homeomorphic to a subset of

R
n+1 so that the image of X × {1} in C(X) corresponds to X × {0} and every point of the image

is on a closed line setment joining a point of the latter to the last unit vector (0, · · · , 0, 1).
Proof. Define a continuous map g from X × [0, 1] to Rn+1 sending (x, t) to (tx, 1 − t). This
passes to a continuous 1–1 mapping f from C(X) to Rn+1 whose image is the set described in the
statement of the result, and since C(X) is a (continuous image of a) compact space it follows that
f maps the cone homeomorphically onto its image.

Examples. The cone on Sn is canonically homeomorphic to Dn+1; specifically, the map
Sn × [0, 1] → Dn+1 which sends (x, t) to (1 − t)x passes to a map of quotients C(Sn) → Dn+1

which is a homeomorphism. Also, the cone on Dn is canonically homeomorphic to Dn+1. Perhaps
the quickest way to see this is the following: The preceding argument shows that the cone on
the upper hemisphere Dn

+ of Sn (where the last coordinate is nonnegative) is the set of points in
Dn+1 whose last coordinate is nonnegative (its “upper half”), so we have to show that the latter
is homeomorphic to Dn+1. If we let |x|2 and |x|∞ denote the appropriate norms on Rn+1 (see the
205A notes), then the homeomorphism h of R

n+1 to itself defined by

h(x) =
|x|∞
|x|2

· x if x 6= 0

and h(0) = 0 (continuity here must be checked, but this is not difficult) will send the upper
half of Dn+1 to the subspace [−1, 1]n × [0, 1] ⊂ Rn+1. Since this product of closed intervals is
homeomorphic to [−1, 1]n and the latter is homeomorphic to Dn+1 by the inverse of the map h,
the assertion about C(Dn) and Dn+1 follows.

The cone construction extends to a covariant functor as follows: If f : X → Y is continuous,
then the map f × id[0,1] : X × [0, 1]→ Y × [0, 1] is also continuous, and if qW : W × [0, 1]→ C(W )
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is the quotient projection for W = X or Y , then passage to quotients defines a unique continuous
mapping C(f) : C(X)→ C(Y ) such that

C(f) oqX = qY o
(
f × id[0,1]

)
.

It is a routine exercise to verify that this construction satisfies the covariant functor identities
C(id[0,1]) = idC(X) and C(g of) = C(g) oC(f).

Definition. Let X be a topological space. The (unreduced) suspension on X, usually written
S(X), is the quotient of X × [−1, 1] modulo the equivalence relation whose equivalence classes are
all one point subsets of the form { (x, t) }, where |t| < 1, and the subsets X × {±}.

The suspension of a circle is illustrated in the figures file. The name arises because the original
space is effectively “suspended” between the north and south poles (the classes of X×{± 1} in the
quotient), being held in place by the “cables” {x} × [−1, 1].

We have the following analog of Propositions 1 for cones.

PROPOSITION 3. If X is a compact subset of R
n, then S(X) is homeomorphic to a subset

of Rn+1 so that the images of X × {± 1} in S(X) correspond to the point (0, · · · 0,± 1) and the
homeomorphism is the inclusion on X × {0}.
Proof. This is very similar to the proof for cones. Define a continuous map g from X × [−1, 1] to
Rn+1 sending (x, t) to

(
(1−|t|)x, t

)
. This passes to a continuous 1–1 mapping f from S(X) to Rn+1

whose image is the set described in the statement of the result, and since C(X) is a (continuous
image of a) compact space it follows that f maps the suspension homeomorphically onto its image.

Examples. The suspension on Sn is canonically homeomorphic to Sn+1 by the map sending
the class of (x, t) ∈ Sn × [0, 1] to

(√
1− t2 · x, t) ∈ R

n+1. Similarly, the suspension of Dn is
canonically homeomorphic to Dn+1, and this can be shown by adapting the previous argument
which proved that the cone on Dn is homeomorphic to the upper half of Dn+1 (the cone is just the
upper half of the suspension; use symmetry considerations to define the homeomorphism on the
lower halves of everything).

The suspension construction extends to a covariant functor as follows: If f : X → Y is
continuous, then the map f × id[−1,1] : X × [0, 1] → Y × [−1, 1] is also continuous, and if qW :
W × [−1, 1]→ S(W ) is the quotient projection for W = X or Y , then passage to quotients defines
a unique continuous mapping S(f) : S(X)→ S(Y ) such that

S(f) oqX = qY o
(
f × id[0,1]

)
.

It is a routine exercise to verify that this construction satisfies the covariant functor identities
S(id[0,1]) = idS(X) and S(g of) = S(g) oS(f).

Observe that projection onto the second coordinate from X × [−1, 1] to [−1, 1] passes to a
continuous map from S(X), and we shall say that the value of this map on a point is the latter’s
second coordinate or latitude (the second term is suggested by the drawing in the figures file).

Definition. If X is a topological space, then the upper and lower cones C±(X) are the sub-
spaces of S(X) consisting of all classes of all poinst whose second coordinates are nonnegative and
nonpositive respectively.

By construction, both the upper and lower cones on X are canonically homeomorphic to the
cone on X; in fact, these concepts extend to subfunctors C± of the suspension functor (in other
words, the inclusions of the upper and lower cones are natural transformations).
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A homeomorphism problem

Given a simplex A ⊂ R
k with vertex set V = {v0, · · · ,vn }, its boundary ∂A is the union of

the faces with vertex sets Vi = V −{xi}, where i = 0, · , n. For each i, the simplex Ai with vertex
set Vi is called the ith face of A.

We shall use the concepts of cones and suspensions to prove the following result, which will be
needed in subsequent units.

THEOREM 4. For each n ≥ 0 there is a homeomorphism from the n-simplex ∆n to the n-disk
Dn which maps ∂∆n onto Sn−1 and sends the barycenter of ∆n to the center 0 of Dn.

This result is obvious if n = 0 because ∆0 and D0 each contain only one point. Let An be the
statement of the theorem for a fixed nonnegative integer n, and let Bn be the following statement:

There is a homeomorphism from ∂∆n to Sn−1 such that the lower half corre-
sponds to the 0th face and the upper half corresponds to the union of the other
faces.

We shall prove that An implies Bn+1 for all n ≥ 0 and Bn implies An for all n ≥ 1. If we combine
this with the validity of A0, we obtain Theorem 4.

Proof that Bn implies An for all n ≥ 1. Let h : ∂∆n → Sn−1 be the homeomorphism which
exists by Bn. Consider the maps f0 : Sn−1 × [0, 1] → Dn and g0 : ∂∆n × [0, 1] → ∆n defined
by f0(x, t) = tx and g0(x, t) = tx + (1 − t)b, where b is the barycenter of ∆n. Since each of
these maps is constant on the set of all points where t = 0, it follows that they pass to continuous
maps on the cones of the domains, and we shall denote these maps by f : C(Sn−1 → Dn and
g : C(∂∆n) → ∆n. Elementary considerations from linear algebra imply that f is bijective, and
the basic results on barycentric subdivisions imply that g is also bijective; since all relevant spaces
are compact Hausdorff, it follows that these maps are homeomorphisms and that the composite
f oC(h) og−1 defines a homeomorphism from ∆n to Dn. By construction the maps f and g send
the bases of the cones to Sn−1 and ∂∆n respectively, and since the cone homeomorphism C(h)
sends the base of one cone to the base of the other it follows that the composite homeomorphism
sends the boundary ot the simplex to the unit sphere.

We shall prove that An implies Bn+1 for all n ≥ 0 and Bn implies An for all n ≥ 1. If we combine
this with the validity of A0, we obtain Theorem 4.

Proof that An implies Bn+1 for all n ≥ 0. The idea in this case is similar, but we shall use
suspensions instead of cones.

As usual, let ∂n+1∆n+1 denote the face opposite the last vertex en+1 (so the vertices of this
face are ei for 0 ≤ i ≤ n). Then An implies the existence of a homeomorphism from ∆n = ∂n+1∆n

to Dn ∼= C−(Sn−1). Let E denote the union of all the remaining faces of ∆n+1, and let ϕ be the
homeomorphism from ∂∆n to Sn−1 which is given by An as above. Define a map k0 from ∂∆n×[0, 1]
to E which sends x to (1− t)x + ten+1. Since every point on E lies on a line segment joining en+1

to a point on ∂∆n, one can proceed as before to conclude that k passes to a homeomorphism k
from C+(∂∆n) to E, and its restriction to ∂∆n is the identity. If we piece together these two
homeomorphisms, we obtain a homeomorphism from S(∂∆n) to ∂∆n+1.

Since the suspension construction is functorial, we also know that the suspension of the map-
ping ϕ defines a homeomorphism from the suspension of ∂∆n to the suspension of Sn−1. To
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complete the proof, we need to construct a homeomorphism from S(Sn−1) to Sn which sends the
upper and lower cones to the upper and lower hemispheres respectively. The ideal behind this is
given by the drawing in the figures file. Formally, the homeomorphism ψ is given by taking the
continuous map ψ0 : Sn−1× [−1, 1]→ Sn sending (x, t) to (

√
1− t2x, t) and verifying that it passes

to a continuous bijective map ψ defined on S(Sn−1).

NOTE. Another proof of this result is given in an earlier version of these notes. The latter
does not require the use of cones and suspensions, but the argument is considerably longer.
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II . Homotopy and cell complexes

The notion of homotopy is introduced in Mathematics 205B, and it is central to both algebraic
and geometric topology as well as many of the applications of topology to algebra and analysis.
Part of the material is a review of topics from the second part of Munkres’ book; some of the revies
topics and most of the new material are also covered in Chapters 0 and 1 of Hatcher.

The new material covers two related topics. The first (in Section 3) is to describe generaliza-
tions of simplicial complexes called cell complexes that are more convenient for many purposes
of algebraic topology, and the second (in Section 4) provides a fundamental illustration of the
usefulness of such objects. One objective is an important result on the following central problem:

EXTENSION QUESTION. Suppose that X and Y are topological spaces, that A is a
subspace of X, and g : A → Y is continuous. Is there an extension of g to a continuous mapping
f : X → Y (in other words, a continuous mapping f such that the restriction f |A is equal to g)?

One of the main results in Section 4 provides an extremely useful answer to this question in
terms of the main concepts of this unit: If X is a cell complex and A is a subcomplex, then g has
a continuous extension to X if and only if some mapping homotopic to g has such an extension.

This and subsequent units of the notes will be less self-contained than Unit I, and there will
be numerous references to Munkres or Hatcher for details.

II.1 : Homotopic mappings

(Hatcher, Ch. 0; Munkres, §§ 51, 58)

The general notion of homotopy for (continuous) mappings is defined on page 323 of Munkres
and page 3 of Hatcher. Following standard practice we shall write f ' g to indicate that f is
homotopic to g. We shall state some basic properties of homotopic mappings that are particularly
important for our purposes.

PROPOSITION 1. (Munkres, Lemma 51.1, p. 324.) The binary relation ' of homotopy on
the set of continuous mappings from one topological space X to a second topological space Y is an
equivalence relation.

In the proposition above, we allow the possibility that X = Y . The set of homotopy classes of
continuous mappings from X to Y is generally denoted by [X,Y ].

PROPOSITION 2. (Munkres, Exercise 1, p. 330.) If we are given continuous maps f0 ' f1 :
X → Y and g0 ' g1 : Y → Z, then g0 of0 ' g1 of1.

COROLLARY 3. There is a category HTOP (the homotopy category) whose objects are
topological spaces and whose morphisms are given by [X,Y ] such that if u ∈ [X,Y ] is represented
by f and v ∈ [X,Y ] is represented by g, then v ou = [g of ].

Not surprisingly, the identity morphism in [X,X] is the homotopy class of the identity on X.

Given a continuous mapping f : X → Y , then f represents an isomorphism in HTOP if and
only if there is a mapping g : Y → X such that g of ' 1X and f og ' 1Y . A mapping f which
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satisfies these properties is said to be a homotopy equivalence. — Since every map is homotopic
to itself, it follows immediately that every homeomorphism is a homotopy equivalence.

Definition. Two topological spaces X and Y are homotopy equivalent if there is a homotopy
equivalence from X to Y (in which case there is also a homotopy equivalence from Y to X). Note
that the relation “X is homotopy equivalent to Y ” is reflexive, symmetric and transitive. Frequently
one also says that X and Y have the same homotopy type.

Special types of homotopy equivalences

We shall begin with a homotopy between to basic types of continuous mappings.

Definition. A contracting homotopy of a topological space X is a mapping H : X × [0, 1] → X
such that H(x, 0) = x for all x ∈ X and H|X × {1} is a constant mapping.

We shall say that a topological space is contractible if it admits a contracting homotopy.

An arbitrary topological space X is not necessarily contractible, and in some sense most
spaces are not. For example, if X is the circle S1 this is not the case because in [S1, S1] ∼= π1(S

1, 1)
the identity map and the constant map determine different homotopy classes. In fact, one can
manufacture many similar examples using the following lemma.

PROPOSITION 4. If A, B and C are topological spaces, then there is an isomorphism

θ : [A,B × C] ∼= [A,B]× [A,C]

sending a homotopy class [f ] to the ordered pair ([pB
of ], [pC

of ]), where pB : B × C → B and
pC : B × C → C are the coordinate projections.

Sketch of proof. The mapping θ is well-defined by the preceding two results. It is onto, for if we
are given an ordered pair of homotopy classes ([g], [h]), then this class is θ([f ]), where f : A→ B×C
is the unique continuous mapping such that pB

of = g and pC
of = h. To see it is also 1–1, suppose

θ([f ]) = θ([f ′]). Then there are homotopies K : pB
of ' pB

of ′ and L : pC
of ' pC

of ′, and if
we take the map H whose projections onto B and C are K and L respectively, then H defines a
homotopy from f to f ′.

COROLLARY 5. If X is a nonempty topological space, then X × S1 is NOT contractible.

The proof of this result is relatively simple and formal, but it is important to understand it
because the argument reflects the viewpoint underlying much of algebraic topology.

Proof. It will suffice to show that the identity map on X × S1 is not homotopic to a constant
map. Let q : X × S1 to S1 be projection onto the second coordinate, let j : S1 → X × S1 project
to the constant map on the first factor and to the identity on the second, and let k be a constant
map from X ×S1 to itself. If the identity on X×S1 is homotopic to a constant map, then we have

[id(S1)] = [q oj] = [q] o [j] = [q] o [id(X × S1)] o [j] =

[q] o [k] o [j] = [q ok oj] = [constant]

which contradicts the fact that the identity on S1 is not homotopic to a constant. Therefore the
identity on X × S1 cannot be homotopic to a constant map.

One can clearly “leverage” this result to construct further examples; in particular, if T k is the
product of k copies of S1, then an inductive argument combined with the preceding corollary shows
that X × T k is not contractible.

32



Example. If K is a convex subset of Rn, then K is contractible by a so-called straight line
homotopy : Take an arbitrary point y ∈ K and set

H(x, t) = (1− t)x + ty

so that H shrinks K down to {y} along the straight lines joining points x ∈ K to the chosen point
y.

In the preceding example, the inclusion of {y} in K is a special case of the following general
concept.

Definition. Let X be a topological space, and let A ⊂ X with inclusion mapping iA. Then A
is said to be a deformation retract of X if there is a map r : X → A such that r|A is the identity
and iA orA is homotopic to the identity on X. — If there is a homotopy H : ia orA ' 1X such that
H(a, t) = a for all (a, t) ∈ A × [0, 1] (i.e., the homotopy is fixed on A), we say that A is a strong
deformation retract of X.

More generally, in a category C, a morphism f : X → Y is said to be a retract if there is a
morphism g : Y → X such that g of = 1X , and a morphism h : A→ B is said to be a retraction if
there is a morphism k : B → A such that k oh = 1B . — If A is a deformation retract of X, then
the inclusion iA is a retract and the mapping r is a retraction.

Example. The sphere Sn is a strong deformation retract of Rn+1 − {0}. The standard choice of
r in this case is given by r(x) = |x|−1 · x and i or is homotopic to the identity by the straight line
homotopy sending (x, t) to tx + (1− t)r(x).

Counting homotopy classes

We shall conclude this section by proving a result mentioned earlier.

THEOREM 6. If K is a compact subset of Rn for some n and U is an open subset of Rm for
some m, then [K,U ] is countable.

One major step in the proof is the following result of independent interest:

LEMMA 7. Let X and U be as above, and let f : K → U be continuous. Then there is some
δ > 0 such that if g : K → U is another continuous function satisfying d( f(x), g(x) ) < δ for all x,
then g is homotopic to f as mappings from X to U .

Sketch of proof of Lemma 7. We can define a continuous function h : K → R by h(x) =
d( f(x),Rm − U ). In fact, this function is positive valued because f maps K into U , and by the
compactness of K it takes a minimum value δ. Therefore, if x is an arbitrary point in K and
d( f(x), v ) < δ, then the closed line segment joining f(x) to v lies entirely in U . Consequently, if
g satisfies the condition in the lemma for this choice of δ, the image of the straight line homotopy
from f to g lies entirely in U .

NOTE AND EXAMPLE. The preceding lemma reflects one reason for including the codomain
as an extra piece of data in our definition of a function. Given any two functions f and g as above,
they are always homotopic as maps into Rm by a straight line homotopy. The crucial point in the
lemma is that the image of the homotopy is contained in U . — Without the constraint involving a
positive constant δ, the result is false. To see this, let K = S1 and U = R2−{0}, and take f to be
the usual inclusion. Then f is not homotopic to a constant map, for if r : U → K is the retraction
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described above, then r of is not homotopic to a constant, but if f were homotopic to a constant
map k, then we would have

id(S1) ' r of ' r ok = constant

and we know this is not the case.

The observations of the previous paragraph have the following positive implication: If H :
S1 × [0, 1] → R2 is a homotopy from the inclusion map to the constant map, then there is some
(x0, t0 ) ∈ S1 × [0, 1] such that H(x0, t0 ) = 0.

A major objective of the course is to develop tools that will yield generalizations of the pre-
ceding observation to mappings from Sn × [0, 1]→ Rn+1.

Sketch of proof of Theorem 6. Suppose that f : K → U as above is continuous, and let δ > 0
be given as in Lemma 7. Denote the coordinate projections of f by fi, where 1 ≤ i ≤ m.

By the Stone-Weierstrass Approximation Theorem, there are polynomial functions pi on K ⊂
Rn such that

| (pi|K)− fi | <
δ

2
√
n

for each i, and in fact we can also find polynomials gi with rational coefficients such that

| (pi|K)− (gi|K) | <
δ

2
√
n
.

If we let g : Rn → Rn be the function whose coordinates are given by the polynomials gi, it follows
that | f − (g|K) | < δ.

Standard set-theoretic computations show that there are only countably many polynomials in
n variables with rational coefficients, and it follows that there are only countably many choices for
g.

Combining the preceding two paragraphs with Lemma 7, we conclude that f is homotopic to
one of the countable family of continuous functions whose coordinates are given by polynomials in
n variables with rational coefficients, and therefore the set [K,U ] is countable.

Using the fact that the inclusion of S1 in R
2 − {0} is a homotopy equivalence, one can show

that
Z ∼= [S1, S1] ∼= [S1,R2 − {0}]

(see the exercises for this section) and therefore the cardinality bound of ℵ0 on [K,U ] is the best
possible general result.

Important standard notation

Unless stated otherwise, in the remainder of these notes the symbol I will denote the closed
unit interval [0, 1].
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II.2 : The fundamental group

(Hatcher, §§ 1.1 – 1.3, 1.A – 1.B; Munkres, §§ 52, 54)

This subject was treated in Mathematics 205B, and it might be useful to review this material
before proceeding.

Section 1.B of Hatcher is devoted to proving a fundamental result in topology which has
numerous uses in geometry and complex variables:

THEOREM 1. Let G be an arbitrary group. Then there is an arcwise connected, locally arcwise
connected, and locally simply connected Hausdorff space BG such that π1(BG,pt.) is isomorphic
to G and the universal covering space of G is contractible. Furthermore, if X and Y are spaces
which have these properties, then X is homotopy equivalent to Y .

The existence argument is contained in Example 1.B.7 of Hatcher, while the uniqueness up to
homotopy type is stated as Theorem 1.B.8 and established by the argument in Proposition 1.B.9.

Definition. A topological space X is (strongly) aspherical if it is arcwise connected and it has
a contractible covering space.

As noted in Hatcher, the torus T k is aspherical because its universal covering space is Rk, and
the covering space projection is given by p(x1, · · · , xk) =

(
exp(2π i x1), · · · , exp(2π i xk)

)
. Also,

as noted in Hatcher, all compact connected surfaces except S2 and RP2 are aspherical.

Generalization. (For students who have taken Mathematics 205C or are familiar with the
notion of sectional curvature in a riemannian manifold.) There is an important generalization of
all these facts due to J. Hadamard (1865–1963): If M is a compact smooth n-manifold which has a
riemannian metric whose sectional curvature is everywhere nonpositive, then the universal covering
of M is diffeomorphic to Rn. — We shall not use this result at any future point in the course.

II.3 : Abstract cell complexes

(Hatcher, Ch. 0)

One possible way to view a polyhedron is to think of it as an object that is constructible in a
finite number of steps as follows:

(0) Start with the finite set P0 of vertices,

(n) If Pn−1 is the partial polyhedron constructed at Step (n−1), at Step (n) one adds finitely
many simplices Sj , identifying each face of each simplex Sj with a simplex in Pn−1.

In fact, one can do this in order of increasing dimension, attaching all 1-simplices to the vertices
at Step 1, then attaching 2-simplices along the boundary faces at Step 2, and so on. It is often
useful in topology to consider objects that are generalizations of this procedure that are more
flexible in certain key respects. The objects used these days in algebraic topology are known as
cell complexes.

One immediate difference between cell complexes and simplicial complexes is that the former
use the closed unit disk Dn ⊂ Rn and its boundary Sn−1 in place of an n-simplex ∆ and its

35



boundary ∂∆n. Since the results of Section I.4 imply that Dn is homeomorphic to ∆n such that
Sn−1 corresponds to ∂∆n, it follows that one can view simplicial complexes as special cases of cell
complexes.

Adjoining cells to a space

We shall now give the basic step in the construction of cell complexes. The discussion below
relies heavily on the material in Unit V of the online Mathematics 205A notes that were previously
cited.

Definition. Let X be a compact Hausdorff space and let A be a closed subset of X. If k
is a nonnegative integer, we shall say that the space X is obtained from A by adjoining finitely
many k-cells if there are continuous mappings fi : Sk−1 → A for i = 1, · · · , n such that X is
homeomorphic to the quotient space of the topological disjoint union

A q
(
{1, · · · , N} ×Dk

)

modulo the equivalence relation generated by identifying (j,x) ∈ {j}×Sk−1 with fj(x) ∈ A, where
the homeomorphism maps A ⊂ X to the image of A in the quotient by the canonical mapping.

By construction, there is a 1–1 correspondence of sets between X and

A q
(
{1, · · · , N} × open(Dk)

)

where open(Dk) ⊂ Dk is the complement of the boundary sphere. The set Ej ⊂ X corresponding
to the image of {j}×Dk in the quotient is called a (closed) k-cell, and the subset EO

j corresponding

to the image of {j} × open(Dk) in the quotient is called an open k-cell. One can then restate the
observation in the first sentence of the paragraph to say that X is a union of A and the open k-cells,
and these subsets are pairwise disjoint.

Before discussing some topological properties of a space obtained by adjoining k-cells, we shall
consider some special cases.

Example 1. Let (P,K) be a simplicial complex,let Pk be the union of all k-simplices in K,
and let Pk−1 be defined similarly. Then the whole point of stating and proving Theorem 1 was to
justify an assertion that Pk is obtained from Pk−1 by attaching k-cells, one for each k-simplex in
K. Specifically, for each k-simplex A the map fA is given by the composite of the homeomorphism
Sk−1 → ∂A with the inclusion ∂A ⊂ Pk−1. The homeomorphism from the quotient of the disjoint
union to Pk is given by starting with the composite

Pk−1

(
q {1, · · · , N} ×Dk

)
−→ Pk−1 qA A −→ Pk

where qA runs over all the k-simplices of K, the first map is a disjoint union of homeomorphisms
on the pieces where the maps of Theorem 1 are used to define the homeomorphisms {j}×Dk ∼= A,
and the second map is inclusion on each disjoint summand. This composite passes to a map of
the quotient of the space on the left modulo the equivalence relation described above, and it is
straightforward to show this map is 1–1 onto and hence a homeomorphism (all relevant spaces are
compact Hausdorff).

Example 2. (GRAPHS) As in Section 64 of Munkres, one may define a finite (vertex-edge)
graph to be a space obtained from a finite discrete space by adjoining 1-cells. Frequently there
is an added condition that the attaching maps for the boundaries should be 1–1 (so that each
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1-cell has two endpoints), and the weaker notion introduced here (and in Hatcher) is then called a
pseudograph. The graph corresponds to a simplicial decomposition of a simplicial complex if and
only if different 1-cells have different endpoints. The simplest example of a graph structure that
is not a pseudograph and does not come from a simplicial complex is given by taking X = S 1

and A = S0 with two 1-cells corresponding to the upper and lower semicircles E1
± in the complex

plane. The attaching maps are defined to map the endpoints of D1 = [−1, 1] bijectively to −1, 1.
— Another example that is historically noteworthy is the Königsberg Bridge Graph, in which the
vertices correspond to four land masses in the city of Königsberg (now Kaliningrad, Russia) and the
1-cells (or edges) correspond to the bridges which joined pairs of land masses in the 18th century
(see the figures file for drawing). This is another example of a graph that does not come from a
simplicial complex but is not a pseudograph; if there are two bridges joining the same pairs of land
masses, then the graph has two edges with the same boundary points. — In the next unit we shall
see how Euler’s analysis of this graph may be stated in terms of algebraic topology.

We shall encounter further examples after we define the main concept of this section. For the
time being, we mention a few simple properties of spaces obtained by attaching k-cells for some k

PROPOSITION 2. If X is obtained from A by attaching 0-cells, then X is homeomorphic to
the disjoint union of A with a finite discrete space.

This is true because the 0-disk D0 has an empty unit sphere, so there are no attaching maps
and the equivalence relation on the space A q {1, · , N} is the equality relation.

PROPOSITION 3. If X is obtained from A by attaching k-cells, then each open cell EO
j is an

open subset of X, and each such open cell is homeomorphic to open(Dk).

Proof. Each closed cell is compact because it is a continuous image of Dk, and hence each such
subset is closed in X. By the set-theoretic description given above, the open cell EO

j is just the
complement of the closed set

A ∪
⋃

i6=j

Ei

and hence it is open in X. Since the quotient space map from the disjoint union to X defines a
1–1 onto continuous mapping from open(Dk) to EO

j , it suffices to show that an open subset of

open(Dk) is sent to an open subset of EO
j . Let

ϕ : A q
(
{1, · · · , N} ×Dk

)
−→ X

be the continuous onto quotient map corresponding to the cell attachments, and suppose that U is
open in {j} × open(Dk). By construction we then have

U = ϕ−1
[
ϕ[U ]

]

and thus ϕ[U ] is open in X by the definition of the quotient topology.

The last result in this subsection implies that the inclusion of A in X is homotopically well-
behaved if X is obtained from A by adjoining k-cells.

PROPOSITION 4. If X is obtained from A by attaching k-cells and U is an open subset of X
containing A, then there is an open subset V such that

A ⊂ V ⊂ V ⊂ U

and A is a strong deformation retract of both V and V .
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The figures file contains an drawing for the case N = 1.

Proof. As in the preceding argument, take

ϕ : A (q {1, · · · , N} ) ×Dk −→ X

to be the continuous onto map corresponding to the k-cell attachments.

Let F = X −U , and let F0 = ϕ−1[F ], so that F0 corresponds to a disjoint union qj Fj , where
each Fj is a compact subset of open(Dk); compactness follows because the image of each Fj in X
is a closed subset of the compact k-cell Ej . Therefore we can find constants cj such that 0 < cj < 1
and Fj is contained in the open disk of radius cj about the origin in {j}×Dk; let c be the maximum
of the numbers cj , and let V ⊂ X be the image under ϕ of the set

W = A q


⋃

j

{j} × { x ∈ Dk | c < |x| ≤ 1 }


 .

Then V is open because it is the complement of a compact set, and it follows that V is the image
of

Y = A


q

⋃

j

{j} × { x ∈ Dk | c ≤ |x| ≤ 1 }


 .

Each of the sets W and Y is a strong deformation retract of

B = A q


⋃

j

{j} × Sk−1


 .

Specifically, the homotopies deforming W and Y into B are the identity on A and map each of
the sets { c < |x| ≤ 1 }, { c ≤ |x| ≤ 1 } to Sk−1 by sending a (necessarily nonzero) vector
y to |y|−1y and taking a staight line homotopy to join these two points. A direct check of the
equivalence relation defining ϕ shows that the associated maps and homotopies W → B →W and
Y → B → Y pass to the quotients V → A → V and V → A → V , and these quotient maps
display A as a strong deformation retract of both V and V .

Cell complex structures

By the preceding discussion, a simplicial complex (P,K) has a finite, linearly ordered chain of
closed subspaces

∅ = P−1 ⊂ P0 ⊂ · · · ⊂ Pm = P

such that for each k satisfying 0 ≤ k ≤ m, the subspace Pk is obtained from Pk−1 by attaching
finitely many k-cells. We shall generalize this property into a definition for arbitrary cell complex
structures.

Definition. Let X be a topological space. A finite cell complex structure (or finite CW structure)
on X is a chain E of closed subspaces

∅ = X−1 ⊂ X0 ⊂ · · · ⊂ Xm = X
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such that for each k satisfying 0 ≤ k ≤ m, the subspace Xk is obtained from Xk−1 by attaching
finitely many k-cells. The subspaceXk is called the k-skeleton ofX, or more correctly the k-skeleton
of (X, E)

At this level of abstraction, the notion of cell complex structure is due to J. H. C. Whitehead
(1904–1960); his definition extended to infinite cell complex structures and the letters CW were
described as abbreviations for two properties of the infinite complexes that are explained in the
Appendix of Hatcher’s book, but one should also note that the letters also represent Whitehead’s
last two initials.

It follows immediately that simplicial complexes are examples of cell complexes. Numerous
further examples appear on pages 5–8 of Hatcher. Furthermore, the ∆-complexes discussed on
pages 102–104 are also examples of cell complexes. In analogy with (edge-vertex) graphs, the main
difference between ∆-complexes and simplicial complexes is that two k-simplices in a ∆-complex
may have the same faces, but two k-simplices in a simplicial complex have at most a single (k− 1)-
face in common.

Because of the following result, one often describes a cell complex structure as a cellular
decomposition of X.

PROPOSITION 5. If X is a space and E is a cell decomposition of X, then every point of X
lies on exactly one open cell of X.

Proof. Since X = ∪k (Xk −Xk−1), it follows that every point y ∈ X lies in a exactly subset of
the form Xk−Xk−1. Therefore there is at most one value of k such that x can lie on an open k-cell.
Furthermore, since Xk −Xk−1 is a union of the open k-cells and the latter are pairwise disjoint, it
follows that x lies on exactly one of these open k-cells.

NOTE. If a cell complex has an n-cell for some n > 0 and 0 < m < n, the cell complex might not
have any m-cells (in contrast to the situation for, say, simplicial complexes); see Example 0.3 on
page 6 of Hatcher.

Finally, we shall give a slightly different definition of subcomplex than the one in Hatcher.

Definition. If (X, E) is a cell complex, we say that a closed subspace A ⊂ X determines a cell
subcomplex if for each k ≥ 0 the set Ak = Xk ∩A is obtained from Ak−1 by attaching k-cells such
that the every k-cell for A is also a k-cell for X.

There is an simple relationship between this notion of cell subcomplex and the previous defi-
nition of subcomplex for a simplicial complex; the proof is straightforward.

PROPOSITION 6. If (P,K) is a simplicial complex and (P1,K1) is a simplicial subcomplex,
then P1 also determines a cell subcomplex.

Finally, here are two further observations regarding subcomplexes. Again, the proofs are
straightforward.

PROPOSITION 7. If X is a cell complex such that A ⊂ X determines a subcomplex of X and
B ⊂ A determines a subcomplex of A, then B also determines a subcomplex of X. Likewise, if B
determines a subcomplex of X then B determines a subcomplex of A.

PROPOSITION 8. If X is a cell complex such that A ⊂ X determines a subcomplex of X,
then for each k ≥ 0 the set Xk ∪A determines a subcomplex of X.
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II.4 : The Homotopy Extension Property

(Hatcher, Ch. 0, § 2.1)

In this section we shall bring together several concepts from the preceding sections. The basis
is the following central Extension Question stated at the beginning of this unit, and our first result
describes a condition under which this question always has an affirmative answer.

PROPSITION 1. Suppose that X and Y are topological spaces, that A ⊂ X is a retract,
and that g : A → Y is continuous. Then there is an extension of g to a continuous mapping
f : X → Y .

Proof. Let r : X → A be a continuous function such that r|A is the identity, and define f = g or.
Then if a ∈ A we have f(a) = g or(a) = g( r(a) ), and the latter is equal to g(a) because r|A is the
identity.

The hypothesis of the proposition is fairly rigid, but the result itself is a key step in proving a
general result on the Extension Question.

THEOREM 2. (HOMOTOPY EXTENSION PROPERTY) Let (X, E) be a cell complex, and
suppose that A determines a subcomplex. Suppose that Y is a topological space, that g : A → Y
is a continuous map, and f : X → Y is a continuous map such that f |A is homotopic to g. Then
there is a continuous map G : X → Y such that G|A = g.

COROLLARY 3. Suppose that X and A are as above and that g : A → Y is homotopic to a
constant map. Then g extends to a continuous function from X to Y .

COROLLARY 4. Suppose that X and A are as above and that g : A→ X is homotopic to the
inclusion map. Then g extends to a continuous function from X to itself.

Corollary 3 follows because every constant map from A to Y extends to the analogous constant
map from X to Y , and Corollary 4 follows because the inclusion of A in X extends continuously
to the identity map from X to itself.

One important step in the proof of the Homotopy Extension Property relies upon the following
result:

PROPOSITION 5. For all k > 0 the set Dk × {0} ∪ Sk−1 × [0, 1] is a strong deformation
retract of Dk × [0, 1].

Proof. This argument is outlined in Proposition 0.16 on page 15 of Hatcher, and there is a
drawing to illustrate the proof in the figures document.

The retraction r : Dk × [0, 1] → Dk × {0} ∪ Sk−1 × [0, 1] is defined by a radial projection
with center (0, 2) ∈ Dk×R. As indicated by the drawing, the formula for r depends upon whether
2|x|+ t ≥ 2 or 2|x| + t ≤ 2. Specifically, if 2|x|+ t ≥ 2 then

r(x, t) =
1

|x| (x, 2|x|+ t− 2)

while if 2|x|+ t ≤ 2 then we have

r(x, t) =
1

2

(
(2− t)x, 0

)

40



and these are consistent when 2|x|+ t = 2 then both formulas yield the value |x|−1(x, 0). Elemen-
tary but slightly tedious calculation then implies that r(x, t) always lies in Dk× [0, 1], and likewise
that r is the identity on Dk ×{0} ∪ Sk−1× [0, 1]. The homotopy from inclusion or to the identity
is then the straight line homotopy

H(x, t; s) = (1− s) · r(x, t) + s · (x, t)

and this completes the proof of the proposition.

Proof of Theorem 2. In the course of the proof we shall need the following basic fact: If A
and B are compact Hausdorff spaces and ϕ : A → B is a quotient map in the sense of Munkres’
book, then for each compact Hausdorff space C the product map ϕ× 1C : A× C → B × C is also
a quotient map. — This follows because ϕ× 1C is closed, continuous and surjective.

Since the homotopy relation on continuous functions is transitive, a standard recursive argu-
ment reduces the proof of the theorem to the special cases subcomplex inclusions

Xk−1 ∪ A ⊂ Xk ∪ A .

In other words, it will suffice to prove the theorem when X is obtained from A by attaching k-cells.

We now assume the condition in the preceding sentence. Let h : A×[0, 1] → Y be the homotopy
from f (when t = 0) to g (when t = 1). If we can show that the inclusion

A× [0, 1] ∪ X × {0} ⊂ X × [0, 1]

is a retract, then we can use Proposition 1 to find an extension of the map

θ = “h ∪ f ′′ : A× [0, 1] ∪X × {0} −→ Y

to X × [0, 1], and the restriction of this extension to X × {1} will be a continuous extension of g.
— In fact, we shall show that the space A × [0, 1] ∪ X × {0} is a strong deformation retract of
X × [0, 1].

As in earlier discussions let

ϕ : A q
(
{1, · · · , N} ×Dk

)
−→ X

be the topological quotient map which exists by the definition of attaching k-cells. By Proposition
5 we know that the space

A× [0, 1] q ( {1, · · · , N} )×
(
Sk−1 × [0, 1] ∪Dk × {0}

)

is a strong deformation retract of

(
A q {1, · · · , N} ×Dk

)
× [0, 1]

because we can the mappings piecewise using the identity on A × [0, 1] and the functions from
Proposition 5 on each of the pieces {j} ×Dk × [0, 1]. Let

r′ :
(
A q

(
{1, · · · , N} ×Dk

) )
× [0, 1] −→

A× [0, 1] q
(
{1, · · · , N} ×

(
Sk−1 × [0, 1] ∪Dk × {0}

) )
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be the retraction obtained in this fashion, and let

H ′ :
( (

A q {1, · · · , N} ×Dk
)
× [0, 1]

)
× [0, 1] −→

(
A q {1, · · · , N} ×Dk

)
× [0, 1]

be defined similarly. It will suffice to show that these pass to continuous mappings of quotient
spaces; in other words, we want to show there are (continuous) mappings r and H such that the
following diagrams are commutative, in which ψ is the mapping whose values are given by ϕ:

(A q · · ·)× [0, 1]
r′

−−−−−→ A× [0, 1] q
(
{1, ..., N} × [· · ·]

)
yϕ× 1

yψ

X × [0, 1]
r−−−−−→ A× [0, 1] ∪X × {0}

(
(A q · · ·)× [0, 1]

)
× [0, 1]

H′

−−−−−→ (Aq · · ·)× [0, 1]
yϕ× 1× 1

yφ× 1
(
X × [0, 1]

)
× [0, 1]

H−−−−−→ X × [0, 1]

Standard results on factoring maps through quotient spaces imply that such commutative diagrams
exist if and only if (i) if two points map to the same point under ψ or′, then they map to the same
point under ϕ× 1, (ii) if two points map to the same point under φ× 1 oH ′, then they map to the
same point under ϕ× 1× 1. It is a routine exercise to check both of these statements are true.

COROLLARY 6. Suppose that X and Y are as in the theorem and Y is contractible. Then
every continuous mapping f : X → Y has a continuous extension to X.

Proof. It will suffice to prove that an arbitrary continuous mapping f : A → Y is homotopic
to a constant. We know that 1Y is homotopic to a constant map k, and therefore f = 1Y

of is
homotopic to the constant map k of .
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III . Simplicial homology

The goal of this unit is to define a sequence of abelian groups associated to a simplicial complex
(P,K) which are called homology groups and denoted by Hn(P,K), where n runs through all the
integers but the groups are all zero if n is negative. These groups may be interpreted as furnishing
an “algebraic picture” of the underlying topological space P . In order to develop the important
properties of these groups it will be necessary to introduce some basic concepts and results from
homological algebra, but efforts will be made to keep this to a minimum.

We have stated that the groups provide information about the underlying space P rather than
the simplicial complex (P,K) because these groups turn out to depend only upon P itself . This
fact will drop out of the more general constructions in the next unit, where homology groups are
defined for an arbitrary topological space and shown to agree with the groups of this unit if the
space P has a simplicial decomposition.

Some motivation from vector analysis

Suppose that U is an open subset of R
3 and Σ is some sort of compact oriented surface in U

(for our purposes, it suffices to think of Σ as having a continuously defined unit normal vector at
every point). Then the boundary of Σ is some union of closed curves Γi, where the sense of Γi is
chosen such that for each point of such a curve the ordered triple of vectors given by

the chosen unit normal vector to the surface at the point,

the unit tangent vector to the curve at the point,

the unit vector which is tangent to the surface at the point, but perpendicular to the
curve’s tangent vector and directed into the surface

will form a right handed triad (see the illustration in the figures document); we shall not try to
make everything rigorous here because the goal is to provide some intuition. In such a situation
one sometimes says that the formal sum

∑
i Γi of the sensed curves Γi is homologous to zero in U ,

and by Stokes’ Theorem we have the following:

If
∑

i Γi is homologous to zero in U and F is a smooth vector field defined on U such that∇×F = 0,
then ∑

i

∫

Γi

F · dx = 0 .

It is important to note that if V is an open subset of U and
∑

i Γi is homologous to zero in
U , then

∑
i Γi is not necessarily homologous to zero in V . The standard example for this involves

the ordinary unit circle Γ in R2 ⊂ R3 whose center is the origin and whose radius is 1. This curve
is homologous to zero in R3 because it bounds the closed unit disk. To see it is not homologous to
zero in V = (R2 − {0}, consider the vector field given by

F(u, v) =

(
v

u2 + v2
,
−u

u2 + v2
, 0

)

and note that ∇× F = 0 and the standard computation
∫

Γ

F · dx = 2π
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imply that Γ cannot be homologous to zero in V .

Suppose now that we have a union of pairwise disjoint closed oriented surface Σj in our open
set U ; the term “closed” means that the surfaces have no boundary curves, just like the unit sphere
defined by u2 +v2 +w2 = 1. We shall say that the formal sum Σ1 + · · · +Σj is homologous to zero
in U if ∪j Σj bounds a region W ⊂ U such that the closure of W is equal to the union of W and
∪j Σj and the normal directions to Σ are all outward pointing. — For example, the unit sphere
is homologous to zero in R3 because it bounds a unit disk, and if Σr denotes the sphere of radius
r in R3, then Σ1 ∪ Σ2 is homologous to zero if we orient the pieces so that the normal vectors on
Σ2 point outward (away from the origin) and the normal vectors on Σ1 point inward (towards the
origin). The Divergence Theorem from vector analysis then has the following implication:

If Σ1 + · · · +Σn is homologous to zero in U and F is a smooth vector field defined on U such that
∇ · F = 0, then ∑

i

∫ ∫

Σi

F · dΣ = 0 .

We can now show that Σ1 is not homologous to zero in R3 − {0} by an argument similar to
the preceding one. Let F be the vector field on R3 − {0} defined by F(x) = |x|−1x; then it is a
routine exercise to prove that ∇ · F = 0 but direct computation shows that

∫ ∫

Σ1

F · dΣ = 4π .

Homology theory provides an organized algebraic framework for studying such phenomena.

III.1 : Exact sequences and chain complexes

(Hatcher, § 2.1)

This section is basically algebraic, and at first the need for formally introducing the concepts
may be unclear. However, the notions described here arise repeatedly in algebraic topology and
other subjects.

Definition. Suppose we are given a diagram of the form

A
f−→ B

g−→ C

in which the objects are abelian groups (possibly with some additional structure) and the morphisms
are abelian group homomorphisms (possibly preserving the extra structure). We shall say that the
diagram is exact at B if the kernel of g is equal to the image of f .

More generally, if we are given a linear diagram such as

· · · −→ Z −→ A −→ B −→ C −→ D −→ · · ·

we shall say that it is an exact sequence if it is exact at every object which is the domain of one
morphism and the codomain of another.
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Examples

There are many standard exact sequences in elementary algebra.

1. A short exact sequence is one having the form 0 → A → B → C → 0. Exactness at A
means that the kernel of A → B is the image of 0 → A, which is equivalent to saying
that the map is injective. Similarly, exactness at C means that the kernel of C → 0 is
the image of B → C, whic is equivalent to saying that the map is surjective. The short
exact sequence property is then equivalent to saying that A → B is injective, and C is
isomorphic to the quotient of B by the image of A.

2. The cokernel of a homomorphism f : A→ B is defined to be the quotient group B/f [A].
Given an arbitrary homomorphism f : A→ B, one then has the following kernel – cokernel
exact sequence:

0 −→ Ker(f) −→ A −→ B −→ Coker(f) −→ 0

3. Let U be a connected open subset of R2, let C∞(U) denote the infinitely differentiable
real valued functions on U , and let let VF(U) denote the infinitely differentiable (2-
dimensional) vector fields on U in the sense of vector analysis. If we let R → C∞(U)
denote the inclusion of the constant functions and take the gradient map from C∞(U) to
VF(U), then it follows that the sequence R→ C∞(U)→ VF(U) is exact. Furthermore,
if we take the map VF(U)→ C∞(U) which sends a vector field F = (P,Q) to its “scalar
curl” Q1−P2, then the sequence C∞(U)→ VF(U)→ C∞(U) will be exact provided U
is convex (or more generally star-shaped). — On the other hand, the second sequence is
not exact if U = R2 − {0}, for the previously described vector field on U with coordinate
functions v/r and −u/r has zero scalar curl but is not the gradient of any smooth function
on U ; this follows from Green’s Theorem and the previous line integral calculation.

We can extend the preceding if U is a connected open set in R
3 by considering the following

sequence:
R

constants−−−−−→ C∞(U)
grad−→ VF(U)

curl−→ VF(U)
div−→ C∞(U)

This is again exact at the left hand object C∞(U), and standard results in vector analysis imply that
the kernel of the curl is contained in the image of the gradient, while the kernel of the divergence
is contained in the image of the curl. If U is convex, then one can also show that the sequence is
exact, but in general this is not true. Our previous examples give a vector field on R2 − {0}) × R

whose curl is zero but cannot be expressed as a gradient over U , and a vector field on R3 − {0}
whose divergence is zero but cannot be expressed as the curl of another vector field over U .

Graded objects

The next concept is simple but indispensable.

Definition. Let A be a set, and let C be a category. A graded object over C with grading set A
is a function X from A to the objects of C. The object corresponding to a is generally denoted by
Xa.

For example, one can construct a graded vector space over the reals with grading set the
integers Z by taking Vn = Rn for n ≥ 0 and setting Vn equal to the zero space if n < 0.

Another example is obtainable from an algebra of polynomials R[x1, · · · , xn] in finitely many
indeterminates. Here we can take Vn to be the set of all homogeneous polynomials of degree n
together with the zero polynomial.
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In this course we shall mainly be interested in nonnegatively graded objects, where the indexing
set is Z and the object Xn is a suitable zero object if n < 0. For the categories of abelian groups
or modules over some associative ring with unit, the meaning of zero object is obvious, and these
categories are the only ones to be considered here.

Definition. If X and Y are nonnegatively graded objects over a category C, then a graded
morphism of degree zero or grade preserving morphism is a function f which assigns to each n ∈ Z

a morphism fn : Xn → Yn in the category C.

In the polynomial example, one can define a grade preserving homomorphism by sending the
homogeneous polynomial p(x1, x2, · · · xn) to the homogeneous polynomial q(x1, x2, · · · xn) =
p(x1, x1 + x2, · · · xn). Obviously there are many other maps of this type.

The following observation is immediate:

PROPOSITION 1. Given a category C, the Z-graded objects over C and graded morphisms
of degree zero form a category.

In fact, this category has many structural properties that are direct analogs of properties that
hold for C (for example, subobjects, quotient objects, direct products, and so on).

Chain complexes

The following concept is absolutely fundamental.

Definition. Let C be the category of abelian groups and homomorphisms or a category of unital
modules over an associative ring with unit R. A chain complex over C is a pair (A, d) consisting
of a graded object A over C indexed by the integers together with morphisms dj : Aj → Aj−1 such
that dj−1

odj = 0 for all j.

Here are a few simple examples.

1. Given an arbitrary graded module A, one can make it into a chain complex by taking
dj = 0 for all j. More generally, given a sequence of homomorphisms f2j : A2j → A2j−1,
one can define a chain complex whose graded module is A with d2j = f2j and d2j−1 = 0.

2. Suppose we are given three modules B, H, and B ′. The we can define a chain complex
with A2 = B, A1 = B ⊕ H ⊕ B′, and A0 = B′ and Aj = 0 otherwise such that d2 is
injection into the first summand, d1 is projection onto the third summand, and all other
maps dj must be zero (since either their domain or codomain is zero).

3. If U is open in R2, then one can obtain a chain complex from the previous sequence
involving C∞(U) and VF(U), if one takes A3 to be the reals, A2 and A0 to be the smooth
functions, A0 to be the vector fields, with morphisms given by inclusion of constants from
A3 to A2, gradient from A2 to A1, scalar curl from A1 to A0, and with all other real
vector spaces and morphisms equal to zero. Similarly, if U is open in R

3 one has a system
with A4 equal to the reals, A3 and A0 equal to the smooth functions, A2 and A1 equal to
the vector fields, with morphisms given by inclusion of constants from A4 to A3, gradient
from A3 to A2, curl from A2 to A1, divergence from A1 to A0, and with all other real
vector spaces and morphisms equal to zero.

The mapping d is often called a differential; the motivation is related to the preceding examples
where the maps are given by some form of differentiation.
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Definition. Given two chain complexes (A, d) and (B, e) a chain map f : A → B is a graded
morphism such that for all integers j we have ej

ofj = fj−1
odj . In other words, the following

diagram is commutative:

Aj
fj−−−−−→ Bjydj

yej

Aj−1
fj−1−−−−−→ Bj−1

If the differential in a chain complex (A, d) is unambiguous from the context we shall frequently
write A instead of (A, d).

The following consequences of the definitions are elementary but important.

PROPOSITION 2. Given a category C, the chain complexes over over C and chain complex
morphisms form a category.

PROPOSITION 3. If (A, d) and (B, e) are chain complexes over C and f : (A, d) → (B, e) is
a morphism of chain complex such that the mappings fj are all isomorphisms, then the map f−1

of graded modules defined by (f−1)j = f−1
j is also a chain map.

Proof. To simplify the formulas let gj = f−1
j . The conclusion of the proposition is equivalent to

the identities dj
ogj = gj−1

oej as maps from Bj to Aj−1.

Let b ∈ Bj be arbitrary. Since fj−1 is injective, it follows that dj
ogj(b) = gj−1

oej(b) if and
only if fj−1

odj
ogj(b) = fj−1

ogj−1
oej(b). The left hand side is equal to

fj−1
odj

ogj(b) = ej
ofj

ogj(b) = ej(b)

by the defining identity for chain maps and the fact that g is inverse to f , and the latter fact also
implies that the right hand side is equal to ej(b). Therefore it follows that the maps gj satisfies the
defining conditions for a chain map.

As before, the category of chain complexes over C has many structural properties that are
direct analogs of properties that hold for C and the category of graded objects over C (such as
subobjects, quotient objects, direct products).

A few additional remarks about subcomplexes and quotient complexes seem worthwhile. If
(A, d′) is a chain subcomplex of (B, d), then it follows that Aj ⊂ Bj for all j and that dj maps Aj

to Aj−1 via d′j . The quotient complex has a differential d′′ such that d′′j [x] = [djx], where “[· · ·]”
denotes the equivalence class in the appropriate quotient module. There is a well-defined map of
this sort because dj maps Aj into Aj−1.

ONE MORE EXAMPLE. Let ∆ be a 2-simplex with vertices x, y and z, let C0 be the free abelian
group generated by these vertices, let C1 be the free abelian group generated by the three edges
yz, xz and xy, let C2 be the free abelian group generated by the element ∆, and define maps
d2 : C2 → C1 and d1 : C1 → C0 by

d2(A) = yz− xy + xz

d1(xy) = y − x, d1(yz) = z− y and d1(xz) = z− x.

We set all other groups Cj equal to zero, and it follows that all remaining homomorphisms must
also be zero. Direct examination shows that the kernel of d1 is the set of all multiples of d2(∆).
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Geometrically, d2(∆) represents the boundary of the simplex A with the edges oriented so that
they correspond to a simple closed curve. More generally, if (A, d) is a chain complex then elements
in the kernel of dj are frequently called cycles, while elements in the image of dj+1 are frequently
called boundaries, and the homomorphisms dj are frequently called boundary homomorphisms.

III.2 : Homology groups

(Hatcher, § 2.1)

If (A, d) is a chain complex, then the condition dj
odj+1 implies that the kernel of dj (the

submodule of cycles) contains the image of dj+1 (the submodule of boundaries). The sequence
determined by the chain complex is exact at Aj if and only if these two submodules are equal.
One can view homology groups as measuring the extent to which a chain complex is not an exact
sequence.

Definition. Let (A, d) be a chain complex. The j th homology group Hj(A) = Hj(A, d) is equal
to the quotient module

(Kernel dj)/(Image dj+1) .

By the definitions, the sequence of morphisms determined by a chain complex (A, d) is exact
at Aj if and only if Hj(A) = 0.

Computation of the homology groups for the examples in Section III.1 is fairly straightforward.

1. If we take an arbitrary graded module A and make it into a chain complex by taking
dj = 0 for all j, then Hj(A, 0) = Aj . If we are given a sequence of homomorphisms
f2j : A2j → A2j−1 and define a chain complex whose graded module is A with d2j = f2j

and d2j−1 = 0, then H2j(A) = Kernel d2j and H2j−1(A) = A2j−1/Image d2j .

2. In Example 2 from the previous section, the homology is zero if U is a convex open subset
of R2 or R3.

3. In “ONE MORE EXAMPLE” from the previous section, we have Hj(C) = 0 if j 6= 0, while
H0(C) is infinite cyclic, with the generator represented by the class of x (and the same
generator also turns out to be represented by y and z).

The next result is fairly simple to prove but absolutely fundamental.

THEOREM 1. If f : (A, dA) → (B, dB) is a map of chain complexes, then there are unique
homomorphisms f∗ : Hk(A)→ Hk(B) such that if u ∈ Hk(A) is represented by z ∈ Aq, then f∗(u)
is represented by fq(z). Furthermore, if f is an identity chain map then f∗ is also the identity, and
if g : (B, dB)→ (C, dC) is another chain map, then (g of)∗ = g∗ of∗.

The second sentence of the theorem implies that the construction sending f to f∗ defines a
covariant functor from chain complexes to graded modules. Thus the following is immediate.

COROLLARY 2. In the setting above, if f is an isomorphism then so is f∗.

Proof of Theorem 1. The condition in the first sentence of the theorem implies uniqueness,
and the formula for f∗ immediately yields the functoriality properties in the second sentence. Thus
everything reduces to showing that there is indeed a homomorphism f∗ with the asserted property.
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First of all, we must check that fq(z) is a cycle if z is a cycle. To see this note that

dB
q

ofq(z) = fq−1
odA

q (z) = fq−1(0) = 0

so there is no problem here. Next, we need to check that if z and w represent the same class in
Aq, then fq(z) and fq(w) represent the same class in Bq. However, it z and w represent the same
class, then z − w = dq+1(y), and hence we have

fq(z)− fq(w) = fq(z − w) = fq
odA

q+1(y) = dB
q

ofq+1(y)

so that the images of z and w represent the same class in Hq(B). The identities f∗(u1 + u2) =
f∗(u1) + f∗(u2) and f∗(r · u) = r · f∗(u) now follow immediately from the definition of f∗ and the
standard choices of representatives for u1 + u2 and r · u.

III.3 : Homology and simplicial complexes

(Hatcher, § 2.1)

In this section we shall take the first step towards defining homology groups for topological
spaces. At this stage we can only handle special classes of spaces with additional geometrical
structures, and our definitions will also depend upon the extra structure. In fact, we shall give
three different definitions of homology here, and a major objective of the rest of this unit will be to
show that they are naturally equivalent. The following citation from a set of online lecture notes
by J. W. Morgan (previously posted as

http://www.math.columbia.edu/∼jm/algtop.ps
but no longer on the Internet) summarizes the situation quite well.

The main trouble with algebraic topology is that there are many different ap-
proaches to defining the basic ... homology ... groups. Each approach brings with
it a fair amount of required technical baggage ... one must pay a fairly high price
... as one slogs through the basic constructions and proves the basic results. Fur-
thermore, possibly the most striking feature of the subject, the interrelatedness
(and often equality) of the theories ... requires even more machinery.

Some other passages from the same notes describe some reasons why such a “large and complicated
array of tools” has proven to be worth knowing:
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The subject has turned out to have a vast ... range of applicability ... The
power of algebraic topology is the generality of its application. The tools apply
in situations so disparate as seemingly to have nothing to do with each other, yet
the common thread linking them is algebraic topology. One of the most impres-
sive arguments by analogy of twentieth century mathematics id the work of the
French school of algebraic geometry, mainly [André] Weil [approximate pronunci-
ation “VAY,” 1906–1998], [Jean-Pierre] Serre [1926–], [Alexandre] Grothendieck
[1929–] and [Pierre] Deligne [approximate pronunciation “de-LEEN,” 1944–], to
apply the machinery of algebraic topology to projective varieties defined over
finite fields in order to prove the Weil Conjectures. On the face of it these con-
jectures, which dealt with counting the number of solutions over finite fields of
polynomial equations, have nothing to do with usual topological spaces and alge-
braic topology. The powerful insight ... was to recognize that in fact there was a
relationship and then to establish the vast array of technical results in algebraic
geometry over finite fields necessary to implement this relationship. ... A quote
from [Solomon] Lefschetz [1884–1972] seems appropriate to capture the spirit of
the subject; after a long and complicated study ... he said, “we have succeeded in
planting the harpoon of algebraic topology in the whale of algebraic geometry.”

Further examples of the uses of ideas from algebraic topology are noted in the following passage:

Let me list some of the contexts where algebraic topology is an integral part. It
is related by deRham’s theorem to differential forms on a manifold, by Poincaré
duality to the study of intersection of cycles on manifolds, and by the Hodge
theorem to periods of holomorphic differentials on complex algebraic manifolds.
Algebraic topology is used to compute the infinitesimal version of the space of
deformations of a complex analytic manifold (and in particular, the dimension of
this space). Similarly, it is used to compute the infinitesimal space of deforma-
tions of a linear representation of a finitely presented group. In another context,
it is used to compute the space of sections of a holomorphic vector bundle. In
a more classical vein, it is used to compute the number of handles on a Rie-
mann surface, estimate the number of critical points of a real-valued function
on a manifold, estimate the number of fixed points of a self-mapping of a man-
ifold, and to measure how much a vector bundle is twisted. In more algebraic
contexts, algebraic topology allows one to understand short exact sequences of
groups and modules over a ring, and more generally longer extensions. Lastly,
algebraic topology can be used to define the cohomology groups of groups and
Lie algebras, providing important invariants of these algebraic objects.

Three definitions of simplicial homology groups

One central feature of algebraic topology is that there are usually several different chain com-
plexes which yield the same homology groups, each of which has its own advantages and disadvan-
tages. We shall start with a definition involving a relatively small chain complex.
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First Definition. Suppose that (P,K) is a simplicial complex, and choose a linear ordering L
for the vertices of K; we shall use the usual notation v < w to indicate that one vertex precedes
another. For each integer k, the k-dimensional ordered simplicial chain group of (P,K), written
Cordered

k (P,K) is a free abelian group on all objects v0 · · · vk, where v0 < · · · < vk. By con-
struction, it follows that Cordered

k (P,K) = 0 if k < 0 or k > dimK. The boundary homomorphism

dk : Cordered
k (P,K) −→ Cordered

k−1 (P,K)

is defined on free generators by the formula

dk(v0 · · · vk ) =

n∑

j=0

(−1)j v0 · · · v̂i · · · vk

where v̂i means that vi is omitted; by the definition of free generators, it follows that there is a
unique extension to the group Cordered

k (P,K).

Since our purpose is to define homology groups, presumably we want to verify that the preced-
ing data define a chain complex. For this purpose it will be helpful to introduce some additional
definitions.

If k > 0 and v0 · · · vk is as above, then the ith face operator ∂
[k]
i (v0 · · · vk ) is given by

v0 · · · v̂i · · · vk .

Frequently we shall suppress the superscript [k] to simplify notation. The following identity for
iterated faces is elementary but fundamentally important:

LEMMA 1. If k − 1 ≥ j ≥ i, then ∂
[k−1]
j

o∂
[k]
i = ∂

[k−1]
i

o∂
[k]
j+1.

The identity is true because the result of applying both composites to v0 · · · vk is given by
deleting vi and vj+1.

With Lemma 1, it is fairly easy to prove that the boundary maps dk define a chain complex.

THEOREM 2. In the setting above we have dk−1
odk = 0.

The proof of this result is given in Lemma 2.1 on pages 105–106 of Hatcher.

We now define the k-dimensional simplicial homology group of (P,K) for ordered simplicial
chains, also called the k-dimensional ordered simplicial homology group and denoted by

Hordered
k (P,K)

to be the k-dimensional homology of the chain complex C ordered
∗ (P,K), where the differential or

boundary is given as above.

The preceding definition depends not only upon the choice of a simplicial decomposition but
also upon choosing a linear ordering of the vertices. Ultimately we want to show the homology
groups depend only upon the underlying space P , and as a first step we would like to prove the
groups do not depend upon the choice of linear ordering. Our approach to doing will involve finding
other definitions of homology that do not depend upon the choice of a vertex orderings and showing
that the new definitions yield the same homology groups.

Second Definition. Given (P,K) as above, the unordered simplicial chain group Ck(P,K) is
the free abelian group on all symbols u0 · · · uk, where the uj are all vertices of some simplex in
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K and repetitions of vertices are allowed. A family of differential or boundary homomorphisms
dk is defined as before, and the k-dimensional simplicial homology Hk(P,K) is defined to be the
k-dimensional homology of this chain complex.

The unordered simplicial chain complex C∗(P,K) contains the ordered simplicial chain complex
Cordered
∗ (P,K) as a chain subcomplex, and we shall let i denote the resulting inclusion map of

chain complexes. If we can show that the associated homology maps i∗ are isomorphisms, then
it will follow that the homology groups for the ordered simplicial chain complex agree with the
corresponding groups for the unordered simplicial chain complex.

One major difference between the unordered and ordered simplicial chain groups is that the
latter are nontrivial in every positive dimension. In particular, if v is a vertex of K, then the free
generator v · · · v = u0 · · · uk, with uj = v for all j, represents a nonzero element of Ck(P,K).
On the other hand, the ordered simplicial chain groups are nonzero for only finitely many values
of k.

In order to analyze the mappings i∗, we shall introduce yet another definition of homology
groups.

Third Definition. In the setting above, define the subgroup C ′k(P,K) of degenerate simplicial
k-chains to be the subgroup generated by

(a) all elements v0 · · · vk such that vi = vi+1 for some (at least one) i,

(b) all sums v0 · · · vivi+1 · · · vk + v0 · · · vi+1vi · · · vk, where 0 ≤ i < k.

We claim these subgroups define a chain subcomplex, and to show this we need to verify the
following.

LEMMA 3. The boundary homomorphism dk sends elements of C ′k(P,K) to C ′k−1(P,K).

It suffices to prove that the boundary map sends the previously described generators into
degenerate chains, and checking this is essentially a routine calculation.

We now define the complex of alternating simplicial chains C alt
∗ (P,K) to be the quotient

complex C∗(P,K)/C ′∗(P,K) with the associated differential or boundary map.

PROPOSITION 4. The composite ϕ : Cordered
∗ (P,K) → C∗(P,K) → Calt

∗ (P,K) is an isomor-
phism of chain complexes.

COROLLARY 5. The morphism i∗ : Hordered
∗ (P,K) → H∗(P,K) is injection onto a direct

summand.

Proof that Proposition 4 implies Corollary 5. Let q be the projection map from unordered
to alternating chains, so that ϕ∗ = q∗ oi∗. General considerations imply that ϕ∗ is an isomorphism.

Suppose now that i∗(a) = i∗(b). Applying q∗ to each side we obtain

ϕ∗(a) = q∗ oi∗(a) = q∗ oi∗(b) = ϕ∗(b)

and since ϕ∗ is bijective it follows that a = b.

Now let B∗ be the kernel of q∗. We shall prove that every element of H∗(P,K) has a unique
expression as i∗(a) + c, where c ∈ B∗. Given u ∈ H∗(P,K), direct computation implies that

u − i∗(ϕ∗)
−1q∗(u) ∈ B∗
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and thus yields existence. Suppose now that u = i∗(a) + c, where c ∈ B∗. It then follows from the
definitions that

i∗(a) = i∗(ϕ∗)
−1q∗(u)

and hence we also have

c = u − i∗(a) = u − i∗(ϕ∗)
−1q∗(u)

which proves uniqueness.

Proof of Proposition 4. Analogs of standard arguments for determinants yield the following
observations:

(1) The generator v0 · · · vk ∈ Ck(P,K) lies in the subgroup of degenerate chains if two
vertices are equal.

(2) If σ is a permutation of {0, · · · , k}, then v0 · · · vk − (−1)sgn(σ)vσ(0) · · · vσ(k) is a
degenerate chain.

Define a map of graded abelian groups Ψ from C∗(P,K) to Cordered
∗ (P,K) which sends v0 · · · vk

to zero if there are repeated vertices and sends v0 · · · vk to (−1)sgn(σ)vσ(0) · · · vσ(k) if the vertices
are distinct and σ is the unique permutation which puts the vertices in the proper order:

vσ(0) < · · · < vσ(k)

It follows that Ψ passes to a map ψ of quotients from C alt
∗ (P,K) to Cordered

∗ (P,K) such that ψ oϕ
is the identity. In particular, it follows that ϕ is injective. To prove it is surjective, note that (1)
and (2) imply that Calt

k (P,K) is generated by the image of ϕ and hence ϕ is also surjective. It
follows that ϕ determines an isomorphism of chain complexes as required.

Acyclic complexes

Definition. An augmented chain complex over a ring R consists of a chain complex (C∗, d) and
a homomorphism ε : C0 → R (the augmentation map) such that ε is onto and ε od1 = 0.

All of the simplicial chain complexes defined above have canonical augmentations given by
sending expressions of the form

∑
nv v to the corresponding integers

∑
nv.

Definition. A simplicial complex is said to be acyclic (“has no nontrivial cycles”) if Hj(P,K) = 0
for j 6= 0 and H0

∼= Z, with the generator in homology represented by an arbitrary free generator
of C0(P,K).

There is a simple geometric criterion for a simplicial chain complexe to be acyclic.

Definition. A simplicial complex (P,K) is said to be star shaped with respect to some vertex v
in K if for each simplex A in K either v is a vertex of A or else there is a simplex B in K such
that A is a face of B and v is a vertex of B.

Some examples are described in the figures document. One particularly important example
for the time being is the standard simplex ∆n with its standard decomposition.

PROPOSITION 6. If the simplicial complex (P,K) is star shaped with respect to some vertex,
then it is acyclic, and the map i∗ : Hordered

∗ (P,K)→ H∗(P,K) is an isomorphism.

Proof. Define a map of graded abelian groups η : C∗(P,K)→ C∗(P,K) such that ηq : Cq(P,K)→
Cq(P,K) is zero if q 6= 0 and η0 sends a chain y to ε(y)v. Then η is a chain map because ε od1 = 0.
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We next define homomorphisms Dq : Cq(P,K)→ Cq+1(P,K) such that

dq+1
oDq = identity − dq

oDq−1

if q is positive and
d1

oD0 = identity − η0

on C0. We do this by setting Dq(x0 · · · xq) = vx0 · · · xq and taking the unique extension which
exists since the classes x0 · · · xq are free generators for Cq. Elementary calculations show that the
mappings Dq satisfy the conditions given above.

To see that Hq(P,K) = 0 if q > 0, suppose that dq(z) = 0. Then the first formula implies that
z = dq+1

oDq(z). Therefore Hq = 0 if q > 0. On the other hand, if z ∈ C0, then the second formula
implies that d1

oD0(z) = z − ε(z)v. Furthermore, since ε od1 = 0 and d0 = 0, it follows that

(i) the map ε passes to a homomorphism from H0 to Z,

(ii) since ε(v) = 1 this homomorphism is onto,

(iii) the multiples of the class [v] give all the classes in H0.

Taken together, these imply that H0(P,K) ∼= Z, and it is generated by [v]. This completes the
computation of H∗(P,K).

By Corollary 5 we know that Hordered
q (P,K) is isomorphic to a direct summand of Hq(P,K)

and since the latter is zero if q > 0 it follows that the former is also zero if q > 0. Similarly, we
know that Hordered

0 (P,K) is isomorphic to a direct summand of H0(P,K) ∼= Z. By construction
we know that the generating class [v] for the latter lies in the image of i∗, and therefore it follows
that the map from Hordered

0 (P,K) to H0(P,K) must also be an isomorphism.

COROLLARY 6. If ∆ is a simplex with the standard simplicial decomposition, then

Hordered
q (P,K) ∼= Hq(P,K)

is trivial if q 6= 0 and infinite cyclic if q = 0.

Clearly we would like to “leverage” this result into a proof for an arbitrary simplicial complex
(P,K). This will require some additional algebraic tools, and it will be done in the next section.
We shall conclude this section by using simplicial chains to solve the problem which is often viewed
as the beginning of algebraic topology.

The Königsberg Bridge Problem

In this problem one has four masses of land joined by various bridges. This can be modeled by
a 1-dimensional cell complex with vertices w, x, y and z representing the land masses and edges
representing one bridge each from w to x, y and z along with two bridges joining y to each of x
and z. This configuation is homotopic to a simplicial comples if we add extra vertices u1 and u2

on each of the bridges joining y to x and v1 and v2 on each of the bridges joining y to z. This will
be our simplicial complex (P,K), and we shall let C∗ denote the ordered chain complex associated
to some ordering of the vertices.

The problem is to determine whether there is a path on this complex in which each bridge is
crossed exactly once, and the first step is to formulate this in terms of the chain complex C∗. What
we want is a 1-chain

∑
E θ(E)E, where the sum runs over all free generators of C1 and θE ∈ {±1}

for all E, such that the boundary of this 1-chain has the form p−q for two vertices in C0 (the case
p = q is allowed). The problem is then to determine if such a 1-chain exists.
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Euler’s crucial insight into the problem can be stated as follows:

PROPOSITION 7. Let (P,K) be a 1-dimensional simplicial complex, let γ ∈ C ordered
1 (P,K)

be a 1-chain
∑

E θ(E)E, where the sum runs over all free generators of C1 and θE ∈ {±1} for all
ordered edges E, and write d(γ) =

∑
v n(v)v for suitable integers n(v), where the sum runs over

all vertices of (P,K). Then n(v) is congruent modulo 2 to the number m(v) of 1-simplices E that
have v as one of their endpoints.

Proof. The integer nv is equal to
∑

F e(F), where the sum runs over all edges containing v as a
vertex and e(F) ∈ {±1}. Since e(F) − 1 is either equal to 0 or ± 2 for each F, it follows that the
sum of these differences, which is merely n(v)−m(v), must be a multiple of 2.

COROLLARY 8. In the preceding setting, if there is a 1-chain γ such that d(γ) = p− q, then
mv must be even if v 6= p,q.

The impossibility of finding a suitable 1-chain for our Königsberg bridge network now follows
by observing that m = 3 for w, x and z, while m = 5 for y. In particular, if γ is a chain as in the
statement of the theorem, then in d(γ) the coefficients of all four of these vertices must be nonzero.

It is left as an exercise for the reader to show that the homology groups of this simplicial
complex are given by H1

∼= Z4 and H0
∼= Z. This is essentially an exerise in linear algebra

(however, the scalars here are integers rather than elements of some field).
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III.4 : Comparison principles

(Hatcher, §§ 2.1 – 2.2)

We have already stated the goal of proving that the mappings i∗ define isomorphisms from
Hordered
∗ (P,K) to H∗(P,K) for every finite simplicial complex (P,K). The proof of this requires

some purely algebraic theorems involving large commutative diagrams, and the results involve a
technique known as diagram chasing. We shall begin with a simple observation and a related
question.

PROPOSITION 1. (Effaceability Property) If (A, d) is a chain complex and u ∈ Hk(A) for
some k, then there is a chain complex (B, d′) containing (A, d) as a chain subcomplex and the
inclusion map i : A→ B satisfies i∗(u) = 0.

Proof. Define Bq = Aq if q 6= k+1, set Bk+1 = Ak+1⊕R, where R is the ring for the underlying
category of modules, and define d′q = dq if q 6= k + 1 with dk+1(a, r) = dk+1(a) + rz, where z is
a cycle representing u. There is an obvious inclusion of chain complexes which is the identity in
degrees 6= k + 1 and is given in the remaining case by ik+1(a) = (a, 0), It is then straightforward
to verify that the conclusion of the proposition is true.

The preceding result leads naturally to the following question:

If i : A → B defines an inclusion of chain complexes, how can we analyze the kernel and
cokernel of i∗ in a relatively effective manner?

As in many other instances, the answer to this question involves some additional constructions.
Let A ⊂ B be a chain complex inclusion, and consider the quotient complex B/A; let i : A → B
denote the inclusion map, and let j : B → A/B denote the projection. We then have the following
result:

PROPOSITION 2. Let i : A→ B and j : A→ A/B be injection and projection maps of chain
complexes as above. Then for each k there is a homomorphism ∂ : Hk(B/A) → Hk−1(A) defined
as follows: If u ∈ Hk(B/A) and x ∈ Bk is such that j(x) represents u, then ∂(u) is represented
by y ∈ Ak−1 such that i(y) = d(x). Furthermore, if we are given a second pair i′ : A′ → B′ and
j′ : B′ → B′/A′ as above and a chain map f : B → B ′ such that f maps A to A′ by a chain
map g and h : B/A → B′/A′ is the map given by passage to quotients, then the corresponding
homomorphisms ∂ and ∂ ′ satisfy g∗ o∂ = ∂′ oh∗.

Proof. First of all, we should check that the definition makes sense. The first step in doing so is
to verify that if we are given x there is always a suitable choice of y. In general the class x need
not be a cycle, but we know that j(x) is a cycle representing u, and therefore 0 = d oj(x) = j od(x),
which means that d(x) = i(a) for some a. This element is a cycle; we know that d(a) = 0 if and
only if i od(a) = 0, and since i od(a) = d o i(a) = d od(x) = 0, it does follow that d(a) = 0 as required.

Next, we need to check that the construction is well defined when one passes to homology.
Suppose that j(x) and j(x′) represent the same class in Hk(B/A). It then follows that j(x− x′) is
a boundary, which means there is some w ∈ Bk+1 such that d(w)− (x− x′) lies in A, which is the
image of i. Express the difference element as i(z); then we have

i(dz) = d(iz) = d
(
d(w) − (x− x′)

)
= d(x′)− d(x)

so that d(x) = i(a) and d(x′) = i(a′) imply that a′ − a = d(z).
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Next, we need to check that ∂ is a module homomorphism. Given classes u and u′ represented
by x and x′, it follows that x + x′ represents u + u′, while d(x) = i(a) and d(x′) = i(a′) imply
d(x + x′) = i(a + a′). Thus a + a′ represents u + u′, showing that ∂ is additive. If r ∈ R, then
similar considerations show that ∂(r · u) is represented by r · a, and therefore ∂ is compatible with
scalar multiplication.

Finally, suppose we have chain maps as described in the proposition, let u ∈ Hk(B/A), and
let x ∈ Bk be such that j(x) represents u. Then a representative for g∗∂(u) is given by g(a), where
ia = dx, while a representative for ∂ ′h∗(u) is given by z such that i′(z) = d′f(x). The right hand
side equals f od(x) = f oi(a) = i′ og(a), and therefore we see that z = g(a), which means that
g∗∂(u) = ∂ ′h∗(u) as desired.

We may now state and prove the following basic result:

THEOREM 3. (Long Exact Homology Sequence Theorem — Algebraic Version). Let i : A→ B
and j : A → A/B be injection and projection maps of chain complexes as above. Then there is a
long exact sequence of homology groups as follows:

· · · Hk+1(B/A)
∂−→ Hk(A)

i∗−→ Hk(B)
j∗−→ Hk(B/A)

∂−→ Hk−1(A) · · ·

This sequence extends indefinitely to the left and right. Furthermore, if we are given chain maps
f , g and h as in Proposition 2, then we have the following commutative diagram in which the two
rows are exact:

· · · Hk+1(B/A)
∂−→ Hk(A)

i∗−→ Hk(B)
j∗−→ Hk(B/A)

∂−→ Hk−1(A) · · ·

· · ·
yh∗

yg∗
yf∗

yh∗
yg∗

· · · Hk+1(B
′/A′)

∂′

−→ Hk(A′)
i′
∗−→ Hk(B′)

j′

∗−→ Hk(B′/A′)
∂′

−→ Hk−1(A
′) · · ·

A proof of this theorem appears on page 117 of Hatcher.

Application to simplicial complexes

In order to apply the preceding algebraic results, we need to define relative homology groups
associated to a simplicial complex pair

(
(P,K), (Q,L)

)

consisting of a simplicial complex (P,K) and a subcomplex (Q,L). To simplify notation, we shall
usually denote such a pair by (K,L).

Definition. In the setting above the relative simplicial chain groups, denoted by C ordered
∗ (K,L)

and C∗(K,L), are respectively given by the corresponding quotient complexes

Cordered
∗ (K)/Cordered

∗ (L) and C∗(K)/C∗(L) .

Since the chain complex mappings from ordered to unordered chains send ordered chains on L to
unordered chains on L, it follows that there are canonical homomorphisms

ϕ : Cordered
∗ (K)/Cordered

∗ (L) −→ C∗(K)/C∗(L)
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defined by passage to quotients. The relative simplicial homology groups, denoted byH ordered
∗ (K,L)

and H∗(K,L) respectively, are the homlogy groups of the associated chain complexes; by the pre-
ceding sentence, we have canonical homomorphisms from the relative homology groups for ordered
chains to the relative homology groups for unordered chains. We should also note that the previ-
ously defined absolute chain groups may be viewed as special cases of this definition where L = ∅.

By Theorem 3 above, we have the following result:

THEOREM 4. (Long Exact Homology Sequence Theorem — Simplicial Version). Let i : L→ K
denote a simplicial subcomplex inclusion. Then there are long exact sequences of homology groups,
and they fit into the following commutative diagram, in which the rows are exact and the horizontal
arrows represent the canonical maps from ordered to unordered chains:

· · · Hord
k+1(K,L)

∂−→ Hord
k (L)

i∗−→ Hord
k (K)

j∗−→ Hord
k (K,L)

∂−→ Hord
k−1(L) · · ·

· · ·
yϕ∗

yϕ∗
yϕ∗

yϕ∗
yϕ∗

· · · Hk+1(K,L)
∂−→ Hk(L)

i∗−→ Hk(K)
j∗−→ Hk(K,L)

∂−→ Hk−1(L) · · ·

This follows immediately from the definitions and Theorem 3.

The Five Lemma

Theorem 4 provides one fundamental piece of algebraic input which is needed to show that
ordered simplicial chains and unordered simplicial chains define isomorphic homology groups. An-
other is given by the following result:

PROPOSITION 5. Suppose we are given a commutative diagram of modules as below in which
the rows are exact and the horizontal maps a, b, d and e are isomorphisms. Then the mapping c is
also an isomorphism:

· · · A
f∗−→ B

g∗−→ C
j∗−→ D

k∗−→ E
ya

yb
yc

yd
ye

A′
f ′

∗−→ B′
g′

∗−→ C ′
h′

∗−→ D′
k′

∗−→ E′

A proof of this theorem appears on page 129 of Hatcher.

The isomorphism theorem

Here is the result that has been our main objective:

THEOREM 6. If (K,L) is a simplicial complex pair, then the canonical map

ϕ∗ : Hordered
∗ (K,L)→ H∗(K,L)

is an isomorphism.

Proof. Consider the following statements:

(Xn) The map ϕ above is an isomorphism for all simplicial complex pairs (K,L) such
that dimK ≤ n.
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(Yn+1) The map ϕ above is an isomorphism for all (K,L) such that dimK ≤ n and also
for (∆n+1, ∂∆n+1).

(Wn+1,m) The map ϕ above is an isomorphism for all (K,L) such that dimK ≤ n and
also for all (K,L) such that dimK ≤ n+ 1 and K has at most m simplices of dimension
equal to n+ 1.

The theorem is then established by the following double inductive argument:

[F] The statement (X0) and the equivalent statement (W1,0) are true.

[G] For all nonnegative integers n, the statement (Xn) implies (Yn+1).

[K] For all nonnegative integers n and m, the statements (Wn+1,m) and (Yn+1) imply
(Wn+1,m+1).

Since statement (Xn) is true if and only if (Wn,m) is true for all m, and the latter are all true if
and only if (Wn+1,0) is true, we also have the following:

[L] For all n the statements (Xn)⇐⇒ (Wn+1,0) and (Yn+1) imply (Wn+1,m) for all m, and
hence (Xn) implies (Xn+1).

Therefore (Xn) is true for all n, and this is the conclusion of the theorem.

Proof of [F]. By the Five Lemma it suffices to prove the result when L is empty. Since the
0-dimensional complex determined by K is merely a finite set of vertices, write these vertices as
w1, · · · wm. We then have canonical chain complex isomorphisms

m⊕

j=1

Cordered
∗ ({wj}) −→ Cordered

∗ (K) ,

m⊕

j=1

C∗({wj}) −→ C∗(K)

and these pass to homology isomorphisms

m⊕

j=1

Hordered
∗ ({wj}) −→ Hordered

∗ (K) ,

m⊕

j=1

H∗({wj}) −→ H∗(K) .

These maps commute with the homomorphisms ϕ∗ sending ordered to unordered chains. and since
the maps ϕ∗ are isomorphisms for one point complexes (= 0-simplices), it follows that ϕ defines an
isomorphism from Hordered

∗ (K) to H∗(K). The completes the proof of (X0).

Proof of [G]. By (Xn) we know that ϕ∗ is an isomorphism for the complex ∂∆n+1. Since ϕ∗
is also an isomorphism for ∆n+1 by Corollary III.3.6. Therefore the Five Lemma implies that ϕ∗
is an isomorphism for (∆n+1, ∂∆n+1).

Proof of [K]. This is the crucial step. Let K be an (n + 1)-dimensional complex, and let
M be a subcomplex obtained by removing exactly one (n + 1)-simplex from K, so that ϕ∗ is an
isomorphism for M by the inductive hypothesis. If we can show that ϕ∗ is an isomorphism for
(K,M), then it will follow that ϕ∗ is an isomorphism for K, and the relative case will the follow
from the Five Lemma.

Let S be the extra simplex of K and let ∂S be its boundary. Then there are canonical
isomorphism from the chain groups of ∆n+1, ∂∆n+1 and (∆n, ∂∆n+1) to the chain groups of S, ∂S
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and (S, ∂S). We then have the following commutative diagram, in which the morphisms α and β
are determined by subcomplex inclusions:

Cordered
∗ (S, ∂S)

α−−−−−→ Cordered
∗ (S, ∂S)

yϕ(S, ∂S)
yϕ(K,M)

Cordered
∗ (S, ∂S)

β−−−−−→ Cordered
∗ (S, ∂S)

We CLAIM that α and β are isomorphisms of chain complexes. For the mapping α, this follows
because the relative ordered chain groups of a pair (T,T0) are free abelian groups on the simplices
in T − T0, and each of the sets S − ∂S and K −M is given by the same (n + 1)-simplex. For
the mapping β, this follows because the relative unordered chain groups of a pair (T,T0) are free
abelian groups on the generators v0 · · · vk, where the vj are vertices of a simplex that is in T but
not in T0 (with repetitions allowed as usual), and once again these free generators are identical for
te pairs (S, ∂S) and (K,M) because S− ∂S and K−M are the same.

By (Yn+1) we know that ϕ(S, ∂S) defines an isomorphism in homology, and therefore it follows
that the homology map

ϕ(K,M)∗ = β∗ oϕ(S, ∂S)∗ oα−1
∗

also defines an isomorphism in homology. We can now use the Five Lemma and (Wn+1,m) to
conclude that the map ϕ(K) defines an isomorphism in homology, and finally we can use the Five
Lemma once more to see that the statement (Wn+1,m+1) is true. This completes the proof of [K],
and as noted above it also yields [L] and the theorem.

The preceding result can be reformulated in an abstract setting that will be needed later. We
begin by defining a category SCPairs whose objects are pairs of simplicial complexes (K,K0) and
whose morphisms are given by subcomplex inclusions (L,L0) ⊂ (K,K0); in other words, L0 is
a subcomplex of both L and K0 while L is also a subcomplex of K. A homology theory on this
category is a covariant functor h∗ valued in some category of modules together with a natural
transformation

∂(K,L) : h∗(K,L) −→ h∗−1(L)

such that

(a) one has long exact homology sequences,

(b) if K is a simplex and v is a vertex of K then h∗({v})→ h∗(K) is an isomorphism,

(c) if K is 0-dimensional with vertices vj then the associated map from ⊕j hj({vj}) to h∗(K)
is an isomorphism,

(d) if K is obtained from M by adding a single simplex S, then h∗(S, ∂S) → h∗(M,K) is an
isomorphism,

(d) if K is complex consisting only of a single vertex then h0(K) is the underlying ring R and
hj(K) = 0 if j 6= 0.

A natural transformation from one such theory (h∗, ∂) to another (h′∗, ∂
′) is a natural transformation

of θ of functors that is compatible with the mappings ∂ and ∂ ′; specifically, we want

θ(L) o∂ = ∂ ′ oθ(K,L) .

These conditions imply the existence of a commutative ladder diagram as in Theorem 4, where
the rows are the long exact sequences determined by the two abstract homology theories. The
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definition is set up so that the proof of the next result is formally parallel to the proof of Theorem
6:

THEOREM 7. Suppose we are given a natural transformation of homology theories θ as
above such that θ(K) is an isomorphism if K consists of just a single vertex. Then θ(K,L) is an
isomorphism for all pairs (K,L).

Application to barycentric subdivisions

We shall now use the preceding results to show that the homology groups of a barycentric
subdivision B(K) are isomorphic to the homology groups of the original complex K. In this case
the homology theories will be Hordered

∗ (K,L) and Hordered
∗

(
B(K), B(L)

)
, and the natural trans-

formation will be associated to maps defined on the chain level. It will suffice to define these chain
maps for a simplex and to extend to arbitrary complexes and pairs by putting things together in
an obvious manner.

PROPOSITION 8. Given a nonnegative integer n, let ∂j : ∆n−1 → ∆n be the order preserving
affine map sending ∆n−1 to the face of ∆n opposite the jth vertex, and let (δj)# generically denote
an associated chain map. Then there are classes βn ∈ Cordered

n (∆n) such that β0 is just the standard
generator and if n > 0 then

dn(βn) =
n∑

j=0

(−1)j(∂j)#(βn−1) .

Proof. Since ∆n is acyclic, it suffices to show that the right hand side lies in the kernel of dn−1

if n > 1 and in the kernel of ε if n = 1. Both of these are routine (but tedious) calculations.

Using the chains βn one can piece together chain maps

Cordered
∗ (K,L) −→ Cordered

∗

(
B(K), B(L)

)
.

We claim these define a natural transformation of homology theories, but in order to do this we
must first show that Hordered

∗

(
B(K), B(L)

)
actually defines a homology theory. Properties (a), (c)

and (e) follow directly from the construction. Property (b) follows because B(∆n) is star shaped
with respect to the vertex b given by the barycenter of ∆n. Thus it only remains to verify property
(d); in fact, direct inspection similar to an argument in the proof of Theorem 6 shows that the map
on the chain level is an isomorphism.

By Theorem 7, it suffices to check that the natural transformation of homology theories is an
isomorphism for a simplicial complex consisting of a single vertex; in fact, for such complexes the
map is already an isomorphism on the chain level. Therefore the barycentric subdivision chain
maps determine isomorphism of homology groups as asserted in the proposition.

III.5 : Chain homotopies

(Hatcher, § 2.1)

In this section we shall generalize a key step in the proof of Proposition III.3.6. Recall that
the latter gives the homology H∗(K) if K is star shaped with respect to some vertex v, and it does
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so by constructing an algebraic analog of the straight line contracting homotopy from the identity
to the constant map whose value is v.

Definition. Let (A, d) and (B, e) be chain complexes, and let f and g be chain maps from A
to B. A chain homotopy from f to g is a sequence of mappings dk : Ak → Bk+1 satisfying the
following condition for all integers k:

dB
k+1

oDk + Dk−1
odA

k = gk − fk

Two chain mappings f, g from A to B are said to be chain homotopic if there is a chain homotopy
from the first to the second, and this is often written f ' g.

The proof of the following result is an elementary exercise:

PROPOSITION 1. The relation ' is an equivalence relation on chain maps from one chain
complex (A, d) to another (B, e). Furthermore, if f and g are chain homotopic chain maps from
(A, d) to (B, e), and h and k are chain homotopic chain maps from (B, e) to (C, θ), then the
composites h of and k og are also chain homotopic. Finally, if f, g, h, k are chain maps from A to
B and r ∈ R, then f ' g and h ' k imply f + h ' g + k and rf ' rg.
Proof. For the first part of the proof let f , g and h be chain maps from (A, d) to (B, e). The
zero homomorphisms define a chain homotopy from f to itself. If D is a chain homotopy from f
to g then −D is a chain homotopy from g to f . Finally, if D is a chain homotopy from f to g and
E is a chain homotopy from g to h, then D +E is a chain homotopy from f to h.

To prove the assertion in the second sentence, let D be a chain homotopy from f to g and let
E be a chain homotopy from g to h. Then one can check directly that

h oD + E og

defines a chain homotopy from h of to k og.

The proof of the final assertion is also elementary and is left to the reader.

Chain homotopies are useful and important because of the following result:

PROPOSITION 2. If f and g are chain homotopic chain maps from one chain complex (A, d)
to another complex (B, e), then the associated homology mappings f∗ and g∗ are equal.

Proof. Suppose that u ∈ Hk(A) and x ∈ Ak is a cycle representing u, so that dk(a) = 0. If D is
a chain homotopy from f to gh, then by definition we have

dB
k+1

oDk(x) + Dk−1
odA

k (x) = gk(x) − fk(x)

and since dA
k (x) = 0 it follows that the expression above is a boundary. Therefore g∗(u) − f∗(u)

must be the zero element of Hk(B).

An important example

The following basic construction gives an explicit connection between the topological notion
of homotopy and the algebraic notion of chain homotopy. Let n ≥ 0, and let Pn+1 denote the
standard (n+ 1)-dimensional prism ∆n × [0, 1] with the simplicial decomposition given in Unit II.
As in that unit, label the vertices of this prism decomposition by xj = (ej , 0) and yj = (ej , 1).

PROPOSITION 3. The simplicial chain complexes Cordered
∗ (Pn+1) and C∗(Pn+1) are acyclic.

62



Proof. These follow from the isomorphism theorem and the fact that Pn+1 is star shaped with
respect to yn.

For each integer j satisfying 0 ≤ j ≤ n, let ∂j : ∆n−1 → ∆n be the affine map which sends
∆n−1 to the face opposite the vertex ej and is order preserving on the vertices, and let ∂j × I
denote the product of the map ∂j with the identity on [0, 1]. It then follows immediately that we
have associated injections of simplicial chain groups

(∂j)# : Cj(∆n−1) −→ Cj(∆n) , (∂j × I)# : C∗(Pn−1) −→ C∗(Pn)

and these are chain maps. Furthermore, these chain maps send ordered chains to ordered chains.

Similarly, for t = 0, 1 we also have injections of simplicial chain groups

(it)# : C∗(∆n) −→ C∗(Pn)

which send a free generator v0 · · · vq to it(v0) · · · it(vq), where it(v) = (v, t).

We then have the following result:

THEOREM 4. For all n ≥ 0 there are chains Pn+1 ∈ Cordered
n+1 (Pn) such that

dn+1(Pn+1) = y0 · · · yn − x0 · · · xn −
∑

j

(−1)j (∂j × I)#(Pn−1) .

Sketch of proof. Not surprisingly, the construction is inductive, with P0 = 0. Suppose we have
constructed the chains Pj for j ≤ n. There is a chain Pn+1 with the required properties if and
only if the expression on the right hand side of the equation is a cycle, so we need to show that
the right hand side vanishes if we apply dn. This is a straightforward but messy calculation like
several previous ones. Some key details are worked out in the bottom half of page 112 of Hatcher.

The preceding result implies that the inclusion mappings it, which are topologically homotopic,
determine algebraic chain maps that are chain homotopic. Specifically, if we are given a free
generator v0 · · · vq of Cq(∆n) then we may form a chain

Dq(v0 · · · vq) ∈ Cq+1(∆n × I)

by substituting i0(v) for x and i1(v) for y. In fact, one can carry out all of this for an arbitrary
simplicial complex (P,K), and one has the following conclusion.

PROPOSITION 5. In the setting above the maps (i0)# and (i1)# from C∗(K) to C∗(K × I)
are chain homotopic, and hence the associated homology maps

(i0)∗, (i1)∗ : H∗(K) −→ H∗(K× I)

are equal.
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IV. Singular homology

In Section III.4 we showed that the homology groups of a simplicial complex are the same up
to isomorphism if one replaces a given simplicial decomposition with its barycentric subdivision.
Of course, one can iterate this, and if one considers further examples it becomes natural to ask
whether the homology groups only depend upon the underlying topological space. The results of
this unit yield a very strong affirmative answer to this question. In particular, we shall define
analogs of simplicial chain complexes and homology groups for arbitrary topological spaces in a
manner that only involves the spaces themselves. It took about a half century for mathematicians
to come up with the formulation that is now standard, starting with Poincaré’s initial papers on
topology (which he called analysis situs) at the end of the 19th century and culminating with the
definition of singular homology by S. Eilenberg and N. Steenrod in the nineteen forties (with many
important contributions by others along the way).

Some books start directly with singular homology and do not bother to develop simplicial
homology. The reason for considering the latter here is that it is in some sense a “toy model” of
singular homology for which many basic ideas appear in a more simplified framework.

IV.1 : Definitions

(Hatcher, § 2.1)

As before, let ∆q be the standard q-simplex in Rq+1 whose vertices are the standard unit
vectors e0, · · · , eq . If (P,K) is a simplicial complex, then for each free generator v0 · · · vq

of Cq(P,K) there is a unique affine (hence continuous) map T : ∆q → P which sends a point
(t0, · · · , tq) ∈ ∆q+1 to

∑
j tj vj ∈ P . One can think of these as linear simplices in P . The idea of

singular homology is to consider more general continuous mappings from ∆q to a space X, viewing
them as simplices with possible singularities or singular simplices in the space.

Definition. Let X be a topological space. A singular q-simplex in X is a continuous mapping
T : ∆q → X, and the abelian group of singular q-chains Sq(X) is defined to be the free abelian
group on the set of singular q-simplices.

If we let ∂j : ∆q−1 → ∆q be the affine map which sends ∆q−1 to the face opposite the vertex
ej and is order preserving on the vertices, then as in the case of simplicial chains we have boundary
homomorphisms dq : Sq(X)→ Sq−1(X) given on generators by the standard formula:

dq(T ) =

n∑

j=0

(−1)i∂i(T ) =

n∑

j=0

(−1)iT o∂i

Likewise, there are augmentation maps ε : S0(X)→ Z which send each free generator T : ∆0 → X
to 1 ∈ Z.

We then have the following result:

PROPOSITION 1. The homomorphisms dq make S∗(X) into a chain complex, and if (P,K)
is a simplicial complex, then the affine map construction makes C∗(P,K) into a chain subcomplex
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of Sq(P ), and the inclusion is augmentation preserving. Furthermore, if A is a subset of X, then
S∗(A) is canonically identified with a subcomplex of S∗(X) by the map taking T : ∆q → X into
i oT : ∆q → X, where i : A→ X is the inclusion mapping.

Definition. If X is a topological space, then the singular homology groups H∗(X) are the
corresponding homology groups of the chain complex defined by S∗(X). More generally, if A is
a subset of X, then the relative chain complex S∗(X,A) is defined to be S∗(X)/S∗(A), and the
relative singular homology groupsH∗(X,A) are the corresponding homology groups of that quotient
complex. Note that if (K,L) is a pair consisting of a simplicial complex and a subcomplex with
underlying space pair (P,Q), then Proposition 1 generalizes to yield a chain map from C∗(K,L) to
S∗(P,Q). — Note that the relative groups do not have augmentation homomorphisms (provided
A 6= ∅).

It is not difficult to show that the singular homology groups of homeomorphic spaces are
isomorphic, and in fact it is an immediate consequence of the following results:

PROPOSITION 2. Let X and Y be topological spaces, and let f : X → Y be a continuous map.
Then there is a chain map f# from S∗(X) to S∗(Y ) such that for each singular q-simplex T the
value f#(T ) is given by f oT . This construction transforms the singular chain complex construction
into a covariant functor from topological spaces and continuous maps to chain complexes (and chain
maps).

This is essentially an elementary verification, and probably the most noteworthy part is the
need to verify that f# is a chain map. Details are left to the reader.

COROLLARY 3. If X and Y are topological spaces and f : X → Y is a homeomorphism, then
the associated homomorphism of graded homology groups f∗ : H∗(X)→ H∗(Y ) is an isomorphism.

By Corollary 3, the simplicial homology groups of homeomorphic polyhedra will be isomorphic
if we can give an affirmative answer to the following question for all simplicial complexes (P,K):

PROBLEM. If (P,K) is a simplicial complex and λ : C∗(K)→ S∗(P ) is the associated chain map,
does λ∗ : H∗(K)→ H∗(P ) define an isomorphism of homology groups?

We shall prove this later. For the time being we note that the map λ is a chain level isomorphism
if K is given by a single vertex (in this case each of the groups Sq(X) is cyclic, and it is generated
by the constant map from ∆q to X).

Some simple properties of homology groups

If X is a topological space and T : ∆q → X is a singular simplex, then the image of T lies
entirely in a single path component of X. Therefore the following result is immediate.

PROPOSITION 4. If X is a topological space and its path components are the subspaces Xα,
then the maps S∗(Xα) to S∗(X) induced by inclusion define an isomorphism of chain complexes⊕

S∗(Xα)→ S∗(X) and hence also a homology isomorphism from
⊕

H∗(Xα) to H∗(X).

COROLLARY 5. In the setting above, H0(X) is isomorphic to the free abelian group on the
set of path components of X.

A proof of this result is given on pages 109 – 110 of Hatcher.

One immediate consequence of the preceding observations is that the map from C∗(K) to
S∗(P ) is an isomorphism if (P,K) is 0-dimensional.
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Our next result is often summarized with the phrase, singular homology is compactly sup-
ported.

THEOREM 6. Let X be a topological space, and let u ∈ Hq(X). Then there is a compact
subspace A ⊂ X such that u lies in the image of the associated map from Hq(A) to Hq(X).
Furthermore, if A is a compact subset of X and u, v ∈ Hq(A) are two classes with the same image
in Hq(X), then there is a compact subset B satisfying A ⊂ B ⊂ X such that the images of u and
v are equal in Hq(B).

Proof. If c is a singular q-chain and

c =
∑

j

nj Tj

define the support of c, written Supp (c), to be the compact set ∪j Tj(∆q). Note that this subset
is compact.

If u ∈ Hq(X) is represented by the chain z and if A = Supp (z), then since S∗(A)→ S∗(X) is
1–1 it follows that z represents a cycle in A and hence u lies in the image of Hq(A)→ Hq(X).

Suppose now that A is a compact subset of X and u, v ∈ Hq(A) are two classes with the
same image in Hq(X). Let z and w be chains in Sq(A) representing u and v respectively, and let
b ∈ Sq+1(X) be such that d(b) = i#(z) − i#(w). If we set B = A ∪ Supp (b), then it follows that
the images of z−w bounds in Sq(B), and therefore it follows that u and v have the same image in
Hq(B).

IV.2 : Eilenberg-Steenrod properties

(Hatcher, §§ 2.1, 2.3)

For many purposes, the explicit construction of singular homology is secondary in importance
to a list of formal properties that essentially characterize the singular homology groups. These
properties played an important role in the work of Eilenberg and Steenrod, and they have been
extremely influential in topology and numerous related subjects. The first of these properties was
already mentioned informally in the preceding section, but for the sakd of completeness we shall
restate it formally.

PROPOSITION 1. (The “Dimension Axiom”) If X = {x} consists of a single point, then
Hq(X) = 0 if q 6= 0, and H0(X) ∼= Z with the isomorphism given by the augmentation map.

Proof. Suppose first that x ∈ Rn for some n, so that {x} is naturally a 0-dimensional polyhedron.
We have already noted that the simplicial and singular chains on X are isomorphic. Since the
conclusion of the proposition holds for simplicial chains by the results of the preceding unit, it
follows that the same holds for singular chains. To prove the general case, note that if {x} is an
arbitrary space consisting of a single point and 0 ∈ R

n, then {0} is homeomorphic to {x} and in
this case the conclusion follows from the special case because homeomorphic spaces have isomorphic
homology groups.

The second Eilenberg-Steenrod property is also straightforward to prove with the algebraic
machinery developed thus far in the course.
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THEOREM 2. (Long Exact Homology Sequence Theorem — Singular Homology Version). Let
(X,A) be a pair of topological spaces where A is a subspace of X. Then there is a long exact
sequence of homology groups as follows:

· · · Hk+1(X,A)
∂−→ Hk(A)

i∗−→ Hk(X)
j∗−→ Hk(X,A)

∂−→ Hk−1(A) · · ·

This sequence extends indefinitely to the left and right. Furthermore, if we are given another pair of
spaces (Y,B) and a continuous map of pairs f : (X,A)→ (Y,B) such that f : X → Y is continuous
and f [A] ⊂ B, then we have the following commutative diagram in which the two rows are exact:

· · · Hk+1(X,A)
∂−→ Hk(A)

i∗−→ Hk(X)
j∗−→ Hk(X,A)

∂−→ Hk−1(A) · · ·

· · ·
yf∗

yf∗
yf∗

yf∗
yf∗

· · · Hk+1(Y,B)
∂′

−→ Hk(B)
i′
∗−→ Hk(Y )

j′

∗−→ Hk(Y,B)
∂′

−→ Hk−1(B) · · ·

This follows immediately from the algebraic theorem on long exact homology sequences.

There is also a map of long exact sequences relating simplicial and singular homology for
simplicial complexes. This is not one of the Eilenberg-Steenrod properties, but logically it fits
naturally into the discussion here.

THEOREM 3. Let (X,K) be a simplicial complex, and let (A,L) determine a subcomplex.
Then there is a commutative ladder as below in which the horizontal lines represent the long exact
homology sequences of pairs and the vertical maps are the natural transformations from simplicial
to singular homology.

· · · Hk+1(K,L)
∂−→ Hk(L)

i∗−→ Hk(K)
j∗−→ Hk(K,L)

∂−→ Hk−1(L) · · ·

· · ·
yλ∗

yλ∗
yλ∗

yλ∗
yλ∗

· · · Hk+1(X,A)
∂−→ Hk(A)

i∗−→ Hk(X)
j∗−→ Hk(X,A)

∂−→ Hk−1(A) · · ·

The results follows directly from the Five Lemma and the fact that the previously defined chain
maps λ pass to morphisms of quotient complexes of relative chains from C∗(K,L) to S∗(X,A).

The Homotopy and Excision Properties

In our discussion of simplicial homology the following two facts played important roles:

(1) If P is a polyhedron that is star shaped with respect to some vertex v, then the inclusion
from {v} to P defines an isomorphism in simplicial homology.

(2) If the polyhedron P is obtained from the polyhedron Q by adjoining a single simplex
S (whose boundary must lie in Q), then the inclusion from (S, ∂S) to (P,Q) defines an
isomorphism in simplicial homology.

The Homotopy and Excision Properties are just abstract versions of these basic facts.

In order to state the Homotopy Property for pairs of topological spaces, we shall note that two
maps of topological space pairs f, g : (X,A) → (Y,B) are homotopic as maps of pairs if there is a
homotopy H : (X × [0, 1], A× [0, 1])→ (Y,B) such that the restriction of H to (X × {0}, A× {0})
and (X × {1}, A × {1}) are given by f and g respectively
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THEOREM 4. (Homotopy invariance of singular homology) Suppose that f, g : (X,A)→ (Y,B)
are homotopic as maps of pairs. Then the associated homomorphisms f∗, g∗ : H∗(X,A)→ H∗(Y,B)
are equal.

We have already laid the groundwork for proving this result in Section III.5, and the proof will
be given in the Section IV.4. For the time being, we shall simply give three important consequences.

COROLLARY 5. If f : X → Y is a homotopy equivalence, then the associated homology maps
f∗ : H∗(X)→ H∗(Y ) are isomorphisms.

Proof. Let g : Y → X be a homotopy inverse to f . Since g of is homotopic to the identity on X
and g og is homotopic to the identity on Y , it follows that the composites of the homology maps
g∗ of∗ and f∗ og∗ are equal to the identity maps on H∗(X) and H∗(Y ) respectively, and therefore
f∗ and g∗ are isomorphisms.

COROLLARY 6. If X is a contractible space and there is a contracting homotopy from the
identity to the constant map whose value is given by y ∈ X, then the inclusion of {y} in X defines
an isomorphism of singular homology groups.

Proof. Let i : {y} → X be the inclusion map, and let r : X → {y} be the constant map, so
that r oi is the identity. The contracting homotopy is in fact a homotopy from the identity to the
reverse composite i or, and therefore {y} is a deformation retract of X. By the preceding corollary,
it follows that i∗ defines an isomorphism of singular homology groups.

COROLLARY 7. If f : (X,A) → (Y,B) is a continuous map of pairs such that the associated
maps X → Y and A→ B are homotopy equivalences, then the homology maps f∗ from H∗(X,A)
to H∗(Y,B) all isomorphisms.

Proof. In this case we have a commutative ladder as in Theorem 2, in which the horizontal lines
represent the exact homology sequences of (X,A) and (Y,B), while the vertical arrows represent
the homology maps defined by the mapping f . Since the mappings from X to Y and from A to
B are homotopy equivalences, it follows that all the vertical maps except possibly those involving
H∗(X,A) → H∗(Y,B) are isomorphisms; one can now use the Five Lemma to prove that these
remaining vertical maps are also isomorphisms.

The final property, called excision, is the most complicated to state and to prove, and its
connection to the second property is relatively remote.

THEOREM 8. (Excision Property) Suppose that (X,A) is a topological space and that U is an
open subset of X such that U ⊂ U ⊂ Interior(A). Then the inclusion map from (X − U,A − U)
to (X,A) determines an isomorphism in homology.

A connection between this result and the second property of simplicial homology can be de-
scribed informally as follows: If we take B = X − U , then the inclusion map in the theorem may
be rewritten as (B,B ∩A)→ (B ∪A,A). In the second listed property of simplicial homology, the
inclusion map can be rewritten in the form (S,Q ∩ S)→ (Q ∪ S,Q). There is at least a superficial
resemblance between each of these and the standard module isomorphism

M/M ∩N ∼= M +N/N

and in fact the similarities turn out to be more than just a coincidence.
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Excision and adjoining cells to a space

We shall continue by proving a stronger analog of property (2) for simplicial homology that
was stated above.

THEOREM 9. Suppose that X is a compact Hausdorff space and A ⊂ X is a closed subspace
such that X is obtained from A by adjoining finitely many k-cells for some k > 0. Let

ϕ : A q
(
{1, · · · , N} ×Dk

)
−→ X

be the continuous onto quotient map corresponding to the cell attachments. Then the composite
map of pairs

(⋃
j {j} ×Dk,

⋃
j {j} × Sk−1

)

yinclusion
(
A q

(
{1, · · · , N} ×Dk

)
, A q

(
{1, · · · , N} × Sk−1

) ) ϕ−→
(
X,A

)

defines an isomorphism of singular homology groups.

In fact, we shall prove that both of the factors in the composite map also define isomorphisms
of homology groups.

COROLLARY 10. In the setting above the relative homology groups H∗(X,A) are isomorphic
to a direct sum of N copies of H∗(D

k, Sk−1).

Proof of Theorem 9. The argument involves detailed work with the constructions of Proposition
II.3.4, so we begin by recalling these and expanding upon them.

As before, let E1, · · · , EN be the k-cells, and take

ϕ : A q
(
{1, · · · , N} ×Dk

)
−→ X

to be the continuous onto map corresponding to the k-cell attachments. For each r ∈ (0, 1] let
rDk ⊂ Dk be the closed disk of radius r centered at the origin, let F (r) ⊂ X be the image of
{1, · · · , N} × rDk, and let V (r) = X − F (r). It follows that F (r) is a compact (hence closed)
subset and V (r) is an open set containing A, and by Proposition II.3.4 we know that A is a strong
deformation retract of both V (r) and its closure in X. Note that this closure of V (r) is given by
the union of the latter with the image of {1, · · · , N}× rSk−1, where rSk−1 is the sphere of radius
r which is the point set theoretic frontier of rDk.

Since A is a strong deformation retract of V ( 1
2 ) , it follows from Corollary 7 that the inclusion

mapping of pairs ψ defines an isomorphism ψ∗ from H∗(X,A) to H∗

(
X, V ( 1

2 )
)
. Since 0 < s <

r ≤ 1 implies
V (s) ⊂ V (r)

it follows from Theorem 8 that the excision mappings

e∗ : H∗

(
X − V

(
3
4

)
, V

(
1
2

)
− V

(
3
4

) )
−→ H∗

(
X, V

(
1
2

) )

are isomorphisms. If 0 < s < r ≤ 1 and we let Shell [s, r] ⊂ Dk be the set of points x such that
|x| ∈ [s, r], then by construction the mapping ϕ defines a homeomorphism of pairs

ϕ3 : {1, · · · , N} ×
(

3
4
Dk,Shell

[
1
2
, 3

4

] )
−→

(
X − V

(
3
4

)
, V

(
1
2

)
− V

(
3
4

) )
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and therefore it follows that the homology of the pair on the right is isomorphic to a direct sum of
N copies of the homology of the pair

(
3
4D

k,Shell
[

1
2 ,

3
4

] )
.

We now have the following commutative diagram in which the maps ϕi are defined by ϕ and
all the vertical arrows are associated to inclusion mappings:

(
{1, · · · , N} ×Dk, {1, · · · , N} × Sk−1

) ϕ1−−−−−→ (X,A)
yψ′

yψ
(
{1, · · · , N} ×Dk, {1, · · · , N} × Shell

[
1
2 , 1
] ) ϕ2−−−−−→

(
X, V

(
1
2

) )

xe′
xe

(
{1, · · · , N} × 3

4
Dk, {1, · · · , N} × Shell

[
1
2
, 3

4

] ) ϕ3−−−−−→
(
X − V

(
3
4

)
, V

(
1
2

)
− V

(
3
4

) )

We have already noted that ϕ3 is a homeomorphism of pairs and hence induces isomorphisms in
singular homology, and we already noted that e is an excision map so it also induces isomorphisms
in homology. Furthermore, the map e′ is also an excision map and hence induces isomorphisms in
homology, and thus it follows that ϕ2 defines isomorphisms in homology.

At the beginning of the proof we noted that ψ defines an isomorphism in homology. Since
Sk−1 is a strong deformation retract of Shell

[
1
2 , 1
]

(push everything out to the boundary radially),
it follows that ψ′ also defines isomorphisms in homology, and hence it also follows that ϕ1 defines
isomorphisms in homology, which is precisely the conclusion of the theorem.

Equivalence of singular and simplicial homology

We are now ready to prove that singular and simplicial homology are naturally equivalent
(modulo completing the proofs of Theorems 4 and 8 in the Section IV.4 of the notes).

THEOREM 11. Let (X,K) be a simplicial complex, let (A,L) determine a subcomplex, and
let λ∗ : H∗(K,L)→ H∗(X,A) be the natural transformation from simplicial to singular homology
that was described in Theorem 3. Then λ∗ is an isomorphism.

Proof. The idea is to apply Theorem III.4.7 on natural transformations of homology theories on
simplicial complex pairs. In order to do this, we must check that singular homology for simplicial
complexes satisfies the five properties (a)−(e) listed shortly before the statement of III.4.7. Property
(c) is verified in Proposition IV.1.4, and Properties (a), (b), (d) and (e) are respectively established
in Theorem 2, Corollary 7, Theorem 9 and Proposition 1 of this section. Since all these properties
hold, Theorem III.4.7 implies that the map λ∗ must be an isomorphism for all simplicial complex
pairs.

Homeomorphism types of spheres and Euclidean spaces

At the beginning of these notes we stated the question whether Rm and Rn can be homeomor-
phic if m 6= n. We finally have enough machinery to prove the answer is NO. The first step is a
very simple computation involving simplicial homology.

PROPOSITION 12. If n ≥ 0 then Hq(∆n, ∂∆n) ∼= Z if q = n and is trivial otherwise.
Furthermore, if n > 0 then Hq(∂∆n+1) ∼= Z if q = 0 or q = n, and it is trivial otherwise.

We should also note in passing that Hq(∂∆1) ∼= Z⊕ Z if q = 0 and is trivial otherwise.
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COROLLARY 13. If n ≥ 0 then Hq(D
n, Sn−1) ∼= Z if q = n and is trivial otherwise.

Furthermore, if n > 0 then Hq(S
n) ∼= Z if q = 0 or q = n, and it is trivial otherwise.

Corollary 13 follows from Proposition 12, the existence of the radial projection homeomorphism
from (∆n, ∂∆n) to (Dn, Sn−1), which is given by Theorem II.3.1, the equivalence of simplicial and
singular homology, and the topological invariance of singular homology.

Proof of Corollary 12. The easiest way to see the first statement is to compute the ordered
simplicial homology of the given pair. In fact, the simplicial chain complex for the standard
decomposition of (∆n, ∂∆n) is zero except in degree n, and it is isomorphic to Z in that case. Thus
there are no differentials, and the homology groups are the same as the chain groups in this case.
To prove the second statement, consider first the long exact homology sequence, a portion of which
is displayed below:

· · · → Hj(∆n+1)→ Hj(∆n+1, ∂∆n+1)→ Hj−1(∂∆n+1)→ Hj−1(∆n+1) · · ·

If j > 1 then the homology groups of ∆n+1 in this part of the sequence are zero and hence we
see that Hj(∆n+1, ∂∆n+1) is isomorphic to Hj−1(∂∆n+1) if j > 1. This proves the result for
Hq(∂∆n+1) when q > 0; since Hq = 0 for q < 0, it only remains to prove the result for q = 0. In
this case, consider the following piece of the long exact sequence:

· · · → H1(∆n+1, ∂∆n+1)→ H0(∂∆n+1)→ H0(∆n+1)

The first group in this piece of the sequence is trivial, and the last group is infinite cyclic, with a
generator given by the class of a vertex. This class clearly lies in the image of H0(∂∆n+1) since all
vertices are contained in the boundary of the simplex, so the map H0(∂∆n+1)→ H0(∆n+1) ∼= Z is
onto. By exactness and the vanishing of H1(∆n+1, ∂∆n+1), this map is also 1–1 and hence it must
be an isomorphism; this proves the assertion regarding the 0-dimensional homology.

COROLLARY 14. For every n > 0, the sphere Sn is NOT contractible.

Proof. If a space is contractible, its homology groups are isomorphic to those of a point, but the
homology groups of Sn do not have this property.

In fact, the homology computation yields the desired result on the homeomorphism types of
spheres and Euclidean spaces.

THEOREM 15. Ifm and n are positive numbers such thatm 6= n, then Sm is not homeomorphic
to Sn and Rm is not homeomorphic to Rn.

Proof. We start with the statement regarding spheres. Theorem 12 we know that the homology
groups of Sm and Sn are not isomorphic if m 6= n. Since homeomorphic spaces have isomorphic
homology groups, it follows immediately that Sm and Sn cannot be homeomorphic.

In order to derive the corresponding result for Rm and Rn, we need the following fact from point
set topology: If X and Y are locally compact Hausdorff spaces which are NOT compact, and f :
X → Y is a homeomorphism, then X extends to a homeomorphism of one point compactifications
f• : X• → Y •, where f• sends the point at infinity in X• to the point of infinity in Y •. Therefore,
if R

m and R
n are homeomorphic then their one point compactifications are also homeomorphic.

Since the latter are homeomorphic to Sm and Sn, it follows that if Rm and Rn are homeomorphic
then Sm and Sn are homeomorphic. Since the latter is false if m 6= n, it follows that Rm and Rn

cannot be homeomorphic if m 6= n.

In fact, we can say considerably more.
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PROPOSITION 16. (Invariance of Dimension) Suppose that X and Y are topological man-
ifolds of dimensions m and n respectively (in other words, they are Hausdorff spaces such that
each point has an open neighborhood which is homeomorphic to an open subset of Rm and Rn

respectively). If X and Y are homeomorphic, then m = n.

Proof. Let Z be a topological k-manifold, and let z ∈ Z. Then there is an open neighborhood U
of z which is homeomorphic to an open disk W in Rk such that z corresponds to the center of the
open disk; we might as well assume that the center of W is 0. Clearly then we have

H∗(U,U − {z}) ∼= H∗(W,W − {0}) .

Consider now the open covering of Z given by U and Z − {z}. Then U ∪ (Z − {z}) = Z and
therefore one can use the proof of the Excision Property to show that the inclusion map from
H∗(U,U − {z}) to H∗(Z,Z − {z}) induces an isomorphism in singular homology (see Proposition
IV.4.4A below). Therefore we know that Hi(Z,Z − {z}) is isomorphic to Z if i = k and is trivial
otherwise.

Now ifX and Y are homeomorphic topological manifolds as in the hypothesis of the proposition
and the homeomorphism takes x ∈ X to y ∈ Y , then the homeomorphism induces homology
isomorphisms Hi(X,X − {x}) ∼= Hi(Y, Y − {y}). Since the first homology group is nonzero if and
only if i = n and the second is nonzero if and only if i = m, it follows that n and m must be equal.

The Brouwer Fixed Point Theorem

At this point it is almost traditional to state and prove the Brouwer Fixed Point Theorem.
First there is a standard lemma.

LEMMA 17. For all n > 0 the inclusion of Sn in Dn+1 is not a retract.

Proof. Since functors take retracts to retracts, if the inclusion were a retract then the induced
map in homology would also be a retract, and this in turn would imply that each homology group
Hi(S

n) would be a subgroup of the corresponding homology group Hi(D
n+1). Since this is false

for i = n, the conclusion follows.

THEOREM 18. (Brouwer Fixed Point Theorem) For all n ≥ 0 every continuous map f : Dn →
Dn has a fixed point; in other words, there is a point x in Dn such that f(x) = x.

Proof. If n = 1 this is a fairly simple exercise in point set topology, and if n = 2 the proof
is completed in 205B as follows: First, one proves that S1 is not a retract of D2, and then one
proves that if there were a map without a fixed point then S1 would be a retract of D2. We have
established an analog of the first step, and in fact the argument for the second step works for all
n > 0. One point worth noting is the need to check the continuity of the geometrically described
retraction explicitly; this is often left undone in treatments of algebraic topology, but for the sake
of completeness we give the details in brouwer.pdf.

IV.3 : Computations

(Hatcher, § 2.2)
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Before proving the Homotopy and Excision properties for Singular Homology groups, we shall
take some time to give some typical uses of homology groups, culminating in a proof of Euler’s
Formula F −E + V = 2 for certain 2-dimensional polyhedra.

Betti numbers and torsion coefficients

We shall start with a result that could have been stated in Unit III.

PROPOSITION 1. If (P,K) is a simplicial complex of dimension n, then Hq(P,K) = 0 if q < 0
or q > n, and in the remaining cases Hq(P,K) is a finitely generated abelian group and hence a
direct sum of finitely many cyclic groups.

Since the singular and simplicial homology groups of a simplicial complex are isomorphic, we
also have the following conclusion:

COROLLARY 2. If (P,K) is a simplicial complex of dimension n, then the singular homology
groups of P satisfy Hq(P ) = 0 if q < 0 or q > n, and in the remaining cases Hq(P ) is a finitely
generated abelian group and hence a direct sum of finitely many cyclic groups.

In the course of proving Proposition 1 we shall need the following basic fact: If G is a free
abelian group on n generators, where n is some nonnegative integer, and H is a subgroup of G,
then H is a free abelian group on m generators for some (unique) nonnegative integer m ≤ n. —
A proof of this result may be found in the previously cited text by Hungerford (see Theorem 1.6
on pages 73 – 74).

Proof of Proposition 1. This is a purely algebraic result, and we shall prove the conclusion
holds for the homology groups of chain complexes C∗ such that Cq = 0 for q < 0 or q > n and Cq

is finitely generated in all dimensions. The proposition will follow by applying the algebraic result
to the complex of ordered chains C∗(P,K).

Let (C, d) be a chain complex as above, and denote the subgroups of cycles and boundaries
in Cq by Zq(C) and Bq+1(C) respectively. Then the qth homology Hq(C) is the quotient group
Zq(C)/Bq+1(C) By the remark in the paragraph before the beginning of this proof, we know that
Zq(C) is also a finitely generated free abelian group, and therefore its quotient Hq(C) is also finitely
generated. In fact if Cq is freely generated by cq elements then Hq(C) is generated by at most cq
elements.

By the preceding argument and an algebraic result mentioned near the beginning of these
notes, we know that

Hq(C) ∼= Zβ(q) ⊕
(

Zτ(1) ⊕ · · · ⊕ Zτ(s)

)

where each β(q) is a nonnegative integer and the τj ’s are positive integers such that τ(j+1) divides
τ(j) for all j, and in fact there are unique sequences of integers β(q) and τ(j) with these properties.
The number βq is frequently called the qth Betti number of the chain complex (or of a topological
space, if the chain complex gives the homology of that space), and the numbers τ(j) are often
called the qth torsion coefficients. One can extend the sequence of torsion coefficients to an infinite
sequence by setting τ(j) = 1 if j > s.

Cellular homology

If P is a polyhedron of positive dimension, the preceding discussion implies that the singular
homology groups of P are finitely generated abelian groups. even though the corresponding groups
of singular chains are free abelian groups on sets of generators whose cardinalities are equal to 2ℵ0 .
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In fact, the conclusion holds more generally if X has the structure of a finite cell complex by the
following result:

THEOREM 3. Let (X, E) be a finite cell complex of dimension n. Then there is a chain complex(
C∗(X, E), d

)
such that the chain groups are finitely generated free abelian in every dimension with

Cq(X, E) = 0 if q < 0 or q > n, and the q-dimensional homology of this chain complex is isomorphic
to the singular homology group Hq(X).

The chain complex will be defined explicitly in terms of singular homology and the cell structure
for (X, E), and it will be called the cellular chain complex. For each k such that −1 ≤ k ≤ n, let
Xk denote the k-skeleton of X, where X−1 = ∅. Specifically, we set Cq(X, E) = Hq(Xq, Xq−1) and
define the differential dq to be the following composite:

Hq(Xq , Xq−1)
∂[q]−−−−−→ Hq−1(Xq−1)

j[q−1]∗−−−−−→ Hq−1(Xq−1, Xq−2)

These maps define a chain complex since

dq−1
odq = j[q − 2]∗ o∂[q − 1] oj[q − 1]∗ o∂[q]

and ∂[q−1] oj[q−1]∗ = 0 because the factors are consecutive morphisms in the long exact homology
sequence for (Xq−1, Xq−2). By the results of the preceding section, the q-dimensional cellular chain
group is isomorphic to a free abelian group on the set of q-cells in E .
Proof of Theorem 3. The result is immediate if dimX = 0 or −1, in which cases X is a
nonempty finite set or the empty set. In this case the cellular chain groups are either concentrated
in degree zero (the 0-dimensional case) or are all equal to zero (the (−1)-dimensional case).

We shall prove the result for the explicit cellular chain complex described above by induction
on dimX, and for this purpose we assume that the result is true when dimX ≤ n − 1. The
inductive hypothesis then implies that the theorem is true for the (n− 1)-skeleton Xn−1. Now the
only difference between the cellular chain complex for X and the corresponding complex for Xn−1

is that the n-dimensional chain group for the latter is zero while the n-dimensional chain group for
the latter is nonzero, and likewise the differentials in both complexes are equal except for the ones
going from n-chains to (n− 1)-chains (in the second case the differential must be zero). It follows
that the homology groups of these cell complexes are isomorphic except perhaps in dimensions n
and n− 1.

Similarly, since Hq(Xn, Xn−1) = 0 if q 6= n or n−1, it follows that Hq(X) ∼= Hq(Xn−1) except
perhaps in these dimensions. Therefore, we have shown the inductive step except when q = n or
n− 1. It will be necessary to examine these cases more closely.

We shall describe the n-dimensional homology of C∗(X, E) first. By definition the map dn is a
composite j[q − 1]∗ o∂[q]∗, and the factors fit into the following long exact sequences:

0 = Hn(Xn−1) −→ Hn(X) −→ Hn(X,Xn−1) −→ Hn−1(Xn−1) · · ·

0 = Hn−1(Xn−2) −→ Hn−1(Xn−1) −→ Hn−1(Xn−1Xn−2)

It follows that Hn(X) is isomorphic to the kernel of ∂[q]∗ and the map j[q − 1]∗ is injective.
Similarly, it also follows that Hn−1(X) is isomorphic to the kernel of ∂[q−1]∗ and the map j[q−2]∗
is injective. Since dq = j[q − 1]∗ o∂[q], it follows that Hn(X) is also isomorphic to the kernel of dn,
and since Cn+1(X, E) = 0 it follows that the kernel of dn is also isomorphic to the n-dimensional
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homology of C∗(X, E). Thus we now know the theorem is true for all dimensions except possibly
(n− 1).

In order to describe the (n − 1)-dimensional homology of C∗(X, E) we shall consider the fol-
lowing diagram, in which both the row and the column are exact:

Hn−1(Xn−2) = 0
y

· · · Hn(X,Xn−1)
∂[n]−−−−−→ Hn−1(Xn−1) −→ Hn−1(X) −→ Hn−1(X,Xn−1) = 0

yj[n− 1]∗

Hn−1(Xn−1, Xn−2)

By the exactness of the row we know that Hn−1(X) is isomorphic to the quotient group

Hn−1(Xn−1) / Image ∂[n]

and since j[n−1]∗ is injective we know from the previous discussion that j[n−1]∗ sendsHn−1(Xn−1)
onto the kernel of dn−1 (note this map is the same for both X and Xn−1). Furthermore, by
construction we also know that j[n− 1]∗ maps the image of ∂[n] onto the image of dn. If we make
these substitutions into the displayed expression above, we see that Hn−1(X) is isomorphic to the
kernel of dn−1 modulo the image of dn, which proves that the conclusion of the theorem also holds
in dimension n− 1.

If we let C(q) = {Eq
α } denote the (finite) set of q-cells for E and view the cellular chain groups

Cq(X, E) as free abelian groups on the sets C(q) by the preceding construction and result, it follows
that for each Eq

α we have

dq (Eq
α ) =

∑

C(q−1)

[α : β]Eq−1
β

for suitable integers [α : β]; classically, these coefficients were called incidence numbers. Unlike the
situation for simplicial chain complexes, there are no general formulas for finding these numbers. If
we already know the homology of X from some other result, then it is often possible to recover them
by working backwards (i.e., if we know the homology then often there are not many possibilities
for the incidence numbers which will yield the correct homology groups).

One condition under which the incidence numbers are recursively computable is if the cell
complex is a regular cell complex; in other words, each closed n-cell is in fact homeomorphic to
to Dn via the attaching map and is a subcomplex in the evident sense of the word (the boundary
is a union of cells in the big complex). These will be true for the cell complexes considered in the
next subheading.

Here is a very brief summary of the recursive process: Suppose we have worked out the
differentials for the chain complex through dimension n−1, and we want to find the differentials in
dimension n. Let E be an n-cell; by definition, E determines a cell complex which has the homology
of a disk. Let ∂E be the subcomplex given by the boundary, so that we have the incidence numbers
on ∂E already. It is only necessary to figure out the map from Z = Cn(E) to Cn−1(E). Now the
homology of ∂E is just the homology of Sn−1, and since Cn(∂E) = 0 it follows that there are no
nontrivial boundaries in Cn−1(∂E), so that Hn−1(∂E) ∼= Z may be viewed as a subgroup A of
Cn−1(∂E) = Cn−1(E). Now the image of this copy of Z in Cn−1(E) represents zero in homology
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since Hn−1(E) = 0, and therefore there must be some element in Cn(E) which maps to a generator
of A. Since Cn(E) is infinite cyclic, it follows that some multiple of the generator [E] for Cn(E)
must map to the generator of A. Let a ∈ A be the generator such that d(k[E]) = a; then it follows
that a = k d([E]). But since d([E]) is also a cycle, it follows that d([E]) = ma for some integer
m. Combining these, we see that a = kma, and since A is torsion free this implies that km = 1,
so that k = m = ± 1. Thus we must have d([E]) = ± a. the generator of Cn(E). In fact, the
exact choice for the sign is unimportant because one obtains the same homology in all cases; we
can always choose the generator for Cn(E) so that the incidence number is +1.

Convex linear cells

In elementary geometry, the terms polygon and polyhedron are often used to denote frontiers of
bounded open sets in R2 and R3 that are defined by finitely many linear equations and inequalities.
For example, one has the standard isosceles right triangle in the plane which bounds the compact
convex set defined by the inequalities

x ≥ 0 , y ≥ 0 , x + y ≤ 1

while standard squares and cubes in the plane and 3-space are defined by

0 ≤ x, y ≤ 1 , 0 ≤ x, y, z ≤ 1

and the octagon in the plane with vertices

(2, ±1), (−2, ±1), (1, ±2), (−1, ±2)

is defined by the eight inequalities

−2 ≤ x, y ≤ 2 , −3 ≤ x + y ≤ 3 , −3 ≤ x − y ≤ 3 .

Convex sets in Rn defined by finitely many linear equations and inequalities are basic objects of
study in the usual theory of linear programming. In particular, it turns out that the sorts of sets we
consider are given by all convex combinations of a finite subset of extreme points which correspond
to the usual geometric notion of vertices. The reference below is the text for Mathematics 120, which
covers linear programming and provides some background on the sets considered here, (particularly
in Sections 15.4 – 15.8 on pages 264 – 285).

E. K. P. Chong and S. Zak. An Introduction to Optimization. Wiley, New York, 2001.
ISBN: 0-471-39126-3.

We defined convex linear cells in Section I.2; recall that a bounded subset E ⊂ Rn is a convex linear
cell (or also as a rectilinear cell) if it is defined by finitely many linear equations and inequalities.
It follows immediately that such a set is compact and convex.

The main properties of such cells that we shall need are formulated and proved in Section 7
of [MunkresEDT]. Here is a summary of what we need: If we define a k-plane in a real vector
space V to be a set of the form x+W , where W is a k-dimensional vector subspace of V , then the
dimension of a convex linear cell E is equal to the least k such that E lies in a k-plane. If V is an
n-dimensional vector space, this dimension is a nonnegative integer which is less than or equal to
n. Suppose now that E is k-dimensional in this sense and P = x+W is a k-plane containing E; it
follows fairly directly that P is the unique such k-plane. Less obvious is the fact that the interior
of E with respect to P is nonempty.
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[For the sake of completeness, here is a sketch of the proof: The cell E must contain a set
of k+ 1 points that are affinely independent, for otherwise it would lie in a (k− 1)-plane.
Since a convex linear cell is a closed convex set, it must contain the k-simplex whose
vertices are these points, and this set has a nonempty interior in the k-plane P.]

It is convenient to describe a minimal and irredundant set of equations and inequalities which
define a convex linear cell E. The unique minimal k-plane containing E can be defined as the set
of solutions to a system of n− k independent linear equations, and to describe E it is enough to
add a MINIMAL set of inequalities which define E.

Definition. If E is a k-dimensional convex linear cell and we are given an efficient set of defining
linear equations and inequalities as in the preceding paragraph, then a (k−1)-dimensional face of E
is obtained by taking the subset for which one of the listed inequalities is replaced by an equation.

For example, in the square the four faces are given by adding one of the four conditions

x = 0, x = 1, y = 0, y = 1

to the equations and inequalities defining the square, and for the 2-simplex whose vertices are (0, 0),
(1, 0) and (0, 1) one has the three faces defined by strengthening one of the defining inequalities to
one of the three equations x = 0, y = 0 or x+ y = 1.

It follows immediately that each (k− 1)-face of E is a convex linear cell, and Lemmas 7.3 and
7.5 on pages 72 – 74 of [MunkresEDT] show that each face described in this manner is (k − 1)-
dimensional. — One can iterate the process of taking faces and define q-faces of E where −1 ≤
q ≤ k; more details appear on page 75 of the book by Munkres (by definition, the empty set is a
(−1)-face).

The geometric boundary of E, written Bdy(E), may be described in two equivalent ways: It
is the union of all the lower dimensional faces ofr E, and it is also the point set theoretic frontier of
E in P. We shall need the following theorem, which is discussed on pages 71 – 74 of the Munkres
book:

PROPOSITION 4. If E ⊂ Rn is a convex linear cell, then the pair
(
E,Bdy(E)

)
is homeo-

morphic to (Dk, Sk−1).

We have already shown this result when E is a simplex by constructing a radial projection
homeomorphism, and as noted on page 71 of Munkres’ book a similar construction proves the
corresponding result for an arbitrary convex linear k-cell.

If we combine this proposition with the remaining material on convex linear cells, we obtain
the following basic consequence.

PROPOSITION 5. If E is a convex linear k-cell and Bdy(E) is its boundary, then these spaces
have cell decompositions such that (i) the cells of Bdy(E) are the faces of dimension less than k,
(ii) the cells of E are the cells of Bdy(E) together with E itself.

If we combine the preceding result with Theorem 3, we obtain the following conclusion relating
the geometry and algebraic topology of E and its boundary.

COROLLARY 6. If E and Bdy(E) are as above, then there exist chain complexes A∗ and B∗
such the groups Aq are free abelian groups on the sets of nonempty faces of dimension less than
k, the groups Bq are free abelian groups on the sets of nonempty faces of dimension ≤ k, and the
homology groups of A∗ and B∗ are isomorphic to H∗(S

k−1) and H∗(D
k) respectively.
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We would like to apply this corollary to derive the formula of Euler stated at the beginning of
these notes. This requires an algebraic digression.

Rational homology

Given an arbitrary ring R, one can define singular homology groups with coefficients in R using
modified singular chain groups S∗(X;R) in which the qrmth group Sq(X;R) is a free R-module
on the set of singular q-simplices. Boundary homomorphisms can now be constructed as before,
and therefore we may define homology with coefficients in R in the usual fashion. These groups
will be denoted by Hq(X;R). In these notes we shall only be interested in cases where R is either
the integers or a field.

In order to proceed, we shall need some algebraic background; the constructions described
below work in far greater generality than the situation we consider, but we specialize here to
simplify the discussion.

Definition. Let G be an abelian group. The rationalization or G, or the localization of G over
the rationals is formed by a construction very similar to the construction of the rationals from
the integers. One starts with ordered pairs (g, r) where g ∈ G and r is a nonzero integer, and
one identifies (g, r) with (h, s) if there is a nonzero integer t such that t(sg − rh) = 0 (this is
slightly stronger than the condition in the construction of Q from Z in which t is always 1). This
condition defines an equivalence relation on the set of all ordered pairs, and we let G(0) denote the
set of equivalence classes. Formally, the class of (g, r) is supposed to represent an object of the
form r−1 · g, and motivated by this we define addition and multiplication by a rational number as
follows:

[g, r] + [h, s] = [sg + rh, rs] , pq−1[g, r] = [pg, qr]

At this point it is necessary to verify that our definitions of sums and scalar products do not depend
upon the choices of representatives for equivalence classes; this is elementary and entirely similar
to the corresponding proof for the formal definition of rational numbers in terms of integers. The
following result is also elementary:

THEOREM 7. The object G(0) constructed above is a rational vector space, and the construction
also has the following properties:

(i) If g1, · · · , gm generate G, then their images under jG span the rational vector space G(0).

(ii) For each abelian group G there is a group homomorphism jG : G → G(0) sending g ∈ G
to the equivalence class [g, 1]. This map is an isomorphism if G is a rational vector space.

(iii) If f : G → H is a homomorphism then there is an associated linear transformation of
rational vector spaces f(0) : G(0) → H(0) such that the constructions sending an object or morphism
Γ to Γ(0) define an ADDITIVE covariant functor and the maps jG define a natural transformation
from the identity to the associated functor on the category of abelian groups.

(iv) The construction sends the infinite cyclic group Z to Q and it sends every finite cyclic
group to 0. Furthermore, for all abelian groups G and H we have [G⊕H](0) ∼= G(0) ⊕H(0).

In particular, if G is a finitely generated abelian group which is the direct sum of β infinite
cyclic groups and several finite cyclic groups, then G(0) is a rational vector space whose dimension
is equal to β.
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Comments on the proof. Most of the verifications are extremely straightforward and left to the
reader, so we shall simply note a few key features. First of all, scalar multiplication by a rational
number n/m (where m 6= 0) is given by

(n/m) · [g, r] = [ng,mr]

and similarly the mapping g(0) is defined by the formula

f(0)[g, r] = [ f(g), r ] .

We shall need the second formula for our next result.

The following property of the rationalization construction is somewhat less trivial, and it has
far-reaching consequences.

THEOREM 8. The functor Γ→ Γ(0) sends exact sequences to exact sequences.

Proof. Every exact sequence is essentially built from short exact sequences; for example, if
A→ B → C is an exact sequence involving f : A→ B and g : B → C, then the sequence is given
by fitting together the following sequences:

0→ Ker(f)→ A→ Image(f) = Kernel(g)→ 0

0→ Image(f) = Kernel(g)→ B → Image(g)→ 0

0→ Image(g)→ C → Cokernel(g)→ 0

Therefore it will be enough to prove the result for short exact sequences. In other words, if
0→ A→ B → C → 0 is exact, we need to prove the same holds for 0→ A(0) → B(0) → C(0) → 0.

We shall only prove that the sequence is exact at the middle object; the proofs at the other two
objects are similar and left to the reader. Suppose that f : A→ B is 1–1 and g : B → C is onto such
that the image of f is the kernel of g. Then g of = 0 and additivity imply that g(0)

on(0) = 0, and
therefore it follows immediately that the image of n(0) is contained in the kernel of g(0). Suppose
now that [b, t] lies in the kernel of g(0). By definitions it follows that there is a nonzero integer
s such that s · g(b) = 0. By exactness of the original sequence, there is some a ∈ A such that
f(a) = sb, and we claim that n(0) maps [a, st] to [b, t]. To see this, note that n(0)[a, st] = [sb, st]
and the right hand side is equal to to [b, t] because stb− tsb = 0.

The preceding results have the following implication for chain complexes.

COROLARY 9. Let (C, d) be a chain complex of abelian groups. Then rationalization defines
a chain complex (C(0), d(0) ) of rational vector spaces, and the homology of this chain complex is
isomorphic to the rationalized homology groups H∗(C)(0).

Euler characteristics and Euler’s Formula

We now resume our study of the algebraic topology of convex linear cells. If E is a convex linear
cell of dimension k and nq denotes the number of q-faces for 0 ≤ q ≤ k, then direct examination of
examples shows that one always obtains the equation

n0 − n1 + n2 · · · + (−1)knk = 1

in which the final term nk is always equal to 1 by construction. The machinery of this section
provides a means for explaining why this is more than just a coincidence.
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Notation. Let (C, d) be a chain complex over the rationals such that only finitely many chain
groups Cq are nonzero and the nonzero groups are all finite-dimensional vector spaces over the
rationals.

(i) Set cq equal to the dimension of Cq.

(ii) Set bq equal to the rank of dq.

(iii) Set zq equal to the dimension of the kernel of dq.

(iv) Set hq equal to the dimension of Hq(C).

It follows immediately that these numbers are defined for all q and are equal to zero for all but
finitely many a.

The equation involving the numbers of faces for a convex linear cell depends upon the following
algebraic result.

PROPOSITION 10. In the setting above we have

∑

q

(−1)qcq =
∑

q

(−1)qhq .

Proof. The main idea of the argument is given on pages 146 – 147 of Hatcher. In analogy with
the discussion there, we have cq − zq = bq and zq − bq+1 = hq , so that

∑

q

(−1)qhq =
∑

q

(−1)q(zq − bq+1) =
∑

q

(−1)qzq −
∑

q

(−1)qbq+1 =

∑

r

(−1)rzr +
∑

r

(−1)rbr =
∑

q

(−1)qcq

proving that the two sums in the proposition are equal.

COROLLARY 11. Suppose that (X, E) is a finite cell complex with cq cells in dimension q ≥ 0,
and suppose that Hq(X) is isomorphic to a direct sum of βq infinite cyclic groups plus a finite
group. Then we have ∑

q≥0

(−1)qcq =
∑

q≥0

(−1)qβq .

The statement regarding convex linear cells follows immediately from Corollary 11 and Propo-
sition 5. — In general, the topologically invariant number on the right hand side is called the Euler
characteristic of X and is written χ(X).

Proof. Let A∗ be the chain complex over the rational numbers with Aq = Cq(X, E)(0) and the
differential given by rationalizing dq . It then follows that dimAq = cq and dimHq(A) = βq. The
corollary then follows by applying Proposition 10.

The “classical” formula of Euler is the 2-dimensional case of the following result:

THEOREM 12. (Generalized Euler’s Formula) Let E ⊂ R
n+1 be an (n+1)-dimensional convex

linear cell, and suppose that E and Bdy(E) have fr faces of dimension r for 0 ≤ r ≤ n (note that
r = n+ 1 is excluded). Then the alternating sum

n∑

r=0

(−1)rnr
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is equal to 2 if n is even and 0 if n is odd.

We should note that the alternating sum is also equal to the Euler characteristic of Bdy(E).

Proof of Theorem 12. Since the homology of E is isomorphic to the homology of a point, we
know that β0 = 1 and βq = 0 otherwise. By the preceding discussion we know that

n0 − n1 + n2 · · · + (−1)n+1nn+1 = 1

where nn+1 = 1. Therefore the alternating sum

n∑

r=0

(−1)rnr

is equal to 1− (−1)n+1 = 1 + (−1)n, which is 2 if n is even and 0 if n is odd.

If n = 3 this formula is equivalent to the standard identity F −E + V = 2.

We shall conclude this section with another simple example:

PROPOSITION 13. Suppose that (X, E) is a connected 1-dimensional cell complex (i.e., a
graph) with E edges and V vertices. Then H1(X) is isomorphic to a free abelian group on 1−E+V
generators.

The methods of 205B show that π1(X,x) is a free group on the same number of generators; in
the final section of this unit we shall see how these results are related. subgroup of the free abelian
chain group C1(X, E)
Proof. Since X is arcwise connected (why?) and thus its zero-dimensional singular homology
is infinite cyclic, it follows that β0 = 1. Therefore Corollary 11 implies that 1 − β1 = V − E and
therefore we may retrieve β1 easily from the cell structure data by the formula β1 = 1 +E − V .

IV.4 : Proofs of homotopy invariance and Excision

(Hatcher, §§ 2.1 – 2.3)

In this section we shall complete the proof that singular homology satisfies all the Eilenberg-
Steenrod properties by showing that singular homology satisfies the Homotopy and Excision Prop-
erties. The proof of the former will rely heavily on material from Section III.5 of these notes.

Homotopy invariance

We begin with a simple example:

PROPOSITION 0. For each t ∈ [0, 1] let it : X → X × [0, 1] denote the slice inclusion
it(x) = (x, t), Then i0 and i1 are homotopic.

Proof. The identity map on X × [0, 1] defines a homotopy from i0 to i1.

This observation will be useful in our proof of the homotopy property for singular homology
groups.
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Proof of Theorem IV.2.4. (Homotopy Invariance). We shall first show that it suffices to
prove the theorem for the mappings i0 and i1 described in Proposition 0. For suppose we have
continuous mappings f, g : X → Y and a homotopy H : X × [0, 1] → Y such that H oi0 = f and
H oi1 = g. Then we also have

f∗ = (H oi0)∗ = H∗ o(i0)∗ = H∗ o(i1)∗ = (H oi1)∗ = g∗

showing that f and g define the same maps in homology.

To prove the result for the mappings in Proposition 0 we shall in fact prove that the chain
maps (i0)# and (i1)# from S∗(X) to S∗(X × [0, 1]) are chain homotopic. — The results of Section
III.5 will then imply that the homology maps (i0)∗ and (i1)∗ are equal.

In Section III.5 we noted the existence of simplicial chains

Pq+1 ∈ Cq+1(∆q × [0, 1])

such that P0 = 0, P1 = y0x0 and more generally

dPq+1 = (i1)#1q − (i0)#1q −
∑

j

(−1)j(∂j × 1)#Pq

where 1q = e0 · · · eq ∈ Cq(∆q), the map ∂j = ∂
[q]
j : ∆q−1 → ∆q is affine linear onto the face

opposite ej , and (−)# generically denotes an associated chain map. Recall that the existence of
the chains Pq+1 was proved inductively, the key point being that since ∆q × I is acyclic, such a
chain exists if the boundary of

(i1)#1q − (i0)#1q −
∑

j

(−1)j(∂j × 1)#Pq

is equal to zero.

To construct the chain homotopy K : Sq(X) → Sq+1(X × [0, 1], let T : ∆q → X be a free
generator of Sq(X) and set K(T ) = (T × id[0,1])#Pq+1. We then have

dK(T ) = d o(T × id[0,1])#Pq+1 = (T × id[0,1])# od(Pq+1) =

(T × 1)# o(i1)#1q − (T × 1)# o(i0)#1q −
∑

j

(−1)jd o(T o∂j × 1)#Pq =

(i1)# oT#(1q) − (i0)# oT#(1q) −
∑

j

(−1)j(T o∂j × 1)#d(Pq) =

(i1)#(T ) − (i0)#(T ) − K od(T ) .

Therefore K defines a chain homotopy between (i1)# and (i0)# as required.

Barycentric subdivision and small singular chains

Using the acyclicity of C∗(∆q) we may inductively construct chains βq ∈ Cq

(
B(∆q)

)
(simpli-

cial chains on the barycentric subdivision) such that β0 = 10 and

d(βq) =
∑

j

(−1)j (∂j)#βq−1
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for q ≥ 0. If X is a topological space, then we may define a graded homomorphism β : S∗(X) →
S∗(X) such that for each singular simplex T : ∆q → X we have β(T ) = T#(βq).

LEMMA 1. The graded homomorphism β is a map of chain complexes. Furthermore, if A is a
subspace of X then β maps S∗(A) into itself.

Proof. We have d oβ(T ) = d oT#(βq) = T#
od(βq), and the last term is equal to

T#


∑

j

(−1)j (∂j)#βq−1


 =

∑

j

(−1)j (T o∂j)#βq−1

which in turn is equal to β
(
d(T )

)
.

The significance of the barycentric subdivision chain map is that it takes a chain in a given
homology class and replaces it by a chain which is in the same homology class but is composed of
smaller pieces; in fact, if one applies barycentric subdivision sufficiently many times, it is possible
to find a chain representing the same homology class such that its chain are arbitrarily small.
Justifications of these assertions will require several steps.

The first objective is to prove that the barycentric subdivision map is chain homotopic to the
identity. As in previous constructions, this begins with the description of some universal examples.

PROPOSITION 2. There are singular chains Lq+1 ∈ Sq+1(∆n) such that L1 = 0 and d(Lq+1) =
βq − 1q −

∑
j (−1)j(∂j)#(Lq).

By convention we take L0 = 0.

Sketch of proof. Once again, the idea is to construct the chains recursively. Since ∆q is acyclic,
we can find a chain with the desired properties provided the difference

βq − 1q −
∑

j

(−1)j(∂j)#(Lq)

is a cycle. One can prove this chain lies in the kernel of dq by using the recursive formulas for
dq(βq), dq(1q), and dq(Lq).

PROPOSITION 3. If X is a topological space and A ⊂ X is a subspace, then the identity and
the barycentric subdivision maps on S∗(X,A) are chain homotopic.

Proof. It will suffice to construct a chain homotopy on S∗(X) that sends the subcomplex S∗(A)
to itself, for one can then obtain the relative statement by passage to quotients.

Define homomorphisms W : Sq(X) → Sq+1(X) on the standard free generators T : ∆q → X
by the formula

W (T ) = T#Lq+1 .

By construction, if T ∈ Sq(A) then W (T ) ∈ Sq+1(A). The proof that W is a chain homotopy uses
the recursive formula for Lq+1 and is entirely analogous to the proof that the map K in the proof
of Theorem IV.2.4 is a chain homotopy.

Small singular chains

We have noted that barycentric subdivision takes a cycle and replaces it by a homologous cycle
composed of smaller pieces and that if one iterates this procedure then one obtains a chain whose
pieces are arbitrarily small. Not surprisingly, we need to formulate this more precisely.
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Definition. Let X be a topological space, and let F be a family of subsets whose interiors form
an open covering of X. A singular chain

∑
i ni Ti ∈ Sq(X) is said to be F -small if for each i the

image Ti(∆q) lies in a member of F . Denote the subgroup of F -small singular chains by SF∗ (X).
It follows immediately that the latter is a chain subcomplex of SF∗ (X); furthermore, if A ⊂ X and
we define SF∗ (A) to be the intersection of SF∗ (X) and SF∗ (A), then we may define relative F -small
chain groups of the form

SF∗ (X,A) = SF∗ (X)/SF∗ (A) .

Note further that the barycentric subdivision maps send F -small chains into F -small chains.

THEOREM 4. For all (X,A) and F , the inclusion mappings SF∗ (X,A) → S∗(X,A) define
isomorphisms in homology.

Proof. It is a straightforward algebraic exercise to prove that if L is a chain homotopy from the
barycentric subdivision map β to the identity, then for each r ≥ 1 the map (1 + · · · + β r−1) oL
defines a chain homotopy from βr to the identity.

Let U be the open covering of X obtained by taking the interiors of the sets in F .

Suppose first that we have u ∈ H∗(X,A) and u is represented by the cycle z ∈ S∗(X,A).
Write z =

∑
i niTi and construct open coverings Wi of ∆q by Wi = T−1

i (∆q). Then by the
Lebesgue Covering Lemma there is a positive integer r such that for each i, every simplex in the
rth barycentric subdivision of ∆q lies in a member of Wi. It follows immediately that βr(z) is
F -small. Since βr is a chain map, it follows that βr(z) is also a cycle in both S∗(X,A) and the
subcomplex SF∗ (X,A), and since β is chain homotopic to the identity it follows that

u = β∗(u) = · · · = (β∗)
r(u) = (βr)∗(u)

and hence u lies in the image of the homology of the small singular chain group.

To complete the proof we must show that if two cycles in SF∗ (X,A) are homologous in S∗(X,A)
then they are also homologous in SF∗ (X,A). Let z1 and z2 be the cycles, and let dw = z2 − z1 in
S∗(X,A). As in the preceding paragraph there is some t such that β t(w) ∈ SF∗ (X,A). Since βt is
a chain map and is chain homotopic to the identity, it follows that we have

[z2] = (βt)∗[z2] = [βt(z2)] = [βt(z1)] = (βt)∗[z1] = [z1]

in the F -small homology HF∗ (X,A). Therefore we have shown that the map from HF∗ (X,A) to
H∗(X,A) is also injective, and hence it must be an isomorphism.

Application to Excision

We recall the hypotheses of the Excision Property: A pair of topological spaces (X,A) is given,
and we have an open subset U ⊂ X such that U ⊂ Int(A). Excision then states that the inclusion
map of pairs from (X − U,A− U) to (X,A) defines isomorphisms of singular homology groups.

Predictably, we shall use the previous results on small chains. Let F be the family of subsets
given by A and X − U . Then by the hypotheses we know that the interiors of the sets in F form
an open covering of X, and by definition the subcomplex SF∗ (X) is equal to S∗(A) + S∗(X − U).
Therefore the chain level inclusion map from S∗(X − U,A − U) to S∗(X,A) may be factored as
follows:

S∗(X − U,A− U) = S∗(X − U)/S∗(A− U) = S∗(X − U)/ ( S∗(A) ∩ S∗(X − U) ) −→

84



(S∗(A) + S∗(X − U) ) /S∗(A) = SF∗ (X,A) ⊂ S∗(X,A)

Standard results in group theory imply that the last morphism on the top line is an isomorphism,
and the preceding theorem shows that the last morphism on the second line is an isomorphism.
Therefore if we pass to homology we obtain an isomorphism from H∗(X − U,A−U) to H∗(X,A),
which is precisely the statement of the Excision Property.

The same methods also yield the following result:

PROPOSITION 4A. If U and V are open subsets of a topological space, then the maps in
singular homology induced by the inclusions (U,U ∩ V ) ⊂ (U ∪ V, V ) are isomorphisms.

Mayer-Vietoris sequences

One of the most useful results for computing fundamental groups is the Seifert-van Kampen
Theorem. There is a similar principle that can be applied to find the homology groups of a space
X presented as the union of two open subsets U and V ; in fact, the result in homology does not
require any connectedness hypotheses on the intersection.

THEOREM 5. (Mayer-Vietoris Sequence for open sets in singular homology.) Let X be a
topological space, and let U and V be open subsets such that X = U ∪ V . Denote the inclusions
of U and V in X by iU and iv respectively, and denote the inclusions of U ∩ V in U and V by gU

and gV respectively. Then there is a long exact sequence

· · · → Hq+1(X)→ Hq(U ∩ V )→ Hq(U)⊕Hq(V )→ Hq(X)→ · · ·

in which the map from H∗(U) ⊕ H∗(V ) to H∗(X) is given on the summands by (iU )∗ and (iV )∗
respectively, and the map from H∗(U ∩ V ) to H∗(U) ⊕ H∗(V ) is given on the factors by −(gU )∗
and (gV )∗ respectively (note the signs!!).

Proof. Let U be the open covering of X whose sets are U and V , and let SU∗ (X) be the chain
complex of all U -small chains in S∗(X). Then we have

SU∗ (X) = S∗(U) + S∗(V ) ⊂ S∗(X)

(note that the sum is not direct) and hence we also have the following short exact sequence of chain
complexes, in which the injection is given by the chain map whose coordinates are −(gU )# and
(gV )# and the surjection is given on the respective summands by (iU )# and (iV )#:

0 −→ S∗(U ∩ V ) −→ S∗(U)⊕ S∗(V ) −→ SU∗ (X) −→ 0

The Mayer-Vietoris sequence is the long exact homology sequence associated to this short exact
sequence of chain complexes combined with the isomorphism HU∗ (X) ∼= H∗(X).

In simplicial homology one also has a Mayer-Vietoris sequence, but for much different types
of subspaces. Specifically, if K1 and K2 are subcomplexes of some K, where (P,K) is a simplicial
complex, then the corresponding Mayer-Vietoris sequence has the following form:

· · · → Hq+1(K)→ Hq(K1 ∩K2)→ Hq(K1)⊕Hq(K2)→ Hq(K)→ · · ·

It is possible to construct a unified framework that will include both of these exact sequences, but
we shall not do so here because it involves numerous further results about simplicial complexes.
However, it is important to note that in general one does NOT have a Mayer-Vietoris sequence in
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singular homology for presentations of a spaces X as a union of two closed subsets, and this even
fails for compact subsets of the 2-sphere.

Example. Start with the graph Γ0 of sin(1/x) for, say, 0 < |x| ≤ 1/(2π), and consider the
following set:

Γ = Γ0 ∪ {±1/(2π)} × [−2, 0] ∪ {0} × [−1, 1] ∪ [−1/(2π), 1/(2π)] × {−2}

This is a compact connected subset of the plane, and it has two arc components; namely, the
segment {0} × [−1, 1] and its complement. The latter is homeomorphic to an open interval, and
hence both arc components are contractible. Therefore we know that Hq(Γ) = 0 if q 6= 0 and
H0(Γ) ∼= Z2. Now let B be the set of points (x, y) in R2 satisfying

0 ≤ |x| ≤ 1/(2π) and either − 2 ≤ y ≤ sin(1/x) (x 6= 0) or |y| ≤ 1 if x = 0 .

It follows immediately that B = Interior(B) ∪ Γ, where the two subsets on the right hand side are
disjoint. Viewing R2 ⊂ S2 in the usual way, let A = S2 − Interior(B). It is straightforward to
show that the subset {− 3

2}× [−1/(2π), 1/(2π)] is a strong deformation retract of B; specifically, the
retraction r sends (x, y) to (x,− 3

2 ) and the homotopy is given by t ·r(x, y)+(1−t) ·(x, y). Therefore
we know that the singular homology groups of Γ and B are zero in all positive dimensions.

If there was an exact Mayer-Vietoris sequence

· · · → Hq(Γ)→ Hq(A)⊕Hq(B)→ Hq(S
2)→ Hq−1(Γ) · · ·

then the results of the preceding paragraph would imply that Hq(A) ∼= Hq(S
2) for all q ≥ 2, and

in particular that the map H2(A) → H2(S
2) is nontrivial. Now A is a proper subset of S2, and it

is elementary to prove the following result:

LEMMA 6. If n > 0 and A is a proper subset of Sn, then the inclusion map induces the trivial
homomorphism from Hn(A) to Hn(Sn) ∼= Z.

Proof of Lemma 6. If p is a point of Sn that does not lie in A, then the homology map defined
by inclusion factors as a composite

Hn(A)→ Hn(Sn − {p})→ Hn(Sn)

and this map is trivial because the complement of p is homeomorphic to Rn and the n-dimensional
homology of the latter is trivial.

This result and the discussion in the paragraph preceding the lemma yield a contradiction, and
the source of this contradiction is our assumption that there is an exact Mayer-Vietoris sequence.

WHAT GOES WRONG IN THE EXAMPLE? In order to obtain an exact Mayer-Vietoris
sequence for closed subsets, one generally needs an extra condition on the regularity of the inclusion
maps. One standard type of condition on the closed subsets is that one can find arbitrarily small
open neighborhoods such that the subsets are deformation retracts of these neighborhoods. This
definitely fails for Γ ⊂ R2, for if such a neighborhood existed then there would be an open subset
of R2 that would be connected but not arcwise connected.
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IV.5 : Homology and the fundamental group

(Hatcher, § 2.A)

There is a simple but important relationship between the fundamental group π1(X,x) of a
pointed arcwise connected space and the 1-dimensional homology H1(X) ∼= H1(X, {x}).
Definition. Let [S1] ∈ H1(S

1) be the homology class represented by the singular 1-simplex

T (1− s, s) =
(
cos 2πs, sin 2πs

)

so that T corresponds to the standard counterclockwise parametrization of the unit circle under
the identification of [0, 1] with the 1-simplex whose vertices are (1, 0) and (0, 1). The Hurewicz
(hoo-RAY-vich) map h : π1(X,x) → H1(X) is given by taking a representative f of α ∈ π1(X,x)
and setting h(α) = f∗([S

1]). By homotopy invariance, this class does not depend upon the choice
of a representative.

The main theorem is easy to state,

THEOREM 1. The mapping h defines a group homomorphism. More important, if X is arcwise
connected, then h is onto and its kernel is the commutator subgroup of π1(X,x).

The assertion in the first sentence of the theorem is verified on page 167 of Hatcher; the proof
of the assertion in the second sentence will take the remainder of this section.

Suppose that (X,x) is a pointed space such that X is arcwise connected. The Eilenberg
subcomplex S∗ (X) ⊂ S∗(X) is the chain subcomplex generated by all singular simplices T : ∆q →
X which send each vertex of ∆q to the chosen basepoint x.

PROPOSITION 2. Under the conditions given above, the inclusion of the Eilenberg subcomplex
defines an isomorphism in singular homology.

Sketch of proof. For each y ∈ X there is a continuous curve joining y to x, and hence for
each singular 0-simplex given by a point y there is a singular 1-simplex P (y) such that P (y) o∂1

is the constant function with value x and P (y) o∂0 is the constant function with value y; clearly it
is possible to choose P (x) to be the constant function, and we shall do so. Starting from this, we
claim by induction on q that for each singular q-simplex T : ∆q → X there is a continuous map

P (T ) : ∆q × [0, 1] −→ X

with the following properties:

(i) The restriction of P (T ) to ∆q×{0} is given by T , and the restriction of P (T ) to ∆q×{1}
is given by a singular simplex in the Eilenberg subcomplex.

(ii) If T lies in the Eilenberg subcomplex, then P (T ) is equal to T × id[0,1].

(iii) For each face map ∂i : ∆q−1 → ∆q we have P (T o∂i) = P (T ) o(∂i × id[0,1]).

To complete the inductive step, one uses (iii) and the first property in (i) to define P (T ) on
∆q × {0} ∪ ∂∆q × [0, 1], and then one extends this to all of ∆q × [0, 1] using the Homotopy
Extension Property.

Let i denote the inclusion of the Eilenberg subcomplex, and define a map ρ from S∗(X) to
the Eilenberg subcomplex by taking ρ(T ) to be the restriction of P (T ) to ∆q × {1}. The property
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(iii) ensures that ρ is a chain map, and we also know that ρ o i is the identity on the Eilenberg
subcomplex. The proof of the proposition will be complete if we can show that i oρ is chain
homotopic to the identity. The proof of this is very similar to the proof of homotopy invariance.
Let Pq+1 ∈ Sq+1(δq × [0, 1]) be the standard chain used in that proof, and define

E(T ) =
(
P (T )

)
#
Pq+1 .

Then the properties of Pq+1 and its boundary imply this defines a chain homotopy from the identity
to i oρ.

Conclusion of the proof of Theorem 1. We shall use the following commutative diagram:

F2(X,x)
abel−−−−−→ S2 (X)

=−−−−−→ S2 (X)
yδ

yd2

yd2

F1(X,x)
abel−−−−−→ S1 (X)

=−−−−−→ S1 (X)
ycan

ycan′
yclass

π1(X,x)
abel−−−−−→ πab

1 (X,x)
h′

−−−−−→ H1(X)

Many items in this diagram need to be explained. On the bottom line, πab
1 denotes the abelianiza-

tion of the fundamental group formed by factoring out the (normal) commutator subgroup, and the
Hurewicz map has a unique factorization as h′ oabel, where abel refers to the canonical surjection
from π1 to its quotient modulo the commutator subgroup. The groups Fj(X,x) are the free groups
on the free generators for the Eilenberg subcomplexes S∗ (X), and abel generically denotes the
passage from free groups to the corresponding free abelian groups. The maps d2 and class are
merely the relevant maps for the Eilenberg subcomplex, the map can ′” is the abelianization of the
map can taking a free generator T : ∆1 → X, which is merely a closed curve in X based at x, to
its homotopy class in the fundamental group. Finally, δ is a nonabelian boundary map defined on
free generators by

δ(T ) = [T o∂2] · [T o∂0] · [T o∂1]
−1 .

Observe that the composite can oδ is trivial and hence its abelianization can′ od2 is also trivial.

Proof that the Hurewicz map is onto. Suppose we are given a cycle z =
∑

i niTi in the
Eilenberg subcomplex. and we let γ(Ti) ∈ F1(X,x) denote the free generator corresponding to Ti.
Then it follows immediately from the commutative diagram that the homology class u represented
by z satisfies

u = h(α) , where α =
∏

i

[
can

(
γ(Ti)

)]ni .

Proof that the reduced Hurewicz map (i.e., its factorization through the abelianization of the
fundamental group) is injective. Suppose that h(α) = 0 and that the free generator y ∈
F1(X,x) represents α. Then it follows that abel(y) = d2(w) for some 2-chain w, and if w′ ∈
F2(X,x) projects to w then y = δ(w) · v, where v lies in the commutator subgroup of F1(X,x).
Since can oδ is trivial, it follows that the image of y in πabel

1 is trivial. Finally, since the image of
y in π1 is α, it also follows that the image of α in πabel

1 is trivial, or equivalently that α lies in the
commutator subgroup.
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V. Geometric applications

Now that we have constructed homology groups, it is natural to ask what sorts of information
these “algebraic pictures” of spaces can yield. This unit describes some of the most basic things
that can be done with the subject. The importance of homology groups in analyzing homotopy
classes of maps from one space to another are illustrated by two fundamental results whose proofs
appear in most comprehensive (as opposed to introductory) texts on algebraic topology, and they
can be found in Hatcher.

SPECIAL CASE OF HOPF’S THEOREM. Let P be a finite n-dimensional polyhedron such
that Hn−1(P ) has no elements of finite order. Then there is a 1 − 1 correspondence between the
set of homotopy classes [P, Sn] and the algebraic homomorphisms from Hn(P ) to Hn(Sn) ∼= Z.

There is also a version of Hopf’s Theorem for n-dimensional polyhedra for which Hn−1(P ) has
elements of finite order, but we do not have the background needed to state it here. Since the result
obviously also holds if P is merely homeomorphic to a polyhedron, it follows that two continuous
maps from Sn to itself are homotopic if and only if they induce the same homomorphism from
Hn(Sn) ∼= Z to itself; such a homomorphism is determined by its value on a generator and thus
determines a number called the degree. We shall look at this concept further in Section V.1.

SIMPLY CONNECTED CASE OF J. H. C. WHITEHEAD’S THEOREM. Suppose
that P and Q are finite simply connected polyhedra and f : P → Q is a continuous map such that
for each i ≥ 0 the induced map of homology f∗ : Hi(P ) → Hi(Q) is an isomorphism. Then f is a
homotopy equivalence.

The converse is an immediate consequence of the functoriality and homotopy invariance of
homology groups. There are versions of Whitehead’s Theorem for connected finite polyhedra that
are not simply connected, but once again we do not have the background needed to formulate such
a result here. However, it is important to note that the non-simply connected case requires stronger
hypotheses than the condition that f defines isomorphisms of ordinary homology groups (specifi-
cally, one needs to know that f induces an isomorphism of fundamental groups and isomorphisms
on the homology groups of the universal covering spaces for P and Q).

V.1 : Degree theory

(Hatcher, § 2.2)

Definition. If n > 0 and f : Sn → Sn is a continuous mapping, then the degree of f is the unique
integer d such that the map f∗ : Hn(Sn)→ Hn(Sn) is multiplication by d (recall that Hn(Sn) ∼= Z
and every homomorphism of the latter to itself is multiplication by some integer).

Several properties of the degree are immediate:

(1) If f is the identity, then the degree of f is 1.

(2) If f is a constant map, then the degree of f is 0.

(3) If f and g are homotopic, then their degrees are equal.
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(4) If f and g are continuous maps from Sn to itself, then the degree of f og is equal to the
degree of f times the degree of g.

(5) If h is a homeomorphism of Sn to itself, then the degree of h and h−1 is ± 1, and the
degree of h of oh−1 is equal to the degree of f .

(6) If n = 1 and f(z) = zm (complex arithmetic), then the degree of f is equal to m.

The last property is the only one which is nontrivial. It follows because (a) the map f∗ from
π1(S

1, 1) ∼= Z is multiplication by m, (b) the Hurewicz map from π1(S
1, 1) to H1(S

1) is an isomor-
phism, (c) the Hurewicz map defines a natural transformation of functors from the fundamental
group to 1-dimensional singular homology.

For all n ≥ 2, there is a standard recursive process for constructing continuous maps from Sn

to itself with arbitrary degree.

PROPOSITION 1. Let f : Sn−1 → Sn−1 be a continuous mapping of degree d, and let
Σ(f) : Sn → Sn be defined on (x, t) ∈ Sn ⊂ Rn × R by

Σ(f)
(
x, t
)

=
(√

1− t2f(x), t
)
.

Then the degree of Σ(f) is also equal to d.

COROLLARY 2. If n ≥ 1 and d is an arbitrary integer, then there exists a continuous mapping
g : Sn → Sn whose degree is equal to d.

The case n = 1 of the corollary is just (6), above, and the proposition supplies the inductive
step to show that if the corollary is true for (n− 1) then it is also true for n.

Proof of Proposition 1. We should check first that the map Σ(f) is continuous. This is
immediate from the formula for all points except the north and south poles, and at the latter one
can check directly that if ε > 0 then we can take δ = ε.

Define Dn
+ and Dn

− to be the subsets of Sn on which the last coordinates are nonnegative and
nonpositive respectively. It follows immediately that Sn is formed from Sn−1 by attaching two n-
cells corresponding to Dn

±. This and the vanishing of the homology of disks in positive dimensions
imply that all the arrows in the diagram below are isomorphisms:

H∗−1(S
n−1)← H∗(D

n
+, S

n−1)→ H∗(S
n, Dn

−)← H∗(S
n)

Furthermore, the mappings f and Σ(f) determine homomorphisms from each of these homology
groups to themselves such that the following diagram commutes:

Hn−1(S
n−1)

∼=←−−−−− Hn(Dn
+, S

n−1)
∼=−−−−−→ Hn(Sn, Dn

−)
∼=←−−−−− H∗(S

n)
yf∗

yΣ(f)∗

yΣ(f)∗

yΣ(f)∗

Hn−1(S
n−1)

∼=←−−−−− Hn(Dn
+, S

n−1)
∼=−−−−−→ Hn(Sn, Dn

−)
∼=←−−−−− H∗(S

n)

It follows immediately that the degrees of f and Σ(f) must be equal.

Here is another basic property:

PROPOSITION 3. If f : Sn → Sn is continuous and the degree of f is nonzero, then f is onto.
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Proof. If the image of f does not include some point p, then f∗ has a factorization of the form

Hn(Sn) → Hn(Sn − {p}) → Hn(Sn)

and this homomorphism is trivial because the middle group is zero.

Linear algebra and degree theory

We shall start with orthogonal transformations.

PROPOSITION 4. Suppose that T is an orthogonal linear transformation of R
n, where n ≥ 2,

and let fT : Sn−1 → Sn−1 be the corresponding homeomorphism of Sn−1. Then the degree of fT

is equal to the determinant of T .

Sketch of proof. We shall use a basic fact about orthogonal matrices; namely, if A is an
orthogonal matrix then there is another orthogonal matrix B such that B · A · B−1 is equal to a
block sum of 2 × 2 rotation matrices plus a block sum of 1 × 1 matrices such that at most one of
the latter has an entry of −1 (and the rest must have entries of 1).

Every 2× 2 rotation matrix can be joined to the identity by a path consisting entirely of 2× 2
rotation matrices. Therefore it follows that fT is homotopic to fS, where S is a diagonal matrix
with at most one entry equal to −1 and all others equal to 1. Clearly the degrees of fS and fT are
equal, and likewise the determinants of S and T must be equal (by continuity of the determinant
and the fact that its value for an orthogonal matrix is always ±1). Thus the proof reduces to
showing that the degree of fS is equal to −1 if there is a negative diagonal entry and is equal to 1
if there are no negative diagonal entries. — In fact, the second statement is obvious since T and
fT are identity mappings in this case.

Therefore everything reduces to showing that the degree of fS is equal to −1. We can use
Proposition 2 to show that the result is true for all n if it is true for n = 2, and the truth of
the result when n = 2 follows immediately from Property (6) of degrees that was stated at the
beginning of this document.

We shall now consider an arbitrary invertible linear transformation T from Rn to itself. Such
a map is a homeomorphism and thus extends to a map T • of one point compactifications from Sn

to itself.

THEOREM 5. In the setting above, the degree of T • is equal to the sign of the determinant of
T .

The proof of this result requires some additional input.

LEMMA 6. Suppose that we are given a continuous curve Tt defined for t ∈ [0, 1] and tak-
ing values in the set of all invertible linear transformations on Rn (equivalently, invertible n × n
matrices). Then T •0 is homotopic to T •1 .

Proof of Lemma 6. We would like to define a homotopy by the formula Ht = T •t , and we can
do so if and only if the latter is continuous at every point of {∞}× [0, 1]. The latter in turn reduces
to showing the following: For each t ∈ [0, 1] and M > 0 there are numbers δ > 0 and P > 0
such that |s− t| < δ and |v| ≥ P imply |Ts(v)| ≥M .

Let ‖T‖ be the usual norm of a linear transformation given by the maximum value of |T | on the
unit sphere. It follows immediately that the norm is a continuous function in (the matrix entries
associated to) T . It follows that

|Ts(v)| ≥ ‖T−1
s ‖ · |v|

91



and since the inverse operation is also continuous it follows that ‖T −1
s ‖ is a continuous function of s.

In particular, if ‖T−1
t ‖ = B > 0 then we can find δ > 0 such that |s− t| < δ implies ‖T−1

s ‖ > B/2,
and hence if |v| > 2M/B and |t− s| < δ then Ts(v)| ≥M , as required.

Proof of Theorem 5. Both the degree of T • and the sign of the determinant are homomorphisms
from invertible matrices to {± 1 }, and therefore it will suffice to prove the theorem for a set of
linear transformations which generate all the invertible linear transformations. Not surprisingly,
we shall take this set to be the linear transformations given by the elementary matrices.

Let Ei,j denote the n× n matrix which has a 1 in the (i, j) entry and zeros elsewhere. Then
the function sending t ∈ [0, 1] to I + tEi,j defines a curve from the elementary matrix I + Ei,j to
the identity. Therefore the associated linear transformation determines a map which is homotopic
to the identity, and consequently the degree and determinant sign agree for elementary linear
transformations given by adding a multiple of one row to another.

Similarly, ifD(k, r) is a diagonal matrix which has ones except in the kth position and a positive
real number r in the latter position, then there is a continuous straight line curve joining the matrix
in question to the identity, and this matrix takes values in the group of invertible diagonal matrices.
It follows that the degree and determinant sign agree for elementary linear transformations given
by multiplying one row by a positive constant.

We are now left with elementary matrices given by either multiplying one row by −1 or
by interchanging two rows. These two types of matrices are similar, so both the degrees and
determinant signs are equal in each case. Therefore it will suffice to check that the degree and
determinant sign agree when one considers an elementary matrix given by multiplying a single row
by −1.

By Proposition 2 and the invariance of our numerical invariants under similarity, it will suffice
to consider the case where n = 2 and we are multiplying the second row by −1. Let W ⊂ R2 be the
open disk of radius 2 about the origin, so that there is a canonical homeomorphism from W − {0}
to S1 × (0, 2). Now the map T • sends S2 − {0} to itself and likewise for W and S1. Excision and
homotopy invariance now yield the following chain of isomorphic homology groups:

H1(S
1) ← H1(W − {0}) → H2(W,W − {0}) ← H2(S

2, S2 − {0}) −→ H2(S
2)

As in Proposition 3, one has associated maps of homology groups to form a corresponding com-
mutative diagram, and from this diagram one sees that the degree of T • is equal to the degree of
the map determined by T • on S1. Since the map on S1 is merely the mapping sending z to z−1, it
follows that the degree is equal to −1, and of course this is the same as the sign of the determinant.

The Fundamental Theorem of Algebra

One can use degree theory to prove the Fundamental Theorem of Algebra. All proofs of the
latter involve some analysis and plane topology, and one advantage of the degree-theoretic proof
is that the role of topology is particularly easy to recognize. This proof can also be generalized to
obtain a generalization of the Fundamental Theorem of Algebra to polynomials with quaternionic
coefficients (this was done by Eilenberg and Niven in the nineteen forties).

We start with an argument that is similar to the proof in the last part of Theorem 5.

PROPOSITION 7. The map ψm of the complex plane sending z to zm (where m is a positive
integer) extends continuously to a map of one point compactifications sending the point at infinity
to itself, and the degree of the compactified map is equal to m.
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Proof. The existence of a continuous extension follows because if M > 0 then |z| > M 1/m implies
|zm| > M .

It follows that ψm sends C − {0} to itself. Of course, the map also sends S1 to itself and
this map has degree m, so a diagram chase plus the naturality of the Hurewicz homomorphism
imply that ψm

∗ is multiplication by m on H1(C− {0}) ∼= Z. Diagram chases now show that ψ∗ is
multiplication by m on

H2(C,C− {0}) ∼= H2(S
2, S2 − {0}) ∼= H2(S

2)

and thus the degree of the compactified map is equal to m.

The following result is standard.

PROPOSITION 8. If p is a nonconstant monic polynomial, then p extends continuously to a
map of one point compactifications sending the point at infinity to itself.

Sketch of proof. We need to show that if M > 0 then there is some ρ > 0 such that |z| > ρ
implies |p(z)| > M . One easy way of doing this is to begin by writing p as follows:

p(z) = zm ·
(
1 +

an−1

z
+ · · · +

a0

zn

)

If we write the expression inside the parentheses as 1+ b(z), then it is clear that if |z| is sufficiently
large (say |z| > N) then |b(z)| < 1

2 . It follows immediately that if M > 0 and |z| > 2M 1/m + N
then |p(z)| > M .

The Fundamental Theorem of Algebra will now be a consequence of Proposition 3 and the
following generalization of Proposition 8:

PROPOSITION 9. If p is a nonconstant monic polynomial of degree m ≥ 1, then the degree
of the compactified map p• is equal to m.

Proof. It will suffice to show that p• is homotopic to (ψm)•.

Define a homotopy from ψm to p on the set where |z| ≥ N + 1 by ht(z) = zm(1 + t b(z) ). By
the Tietze Extension Theorem, one can extend this to a homotopy over all of C. As in the previous
argument, if M > 0 and |z| > 2M 1/m +N + 1 then |ht(z)| > M for all t. One can then argue as
in the first paragraph of the proof of Lemma 6 to show that p• is homotopic to (ψm)•.

V.2 : Classical theorems of Jordan and Brouwer

(Hatcher, § 2.B; Munkres, 61–64)

Most of this has become standard in algebraic topology texts, and we shall quote Hatcher as
appropriate. The following result corresponds to the first half of Proposition 2B.1 on page 169 of
that reference.

PROPOSITION 1. If A ⊂ Sn is homeomorphic to Dk for some k < n, then the Hi(A) is
infinite cyclic if i = 0 and trivial otherwise.

Since Hatcher’s statement involves reduced homology and this concept has not yet been dis-
cussed in these notes, we shall do so now. There are (at least) two ways of looking at the reduced
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homology of a space X. If P is a space with one point and c : X → P is the constant map, then
the reduced homology H̃∗(X) may be viewed as the kernel of the homomorphism c∗ in homology.
If X is nonempty and b : P → X maps the point in P to an arbitrary point in X, then c ob is the
identity on P , and it follows that there is a direct sum decomposition

H∗(X) ∼= H̃∗(X) ⊕ H∗(P ) .

This has the following consequences:

(1) If i 6= 0, then Hi(X) ∼= H̃∗(X).

(2) If i − 0, then Hi(X) ∼= H̃∗(X) ⊕ Z. — In particular, X is arcwise connected if and

only if H̃0(X) is trivial.

It follows immediately that if X is a nonempty space and b ∈ X, then the reduced homology of X
is isomorphic to the homology of the pair (X, {b}) (verify this!). Using this description, one can
prove the following result which is needed in Hatcher’s (standard) proof of Proposition 1:

PROPOSITION 2. (Reduced Mayer-Vietoris Sequence in singular homology) Let X be a
topological space, and let U and V be open subsets such that X = U ∪ V and U ∩ V is nonempty.
Denote the inclusions of U and V in X by iU and iv respectively, and denote the inclusions of U ∩V
in U and V by gU and gV respectively. Then there is a long exact sequence as in Theorem IV.4.5
in which ordinary homology groups are replaced by reduced homology groups.

Sketch of proof. Let b ∈ U ∩ V . Then there is a short exact sequence of chain complexes

0 −→ S∗(U ∩ V, {b}) −→ S∗(U, {b}) ⊕ S∗(V, {b}) −→ SU∗ (X, {b}) −→ 0

analogous to the one which appears in the proof of Theorem IV.4.5, and the long exact homol-
ogy sequence of this short exact sequence of chain complexes will be the reduced Mayer-Vietoris
sequence.

Note on the proof of Proposition 1. In order to use the relative Mayer-Vietoris sequence it
is necessary to know from the start that A is a proper subset of Sn; however, A cannot be equal to
Sn because the homology groups of A and Sn are not isomorphic.

We shall state the Jordan-Brouwer Separation Theorem in a slightly more detailed version
than the one in Hatcher:

THEOREM 3. (Jordan-Brouwer Separation Theorem. ) Let n ≥ 2, and suppose that A ⊂ Sn

is homeomorphic to Sn−1. Then Sn − A contains two components, and A is the frontier of each
component.

Note on the proof. The existence of two components is shown in the second half of Hatcher’s
previously cited Proposition 2B.1 (q.v.).

It remains to prove that points of A are limit points of each components. Suppose that Sn−A
is the union of the two open, connected, disjoint subsets U and V .

Assume that not every point of A is a limit point of both U and V . Without loss of generality,
it is enough to consider the case where x ∈ A is not a limit point of V . Since x 6∈ V , it follows that
there is some open set W0 in Sn such that x ∈W0 and W0 ∩ V = ∅.

Consider the open set W0 ∩A in A; since the latter is homeomorphic to Sn−1, it follows that
there is a subneighborhood of the form A−E, where E ⊂ A is homeomorphic to a closed (n− 1)-
disk and A−E is homeomorphic to an open (n− 1)-disk centered at x. If W = W0 ∩Sn−E, then
W is still open in Sn and we still have x ∈W and W ∩ V = ∅.
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By construction we have Sn − E = U ∪ A − E ∪ V where the pieces are pairwise disjoint.
Furthermore, we have A−E ⊂W and hence U ∪W is an open set of Sn−E which is disjoint from
V and contains U and A−E. Therefore it follows that Sn−E is a union of the nonempty disjoint
open sets U ∪W and V and hence is disconnected. On the other hand, since E is homeomorphic
to a closed disk we know that Sn −E is connected, so we have a contradiction. The source of this
contradiction was our assumption that x was not a limit point of V , and hence this must be false.
Therefore x must be a limit point of V , and as noted above it follows that every point of A is a
limit point of both U and V .

With the preceding results at our disposal, we can prove the following basic result exactly as
in Hatcher:

THEOREM 4. (Invariance of Domain, Brouwer) Let U and V be open subsets of Rn for some
n ≥ 2, and let h : U → V be continuous and 1− 1. Then h is an open mapping, and in particular
h[U ] is an open subset of Rn.

The name of the result refers to the fact that if V is homeomorphic to an open subset of Rn,
then V must also be an open subset of Rn.

APPLICATION TO MANIFOLDS WITH BOUNDARY. If n ≥ 0, ten a topological n-manifold
with boundary is a Hausdorff space M such that every point has an open neighborhood which is
homeomorphic to an open subset of either Rn or Rn

+, where the latter is all points in Rn whose last
coordinate is nonnegative. The previously defined notion of topological n-manifold may be viewed
as a special case of this concept where the second alternative (open in Rn

+) is not allowed. The
(manifold) interior of M is defined to be the set of all points which have an open neighborhood
homeomorphic to an open subset in R

n, and the (manifold) boundary ∂M is the set of all points x
for which there is an open neighborhood U homeomorphic to an open subset W ⊂ Rn

+ such that x

corresponds to a point in the intersection W ∩Rn−1, where we view Rn−1 as a subset of Rn
+ by the

standard identification and inclusion Rn−1 ∼= Rn−1 × {0} ⊂ Rn
+. It follows immediately that the

manifold interior of M is an open subset of M and a topological n-manifold as defined previously,
and the manifold boundary is a closed subset of M which is a topological (n−1)-manifold as defined
previously; if ∂M = ∅, then M is a topological manifold in the previously defined sense (without
boundary).

Perhaps the simplest nontrivial example of an n-manifold with boundary is Rn. It follows
immediately that the interior of Rn contains all points (x1, · · · , xn) such that xn > 0 and the
boundary consists of all points such that xn = 0. Our terminology and some simple drawings
suggest that boundary points are not interior points in the sense of the preceding definition, and
using Invariance of Domain we can prove this:

PROPOSITION 5. Let M be a topological manifold with boundary. Then no point in ∂M is
an interior point of M .

Proof. Suppose that x ∈ ∂M . Then x has an open neighborhood U which is homeomorphic to
an open subset W of Rn

+ such that W ∩ Rn−1 is nonempty and x corresponds to a point (y, 0) in
this intersection. If x is also an interior point of M , then there is an open subset W0 of W which is
homeomorphic to an open subset of R

n. By Invariance of Domain the subset W0 is actually open
in R

n, and as such it contains all points of the form (y, t) such that −h < t < 0 for some h > 0.
However, by construction W does not contain any such points, and therefore W0 does not either,
so we have a contradiction. The source of this contradiction was our assumption that W0 ⊂ W
was homeomorphic to an open subset in Rn, and therefore such an open subneighborhood cannot
exist. This is precisely the assertion in the proposition.
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Manifolds with boundary play an extremely important role in geometric topology. Many of
the most basic examples arise as follows: Let U be open in Rn, and let f : U → R be a function
with continuous partials such that if f(x) = 0 then ∇f(x) is nonzero; typical example of such
functions are given by nonconstant linear functions and many quadratic polynomial functions,
most notably f(x) = 1− |x|2. Basic results from multivariable calculus then imply that f−1

(
R+

)

is a manifold with boundary. Of course, if we take f(x) = 1 − |x|2, then the inverse image is just
the unit disk defined by |x|2 ≤ 1, and the boundary of this manifold is just the unit sphere defined
by |x|2 = 1. Another example is the doughnut-shaped region in R

3 defined by the cylindrical
coordinate inequality (r − 1)2 + z2 ≤ 1

4 .

Further results

Since the 2-dimensional case of the Jordan-Brouwer Separation Theorem is just the Jordan
Curve Theorem which is proved in Chapter 10 of Munkres by other methods, we shall indicate how
several of the results from that chapter can be retrieved using the methods developed here.

The starting point is Theorem 63.5 on page 392 of Munkres. This states that if A and B are
closed subsets of S2 such that S2 −A and S2 −B are connected and A∩B consists of two points,
then S2 − (A ∪ B) has exactly two components. If A and B are arcwise connected by simple
arcs in the sense that every pair of points can be joined by a simple curve (one which is 1–1), then
one can prove Theorem 63.5 by considering the reduced Mayer-Vietoris Sequence for the pair of
open sets S2 −A and S2 −B as follows:

Under the given hypotheses we have the partial exact sequence

H1(S
2 −A)⊕H1(S

2 −B) −→ H1

(
S2 − (A ∩B)

) ∼= Z −→ H̃0

(
S2 − (A ∪B)

)
→ 0

and this shows immediately that the open subset S2 − (A ∪ B) has at most two components. On
the other hand, we have simple closed curves in A and B with images C and D and endpoints given
by the two points in A ∩B. This yields chains of inclusions

S2 −A ⊂ S2 − C ⊂ S2 − (A ∩B) , S2 −B ⊂ S2 −D ⊂ S2 − (A ∩B) .

Since the 1-dimensional homology groups of S2 − C and S2 − D both vanish, it follows that the
inclusions above induce the trivial map in 1-dimensional homology. Therefore the left hand map
in the exact sequence above must be trivial, and it follows that H1

(
S2 − (A ∩ B)

) ∼= Z maps

bijectively to H̃0

(
S2 − (A ∪B)

)
and therefore S2 − (A ∪B) must have exactly two components.

This is weaker than the conclusion in Munkres, but it is strong enough to yield all of the
applications to embedding graphs in the plane which appear in Section 64 of that book. The
reason for this is that a connected graph is arcwise connected by simple arcs (verify this!). This
is also enough to prove Exercise 1 on page 393 of Munkres as well as a weak versions of Exercise
2 on the same page. In the latter case, the result can be established if we assume that the subset
D ⊂ S2 is homeomorphic to a connected graph.

Another application along the same lines is the following Duality Theorem:

THEOREM 6. Let A ⊂ S2 be homeomorphic to a graph. Then for all integers k there are
isomorphisms H2−k(S2 −A) ∼= Hk(S2, A).

These isomorphisms also have good naturality properties with subcomplex inclusions A ⊂ B
(in other words, the pair (B,A) is homeomorphic to a pair consisting of a graph and a subcomplex
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of the latter with respect to some simplicial decomposition) given by the following commutative
diagram:

Hom(Hk(S2, B), bbZ)
Hom(i∗,Z)−−−−−−→ Hom(Hk(S2, A), bbZ)

y∼=
y∼=

H2−k(S2 −B)
j∗←−−−−− H2−k(S2 −A)

Unfortunately, proving this naturality property requires a substantial amount of additional input
(compare the discussion in the third full paragraph on page 393 of Munkres), so we shall not
attempt to do so. One can use this naturality to derive special cases of other results in Chapter 10
of Munkres; typical examples are Lemmas 61.2 and 62.2.

V.3 : Simplicial approximation

(Hatcher, § 2.C)

The treatment in Hatcher is fairly standard, so we shall only discuss a few issues here.

PROPOSITION 1. Let g : K→ L be a simplicial map, let |g| be the associated continuous map
of underlying topological spaces, and let λ∗ denote the standard natural transformation obtained
from the chain complex inclusion C∗(K) → S∗(P ), where P is the polyhedron with simplicial
decomposition K. Then λ∗ og∗ = |g|∗ oλ∗.

This follows immediately from the construction of λ, for if v0 · · · vq is one of the free gen-
erators for Cq(K), then its image under the associated simplicial chain map associated to g is
g(v0) · · · g(vq)i, and under the chain map λ(L)# this goes to |g|# oλ(K)# (v0 · · · vq).

COROLLARY 2. Suppose that (P,K) and (Q,L) are simplicial complexes, and let f : P → Q be
continuous. Suppose that r > 0 and g : Br(K) → L are such that g is a simplicial approximation
to f , and let βr : C∗(K) → C∗(B

r(K) ) be the iterated barycentric subdivision map. Then
f∗ oλ∗ = λ∗ og∗ o(βr)∗.

Sketch of proof. We have an analog of βr defined from S∗(P ) to itself, and by the results
leading to the proof of the Excision Property this map is chain homotopic to the identity. From
this it follows that |g|∗ oλ∗ = λ∗ og∗ o(βr)∗. Since g is a simplicial approximation to f we know that
f∗ = |g|∗, and if we make this substitution into the equation in the preceding sentence we obtain
the assertion in the corollary.

Of course, the point of the corollary is that one can compute the map in homology associated
to f using the simplicial approximation g.

Given a continuous function f as above, one natural question about simplicial approximations
is to find the value(s) of r for which there is a simplicial approximation g : B r(K)→ L. The result
below shows that in many cases we must take r to be very large.

PROPOSITION 3. Suppose that (P,K) and (Q,L) are simplicial complexes, and let f : P → Q
be continuous. Let r0(f) > 0 be the smallest value of r such that f is homotopic to a simplicial
map g : Br(K)→ L. Then the following hold:

(i) The number r0(f) depends only upon the homotopy class of f .
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(ii) If the set of homotopy classes [P,Q] is infinite, then for each positive integer M there are
infinitely many homotopy classes [fn] such that r0(fn) > M .

Proof. The first part follows immediately from the definition, so we turn out attention to the
second. Recall that a simplicial map is completely determined by its values on the vertices of the
domain.

Suppose now that L has b vertices and Br(K) has ar. There are bar different ways of mapping
the vertices of Br(K) to those of L; although some of these might not arise from a simplicial map,
we can still use this to obtain a finite upper bound on the number of simplicial maps from B r(K)
to L, and we also have a finite upper bound on the number of simplicial maps from B r(K) to L for
all r ≤M if M is any fixed positive integer. It follows that there are only finitely many homotopy
classes for which r0 ≤M .

In particular, by the results of Section V.1 we can apply this proposition to [P,Q] where P
and Q are both homeomorphic to Sn for some n ≥ 1.

V.4 : The Lefschetz Fixed Point Theorem

(Hatcher, § 2.C)

Once again the treatment in Hatcher is fairly standard, so we shall only concentrate on a few
issues.

From the viewpoint of these notes, the Lefschetz number is obtained using the traces of various
maps on rational chain groups or cohomology groups. The proof that the alternating sum of traces
is the same for simplicial chains and simplicial homology is a special case of the following result:

PROPOSITION 1. Suppose that C∗ is a chain complex of rational vector spaces such that
each Cq is finite-dimensional and only finitely many are nontrivial, and let T : C∗ → C∗ be a chain
map. Then ∑

q

(−1)q trace Tq =
∑

q

(−1)q trace (T∗)q .

The proof of this combines the method of Proposition IV.4.10 with the following result:

LEMMA 2. Let V be a finite-dimensional vector space over a field, let W be a vector subspace,
and suppose that T : V → V is a linear transformation such that T [W ] ⊂ W . Let TW be the
associated linear transformation from W to itself, and let TV/W denote the linear transformation
from V/W to itself which sends v + W to T (v) + W for all v ∈ V (this is well-defined). Then
trace (T ) = trace (TW ) + trace (TV/W ).

Proof of Lemma 2. Pick a basis w1, · · · ,wk for W and extend it to a basis for V by adding
vectors uk+1, · · · ,un. It follows that the vectors uk+1 +W, · · · ,un +W form a basis for V/W .
If we now let v denote either v or w and as usual write

T (vj) =
∑

i

ai,j vi

then the traces of T , TW and TV/W are given by the sums of the scalars ai,i from 1 to n in the case
of T , from 1 to k in the case of TW , and from k + 1 to n in the case of TV/W .
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As noted above, Proposition 1 follows by applying the same method used in Proposition
IV.3.10 with the dimensions cq , zq, bq and hq replaced by the traces of the corresponding linear
transformations.

Vector fields on S2

We may think of a tangent vector field on the sphere S2 as a continuous map X : S2 → R3

such that X(u) is perpendicular to u for all u ∈ S2 (in other words, the value of X at a point u
in S2 is the tangent vector to a curve passing through u). One can use the Lefschetz Fixed Point
Theorem to prove the following fundamental result on such vector fields.

THEOREM 3. If X is a tangent vector field on S2, then there is some u ∈ S2 such that
X(u) = 0.

Proof. Suppose that the vector field is everywhere nonzero. If we set

Y(u) = |X(u)|−1 ·X(u)

then Y is a continuous vector field such that |Y| is always equal to 1, so that Y defines a continuous
map from S2 to itself. By the perpendicularity condition we know that Y(u) 6= u for all u, and
therefore by the Lefschetz Fixed Point Theorem we know that the Lefschetz number of Y must be
zero.

We now claim that Y defines a continuous map from S2 to itself which is homotopic to the
identity. Specifically, take the homotopy

H(u, t) = cos

(
tπ

2

)
·Y(u) + sin

(
tπ

2

)
· u

which which moves u to Y(u) along a 90◦ great circle arc. Since Y is homotopic to the identity, it
follows that its Lefschetz number equals the Lefschetz number of the identity, which is χ(S 2) = 2.
This contradicts the conclusion of the preceding paragraph; the source of this contradiction was
our assumption that X(u) 6= 0 for all u, and therefore it follows that there is some u0 ∈ S2 such
that X(u0) = 0.

In fact, the same argument goes through virtually unchanged for all even-dimensional spheres.
On the other hand, every odd-dimensional sphere does admit a tangent vector field which is every-
where nonzero. One quick way to construct an example is to take the vector field on S 2n+1 ⊂ R2n+2

given by the formula

X(x1, x2, x3, x4, · · · , x2n+1, x2n+2) = (−x2, x1,−x4, x3, · · · ,−x2n+2, x2n+1) ;

if we view R2n+2 as Cn+1, then the vector field sends a vector z = (z1, · · · , zn+1) to i z.

Geometric interpretation of the Lefschetz number. Suppose that P is a polyhedron
which is homeomorphic to a compact smooth manifold M (without boundary), and let f : M →M
be a smooth self-map. Basic results on approximating mappings on smooth manifolds imply that
f is homotopic to a smooth map g : M → M such that g has only finitely many fixed points and
for each fixed point x ∈M the associated linear map of the tangent space T (x) at x

Lf (x) = T(g)x : T (x) −→ T (x)
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has the property that Lf (x) − idT (x) is an isomorphism (in such cases the fixed point set is said
to be isolated and nondegenerate). For each fixed point x one can define a local fixed point index
Λ(g)x to be the sign of the determinant of Lf (x) − idT (x). Under these conditions the Lefschetz
number of g turns out to be given by

Λ(g) =
∑

g(x)=x

Λ(g)x .

Proving this is beyond the scope of these notes and requires the notion of local fixed point index. In
the paper cited below, a set of axioms for fixed point indices of smooth maps is given, and Chapter
7 of the text by Dold explains how such indices are related to the Lefschetz number as described
here:

A. Dold. Lectures on Algebraic Topology . (Second Edition). Springer–Verlag, New

York etc., 1980.

M. Furi, M. P. Pera, and M. Spadini. On the uniqueness of the fixed point index
on differentiable manifolds. Fixed point theory and its applications 2004, 251–259.

V.5 : Dimension theory

(Munkres, § 50)

At the beginning of these notes, we mentioned the following question:

Is there some purely topological way to describe the intuitive notion of n−dimensionality,
at least for spaces that are relatively well-behaved?

Of course, in linear algebra there is the standard notion of dimension, and this concept has far-
reaching consequences for understanding dimensions in geometry. A topological approach to de-
scribing the dimensions of at least some spaces is implicit in our proof for Invariance of Dimension
(see Proposition IV.2.16), which can be used to define a notion of dimension for topological spaces
which locally look like an open subset of Rn for some fixed n ≥ 0. There is an extensive literature
on topological approaches to defining the dimensions of spaces. Our purpose here is to discuss one
particularly important example known as the Lebesgue covering dimension; for reasonably well-
behaved classes of spaces this is equivalent to other frequently used concepts of dimension. Here
are some printed and online references for topological dimension theory:

W. Hurewicz and H. Wallman. Dimension Theory (Revised Edition, Princeton
Mathematical Series, Vol. 4). Princeton University Press, Princeton, 1996.

K. Nagami. Dimension Theory (with an appendix by Y. Kodama, Pure and Applied
Mathematics Series, Vol. 37). Academic Press, New York , 1970.

J. Nagata. Modern Dimension Theory (Second Edition, revised and extended; Sigma
Series in Pure Mathematics, Vol. 2). Heldermann-Verlag, Berlin, 1983.

http://en.wikipedia.org/wiki/Lebesgue covering dimension

http://en.wikipedia.org/wiki/Dimension
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http://en.wikipedia.org/wiki/Inductive dimension

FRACTAL DIMENSIONS. There are several notions of fractal dimension for subsets of Rn

which depend on the way in which an object is embedded in Rn and not just the subset’s underlying
topological structure; for example, various standard examples of nonrectifiable curves in the plane
have fractal dimensions which are numbers strictly between 1 and 2. Such objects are interesting
for a variety of reasons, but they are beyond the scope of this course so we shall only give two
online references here:

http://en.wikipedia.org/wiki/Fractal dimension

http://www.warwick.ac.uk/∼masdbl/dimension-total.pdf

The basic setting

We shall base our discussion upon the material in Section 50 of Munkres. For the sake of
clarity we shall state the main definition and mention some standard conventions.

Definition. Let X be a topological space, let n be a nonnegative integer, and let U be an indexed
open covering of X. Then we shall say that the open covering U has order at most n provided
every intersection of the form

Uα(0) ∩ · · · ∩ Uα(n)

is empty, and we shall say that the space X has Lebesgue covering dimension ≤ n provided every
open covering U of X has a refinement V of order ≤ n. Frequently we shall write dimX ≤ n if the
Lebesgue covering dimension is at most n.

We shall say that dimX = n (the Lebesgue covering dimension is equal to n) if dimX ≤ n is
true but dimX ≤ n− 1 is not. By convention, the Lebesgue covering dimension of the empty set
is taken to be −1, and we shall write dimX =∞ if dimX ≤ n is false for all n.

Munkres states and proves many fundamental results about the Lebesgue covering dimension,
and we shall not try to copy or rework most of his results here. Instead, our emphasis in this section
will be on the following key issues:

(1) Describing precise connections between the topological theory of dimension as in Munkres
and the algebraic notions of k-dimensional homology groups for various choices of k.

(2) Using the methods of these notes to give an alternate proof of Theorem 50.6 in Munkres;
namely, if A ⊂ R

n is compact, then the topological dimension of A satisfies dimA ≤ n.

(3) Using algebraic topology to prove that the topological dimension of an n-dimensional
polyhedron is in fact equal to n (the results in Munkres show that this dimension is at
most n).

We shall begin by addressing the dimension question in (2); one reason for doing this is that
the approach taken here will play a crucial role in our treatment of the subject.

MUNKRES, THEOREM 50.6. If A is a compact subset of Rn, then dimA ≤ n.

Alternate proof. We know that there is some very large hypercube K of the form [−M,M ]n

which contains A, and we also know that A is closed in this hypercube. By Theorem 50.1 on pages
306–307 of Munkres, it is enough to show that the hypercube has dimension at most n. Since every
hypercube has a simplicial decomposition with simplices of dimension ≤ n, it will suffice to prove
the following result:
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LEMMA 1. If P ⊂ Rm is a polyhedron with an n-dimensional simplicial decomposition, then
the topological dimension of P is at most n.

If we know this, then we know that the hypercube, and hence A, must have topological
dimension ≤ n.

Proof of Lemma 1. Let U be an open covering of the hypercube K, and let ε > 0 be a
Lebesgue number for U . Using barycentric subdivisions, we can find an n-dimensional simplicial
decomposition of K whose simplices all have diameter less than ε/2. Therefore if v is a vertex of
this simplicial decomposition, then the open set Openstar(v) is contained in some element of U .
Now these sets form an open covering of K (see Section 2.C of Hatcher), and therefore these open
stars form a finite open refinement of U . Since an intersection of open stars ∩i Openstar(vi) is
nonempty if and only if the vertices vi lie on a simplex from the underlying simplicial decomposition,
the n-dimensionality of the decomposition implies that every intersection of (n + 2) distinct open
stars must be empty. This is exactly the criterion for the covering by open stars to have order at
most (n+1). Therefore we have shown that U has a finite open refinement with at most this order,
which means that the topological dimension of K is at most n.

The discussions of the first and third issues are closely related, and they use the material on
partitions of unity on pags 225–226 of Munkres (see Theorem 36.1 in particular).

Definitions. Let X be a T4 space, and let U be a finite open covering of X. Set Vec(U) equal
to the (finite-dimensional) real vector space with basis given by the sets in U , and define the nerve
of U , written N(U), to be the simplicial complex whose simplices are given by all vertex sets of the
form Uα(0), · · · , Uα(q) such that

Uα(0) ∩ · · · ∩ Uα(q) 6= ∅ .

By construction, the vertices of this simplicial complex are all symbols of the form [Uα], where Uα

is nonempty and belongs to U .

If {ϕα } is a partition of unity which is subordinate to (= dominated by) U , then there is a
canonical map kϕ from X to N(U) given by the partition of unity:

kϕ(x) =
∑

ϕα(x) · [Uα]

Different partitions of unity yield different maps, but we have the following:

CLAIM: For each finite open covering U , all canonical maps from X to N(U) are homotopic to each
other.

Proof of the claim. For each choice of x and canonical maps ϕ0, ϕ1, we know that the points ϕi(x)
lie on the simplex whose vertices are all [Uα] such that x ∈ Uα. Thus the straight line segment
joining ϕ0(x) to ϕ1(x) also lies on this simplex, and hence also lies in the nerve of U . In other
words, the image of the straight line homotopy from ϕ0 to ϕ1 is always contained in N(U), and
therefore the two canonical maps into N(U) are homotopic.

In the special case where (P,K) is a simplicial complex and U is the open covering given by
open stars of vertices (see Hatcher for the definitions), the canonical map(s) from P to the nerve
of U can be described very simply as follows:

PROPOSITION 2. Let P , K and U be as above, and for each vertex v of K define the extended
barycentric coordinate function v∗ : P → [0, 1] as follows: If x ∈ A for some simplex A which contains
v as a vertex, let v∗(x) denote the barycentric coordinate of x with respect to v, and if x lies on
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a simplex A which does not contain v as a vertex, set v∗(x) = 0 (it follows immediately that this
map is well-defined and continuous). Define a map κ : P → N(U) by κ(x) =

∑
v∗(x) · v. Then

κ defines a homeomorphism from P to N(U), and every canonical map with respect to the open
covering U is homotopic to κ.

Sketch of proof. First of all, the barycentric coordinate functions are well-defined, for if x lies
on a simplex A with vertex v and also on a simplex B for which v is not a vertex, then it follows
that the barycentric coordinate of x with respect to v must be zero. The assertion that κ defines a
homeomorphism from P to the nerve of U follows because κ maps the simplices of K bijectively to
the simplices of N(U); more precisely, there is a 1–1 correspondence of simplices and each simplex
of K is sent to a simplex of the nerve by a bijective affine map.

Finally, the proof that κ is homeomorphic to a canonical map associated to a partition of
unity follows from the same considerations which appear in the proof that two canonical maps are
homotopic (for every x ∈ P , there is a simplex in the nerve containing both κ(x) and the value of
a canonical map at x).

Čech homology groups

The idea behind singular homology groups is that one approximates a space by maps from
simplicial complexes (in particular, simplices) into a space X. Dually, the idea behind Čech homol-
ogy groups is that one approximates a space by maps into simplicial complexes. Constructions of
this type play an important role in the theory and applications of machinery from algebraic topol-
ogy, but we shall only focus on what we need. As is often the case, the first step is to construct
some necessary algebraic machinery.

Inverse systems and inverse limits

The definition of Čech homology requires the notion of inverse limit; special cases of this
concept appear in Hatcher, but since we need the general case we must begin from scratch.

Definition. A codirected set is a pair (A,≺) consisting of a set A and a binary operation ≺ such
that the following hold:

(a) (Reflexive Property) For all x ∈ A we have x ≺ x.
(b) (Transitive Property) If x, y, z ∈ A are such that x ≺ y and y ≺ z, then x ≺ z.
(c) (Lower Bound Property) For all x, y ∈ A there is some w ∈ A such that w ≺ x and w ≺ y.

These are similar to the defining conditions for a partially ordered set, but we do not assume the
symmetric property (so x ≺ y and y ≺ x does not necessarily imply x = y), and the Lower Bound
Property does not necessarily hold for a partially ordered set which is not linearly ordered. On
the other hand, if a partially ordered set is a lattice (i.e., finite subsets always have least upper
bounds and greatest lower bounds), then it is a codirected set.

The basic example of a codirected set in Hatcher is given by the positive integers N+ with the
reverse of the usual partial ordering, so that a ≺ b if and only if b ≥ a.

Given a codirected set (A,≺), there is an associated category CAT (A,≺) for which Morph (x, y)
is nonempty if and only if x ≺ y, and in this case Morph (x, y) contains exactly one element.

Definition. Let (A,≺) be a codirected set, and let C be a category. An inverse system in C
indexed by (A,≺) is a covariant functor F from CAT (A,≺) to C. If a ≺ b, then the value of F on the
unique morphism a→ b is frequently denoted by notation like fa,b; in other words, fa,b = F (a ≺ b).
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There is a closely related concept of inverse limit for inverse systems. One can do this in
purely categorical terms, but we are only interested in working with inverse limits over categories
of modules. For inverse systems F = {F (a)} of modules, the inverse limit

lim
←

= inv lim
A

F (a) = proj lim
A

F (a)

is defined to be the set of all x = (xa) in
∏

A F (a) such that for each a ≺ b we have fa,b(xa) = xb.
For each a ∈ A the map pa denotes projection onto the a-coordinate.

Inverse limits have the following universal mapping property, which in fact characterizes the
construction.

PROPOSITION 3. Suppose that F is an inverse system as above, and suppose that we are
given a module L with maps qa : L→ F (a) such that fa,b

oqa = qb whenever a ≺ b. Then there is
a unique homomorphism h : L→ lim

←
F (a) such that ga = fa

oh for all a.

This is an immediate consequence of the definitions.

There are straightforward analogs of the inverse limit construction for may categories (sets,
compact Hausdorff spaces, groups, ...), and we shall leave the details of setting up such objects to
the reader as an exercise.

Frequently it is important to recognize that inverse limits of directed systems can be given by
inverse limits over “good” subobjects. We shall say that B ⊂ A is a codirected subobject if B is
a subset, the binary relation is the restriction of the binary relation on A, and the Lower Bound
Property still holds on B (however, if w ∈ A is such that w ≺ b, a we do not necessarily assume
that w ∈ B; we only assume that there is some w′ ∈ B with w′ ≺ a, b). We shall say that such a
object is cofinal if for each x ∈ A there is some y ∈ B such that y ≺ x.

Example. Let γ be a cardinal number, and let Cov γ(X) be the family of indexed open
coverings of X such that the cardinality of the indexing set is at most γ. We shall say that an
indexed open covering V = {Vβ}β∈B is an indexed refinement of U = {Uα}α∈A if there is a map
of indexing spaces j : B → A such that Vβ ⊂ Uj(β) for all β; note that if V is a refinement of U
in the usual sense then by the Axiom of Choice we can always find a function j with the required
properties. — Suppose now that X is a compact metric space and FinCov (X) is a set of all finite
indexed open coverings whose indexing sets are subsets of the set N of nonnegative integers. If A

is a subset of FinCov (X) such that for each k > 0 there is an open covering Ak ∈ A whose (open)
subsets all have diameter less than 1/k, then a Lebesgue number argument implies that A is cofinal
in FinCov (X).

Given a cofinal subobject B and an inverse system F on A, then there is an associated inverse
system F |B. The following crucial observation suggests the importance an usefulness of such
restricted inverse systems.

PROPOSITION 4. Suppose that we are given the setting above, and let B be a cofinal
subobject. Then there is a canonical isomorphism from lim

←
F to lim

←
F |B.

Proof. By definition, the inverse limit LA over all of A is a submodule of PA =
∏

a∈A F (a) and
the inverse LB limit over B is a submodule of PB =

∏
b∈B F (b). Let ϕ0 : PA → PB be given by the

projections onto the factors F (b); since the operations in the product are defined coordinatewise,
it follows immediately that ϕ0 is a module homomorphism.

By construction it follows that ϕ0 maps LA to LB . If ϕ : LA → LB be the homomorphism
defined by ϕ0, the objective is to prove that ϕ is an isomorphism. It is straightforward to verify
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that ϕ is onto. Suppose now that we are given x = (xa) and y = (ya) such that ϕ(x) = ϕ(y).
Then xb = yb for all b ∈ B, and we need to show that this implies xa = ya for all a. Let α ∈ A
be arbitrary, and choose β ∈ B such that β ≺ α. Then we have xα = fβ,α(xβ) and yα = fβ,α(yβ).
Since we are assuming that yβ = xβ , it follows that yα = xα.

Definition and properties of Čech homology

Suppose that X is a compact Hausdorff space, let A ⊂ X be a closed subspace, and let
FinCov (X,A) denote the codirected set of all pairs (U ,U|A), where U is a finite open covering of
X and U|A denotes its restriction to A with all empty intersections deleted; the binary relation

β = (V,V|A) ≺ (U ,U|A) = α

is taken to mean that (V,V|A) is an indexed refinement of (U ,U|A). Since we are working with
indexed refinements, it follows that the map of indexing sets will define a simplicial mapping of
nerve pairs

jβ,α : (Nβ , N
′
β) =

(
N(V),N(V|A)

)
−→

(
N(U),N(U|A)

)
= (Nα, N

′
α)

and therefore we obtain an inverse system of simplicial complex pairs and simplicial mappings. If
we take the simplicial or singular chain complexes associated to such a system we obtain inverse
systems of chain complexes, and if we pass to homology we obtain inverse systems of homology
groups; at the chain complex level the inverse systems are different, but their homology groups are
the same.

Definition. If X is a compact Hausdorff space and A ⊂ X is a closed subspace, then the Čech
homology groups Ȟq(X,A) are the inverse limits of the inverse systems Hq(Nα, N

′
α), where α

runs through all pairs (U ,U|A).

Presumably we have introduced these groups because they have implications for dimension
theory, and one can also ask if these groups can be computed for finite simplicial complexes. The
next two results confirm these expectations.

THEOREM 5. If X is a compact Hausdorff space whose Lebesgue covering dimension is ≤ n
and A is a closed subset of X, then Ȟq(X,A) = 0 for all q > n.

Proof. The condition on the Lebesgue covering dimension implies that every finite open covering
U of X has a (finite) refinement such that each subcollection of n+ 2 open subsets from U has an
empty intersection. This condition means that the nerve of U has no simplices with n+ 2 vertices
and hence no simplices of dimension ≥ n + 1; in other words, the (geometric) dimension of the
nerve is at most n. By Proposition 4 and the assumption on the Lebesgue covering dimension,
we know that the Čech homology of (X,A) can be computed using open coverings for which each
subcollection of n+2 open subsets from U has an empty intersection, and hence the Čech homology
is an inverse limit of homology groups of simplicial complexes with dimension ≤ n. Since the q-
dimensional homology of such complexes vanishes if q > n, it follows that the same is true for the
inverse limit groups when q > n, and therefore we must have Ȟq(X,A) = 0 for all q > n.

The next main result states that the Čech homology for a simplicial complex pair is the same
as the homology we have already defined. a more general result:

THEOREM 6. If X is a compact Hausdorff space and A ⊂ X is a closed subspace, then there
is a canonical mapping ϕ∞ from H∗(X,A) to Ȟ∗(X,A) (the singular-Čech comparison map), where
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the groups on the left are singular homology groups. If X is a polyhedron with some simplicial K
such that A is a subcomplex with respect to this decomposition, then the singular-Čech comparison
map is an isomorphism.

Before proving this result, we shall use the conclusion to derive the main implications for
dimension theory.

THEOREM 7. (i) For all n ≥ 0, the Lebesgue covering dimension of the disk Dn is equal to n.

(ii) If (P,K) is a simplicial complex whose geometric definition is equal to n, then the Lebesgue
covering dimension of P is also equal to n.

(iii) If A ⊂ Rn is a compact subset with a nonempty interior, then the Lebesgue covering
dimension of A is equal to n.

(iv) If Q = [0, 1]∞ is the Cartesian product of countably infinitely many copies of the unit
interval (the so-called Hilbert cube), then the Lebesgue covering dimension of Q is equal to ∞.

Proof. We shall take these in order.

Proof of (i). By the discussion at the beginning of this section (or the corresponding discussion
in Munkres), we know that the Lebesgue covering dimension of Dn is at most n, so we need to
show that it cannot be ≤ (n− 1). We shall exclude this by deriving a contradiction from it. If the
Lebesgue covering dimension was strictly less than n, then it would follow that Ȟn(Dn, A) would
vanish for all closed subsets A ⊂ Dn. By Theorem 6 we know that Ȟn(Dn, Sn−1) ∼= Hn(Dn, Sn−1),
and since the latter is isomorphic to Z it follows from Theorem 5 that the Lebesgue covering
dimension cannot be ≤ n− 1. Therefore this dimension must be equal to n.

Proof of (ii). This follows immediately from (i) and Theorem 50.2 of Munkres (see page 307
for details).

Proof of (iii). By the discussion at the beginning of this section we know that the Lebesgue
covering dimension of A is ≤ n. Since A has a nonempty interior, it follows that A contains a
closed subset which is homeomorphic to Dn. This means that the Lebesgue covering dimension of
A must be at least as large as the Lebesgue covering dimension of Dn, which is n. Combining these
observations, we conclude that the Lebesgue covering dimension of A is equal to n.

Proof of (iv). Let H〈n〉 ⊂ Q be the subset of all points whose coordinates satisfy xk = 0 for
k ≥ n+ 1. Then it follows that H〈n〉 is a closed subset of Q which is homeomorphic to Dn, and
therefore we have n = dimH〈n〉 ≤ dimQ for all n.

Remark. The preceding result implies that the Lebesgue covering dimension does not behave
well with respect to quotients, even if the space and its quotient are polyhedra. In particular, if
f : X → Y is a continuous and onto mapping of compact Hausdorff spaces, then in general we
cannot say anything about the relation between the Lebesgue covering dimensions of X and Y even
if we know that both numbers are finite. The simplest counterexamples are given by the continuous
surjection from [0, 1] to [0, 1]2 given by the Peano curve (described in Section 44 of Munkres) and
the usual first coordinate projection from [0, 1]2 to [0, 1]; in the first case the dimension increases
when one passes to the quotient, and in the second case the dimension decreases (which is what one
reasonably expects). Of course, if we take f as above to be an identity map, then the dimension
does not change.

We shall discuss the behavior of dimensions under taking products after proving Theorem 6.

Proof of Theorem 6. We begin by proving the general statement. If U is an open covering of X
and A is a closed subset of X, then we have seen that a partition of unity subordinate to U defines
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a canonical map from X into the nerve N(U), and by construction this map sends A into N(U|A).
We have also seen that the homotopy class of this map is well defined (at least when A = ∅, but
the same argument implies that the canonical maps of pairs associated to different partitions of
unity will be homotopic as maps of pairs). Therefore we have homomorphisms

(kα)∗ : H∗(X,A) −→ H∗
(
N(U),N(U|A)

)

and we need to show that these yield a map into the inverse limit of the groups on the right hand
side, which is true if and only if

(kα)∗ = (jβα)
∗

o (kβ)
∗

for all α and β such that β ≺ α. But if the latter holds, then it follows that the composite jβα
o (kβ)

defines a canonical map into the nerve pair (Nα, N
′
α), and therefore this composite is homotopic to

kα; therefore the associated maps in homology are equal, and this implies that we have the desired
homomorphism ϕ∞ into the inverse limit Ȟ∗(X,A).

We must now show that the singular-Čech comparison map ϕ∞ is an isomorphism if X is a
polyhedron with simplicial decomposition K and A corresponds to a subcomplex of (X,K). Let
r > 0, and let Wr be the open covering by open stars of vertices in the rth barycentric subdivision
Br(K). Then by construction we have Wr+1 ≺ Wr for all r, and a Lebesgue number argument
shows that the set of all open coverings Wr determines a cofinal subset of FinCov (X). If (Nr, N

′
r)

denotes the nerve pair associated to Wr, then it follows that Ȟ∗(X,A) is isomorphic to the inverse
limit of the groups H∗(Nr, N

′
r).

If we can show that the canonical maps kr into Nr all define isomorphisms from H∗(X,A) to
H∗(Nr, N

′
r), then the map into the inverse limit will be an isomorphism for the following reasons:

(1) If ϕ∞(u) = 0, then (kr)∗ (u) = 0 for all r, and since each of these maps is an isomorphism
it follows that u = 0.

(2) If v lies in the inverse limit, then v has the form (v1, v2, · · · ) where vr = (jr,r+1)∗ (vr+1)
for all r. Since kr defines an isomorphism, it follows that vr = (kr)∗ (ur) for some unique
ur ∈ Ȟ(X,A), and if we can show that ur = ur+1 for all r then it will follow that
v = ϕ∞(u). But the previous equations imply that

(kr)∗ (ur+1) = (jr,r+1)∗
o (kr+1)∗ (ur+1) = (jr,r+1)∗ (vr+1) vr = (kr)∗ (ur)

and since (kr)∗ is injective it follows that ur+1 = ur.

To conclude the proof, we note that the relative version of Proposition 2 implies that the map of
pairs determined by each kr is homotopic to a homeomorphism of pairs.

As noted before, this concludes tha proof that the Lebesgue covering dimension of Dn is equal
to n. It is also possible to prove the following result:

THEOREM 8. For every n ≥ 0 the Lebesgue covering dimension of Rn is equal to n.

Sketch of proof. The exercises at the end of Section 50 in Munkres (see pages 315–316) provide
machinery for extending results on covering dimensions to “reasonable” noncompact spaces. In
particular, Exercise 8 shows that the Lebesgue covering dimension of Rn is at most n. Since the
dimension of the closed subspace Dn is equal to n, it follows that the Lebesgue covering dimension
of Rn is at least n, and therefore it must be exactly n.
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One cap proceed similarly to extend the conclusions for Exercises 9 and 10 on page 316 of
Munkres. Specifically, every (second countable) topological n-manifold has Lebesgue covering di-
mension equal to n, and if A ⊂ Rn is a close subset with nonempty interior, then the Lebesgue
covering dimension of A is also equal to n.

Note. For topological n-manifolds, second countability is equivalent to the σ-compactness
condition which appears on page 316 of Munkres (proof?).

Dimensions of products

The standard homeomorphism Rn × Rm ∼= Rm+n strongly suggests the following question:

QUESTION. If we know that the Lebesgue covering dimensions of the nonempty compact Hausdorff
spaces X and Y are m and n respectively, does it follow that the Lebesgue covering dimension of
the product X × Y is equal to m+ n?

In the next subheading we shall prove the following result:

PROPOSITION 9. If X and Y are compact Hausdorff spaces whose Lebesgue covering dimen-
sions are m and n respectively, then the Lebesgue covering dimension of the product X × Y is less
than or equal to m+ n.

We shall derive this result as an immediate consequence of Proposition 18 below.

If we assume that our spaces are somewhat reasonable, then we can prove a stronger and more
satisfying result:

PROPOSITION 10. In the setting of Proposition 9, suppose that X = ∪i Ai and Y = ∪j Bj

where the sets Ai and Bj are all homeomorphic to k-disks for suitable values of k. Then the
Lebesgue covering dimension of X × Y is equal to m+ n.

Proof of Proposition 10. By Theorem 50.2 of Munkres and finite induction, it follows that
the dimension of X × Y is equal to the maximum of the dimensions of the closed subsets Ai ×Bj .
On the other hand, the same result implies that there are some indices p and q such that Ap is
homeomorphic to Dm and Bq is homeomorphic to Dn (otherwise the dimensions of X and Y would
be strictly less than m and n). Since Dm ×Dn is homeomorphic to Dm+n it follows that X × Y
has a closed subset with Lebesgue covering dimension equal to m+ n. On the other hand, we also
know that the dimension of each disk Ai is at most m and the dimension of each disk Bj is at most
n, so the dimension of X × Y is at most m + n. If we combine these, we find that the dimension
of X × Y is equal to m+ n.

Counterexamples to the general question

Although Propositions 9 and 10 may suggest that the formula dim(X × Y ) = dimX + dimY
holds more generally, it is possible to construct examples where the left hand side is less than the
right. The first examples of this sort were discovered by L. S. Pontryagin; here is a reference to the
original paper:

L. S. Pontryagin. Sur une hypothèse fondementale de la théorie de la dimension.
Comptes Rendus Acad. Sci. (Paris) 190 (1930), 1105–1107.

In Pontryagin’s example one has X = Y and dimX = 2 but dim(X ×X) = 3. By the following
result, these are the lowest dimensions in which one can have dim(X × Y ) < dimX + dimY .
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DIMENSION ESTIMATES FOR PRODUCTS. Let X and Y be nonempty compact metric
spaces. Then the following hold:

(a) If dimY = 0, then dimX × Y = dimX.

(b) If dimY = 1, then dimX × Y = dimX + 1.

(c) If dimY ≥ 2, then dimX × Y ≥ dimX + 1.

Proofs of these results are beyond the scope of this course, so we shall limit ourselves to
mentioning some key points which arise in the proofs.

The proof of the first statement is actually fairly direct, and it only requires a small amount
of additional machinery. Proofs of the second and third statements using an alternate approach
to defining topological dimensions (the weak inductive or Menger-Urysohn dimension) are due to
Hurewicz (we should note that the Menger-Urysohn definition is the one which appears in Hurewicz
and Wallman). Here is a reference to the original paper.

W. Hurewicz. Sur la dimension des produits cartésiens. Annals of Mathematics 36
(1935), 194–197.

There is a brief indication of another way to retrieve (b) at the top of page 241 in the book by
Nagami (however, this requires a substantial amount of input from algebraic topology). One proof
of (c) can be obtained by combining (b) with the following existence theorem: If Y is a compact
metric space such that n = dimY is finite and 0 < k < n, then there is a closed subset B ⊂ Y
such that dimB = k. — This result and the equivalence of the Lebesgue and Menger-Urysohn
dimensions for compact metric spaces are discussed in an appendix to this section.

Spaces for which dim(X × Y ) < dimX + dimY are generally far removed from the sorts of
objects studied in most of topology, but it is important to recognize their existence. On the other
hand, even though there is no general product formula for the dimensions of compact metric spaces,
the validity of the formula for many well-behaved examples (see Proposition 9) leads one naturally
to look for necessary and sufficient conditions under which one has dim(X × Y ) = dimX + dimY .
Here is one reference which answers the question:

Y. Kodama. A necessary and sufficient condition under which dim(X × Y ) = dimX +
dimY . Proc. Japan. Acad. 36 (1960), 400–404.

As in several previously cited cases, the proofs of the main results in this paper rely heavily on
input from algebraic topology.

Further results

We shall consider two issues related to the discussion of dimension theory:

1. Giving an example of a compact subset of R2 for which the singular and Čech homology
groups are not isomorphic.

2. Showing that a compact subset of Rn has Lebesgue covering dimension n if and only if
it has a nonempty interior (one can then use the previously cited exercises in Munkres
to show that the same conclusion holds for arbitrary closed subsets). The machinery
developed for this question will also yield a proof of Proposition 9 on the Lebesgue covering
dimensions of cartesian products.

The example for the first problem will be the Polish circle, and our discussion will be based
upon the following online reference:
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http://math.ucr.edu/∼res/math205B/polishcircle.pdf
The key to studying the Čech homology of arbitrary compact subsets in Rn is a fundamental
continuity property which does not hold in singular homology.

Continuity in Čech homology

The results in Chapter IX of Eilenberg and Steenrod show that Čech homology is functorial
with respect to continuous maps of compact Hausdorff spaces. Given this, we can the basic result
very simply.

THEOREM 11. (Continuity Property) Suppose that X is a subspace of some Hausdorff
topological space E, and suppose further that there are compact subsets Xα ⊂ E such that X =
∩α Xα for all α and the family Xα is closed under taking finite intersections. Then we have

Ȟ∗(X) ∼= lim
←

Ȟ∗(Xα) .

If E = Rn for some n, then it is always possible to find such a family of compact subsets Xn

such that Xn+1 ⊂ Xn for all n and Xn is a finite union of hypercubes of the form

n∏

i=1

(
xi, xi +

1

2n

)

where each xi is a rational number expressible in the form pi/2
n for some integer pi. For example,

one can take Xn to be the union of all such cubes which have a nonempty intersection with X.

Reference for the proof of Theorem 11. A proof is given on page 261 of Eilenberg and
Steenrod (specifically, see theorem X.3.1).

Remark. One can also make the singular-Čech comparison map into a natural transformation
of covariant functors, but we shall not do this here because it is not needed for our purposes except
for a remark following the proof of Theorem 15 (as before, details may be found in Chapters IX
and X of Eilenberg and Steenrod).

Singular and Čech homology of the Polish circle

As in the previously cited document

http://math.ucr.edu/∼res/math205B/polishcircle.pdf
the Polish circle P is defined to be the union of the following curves:

(1) The graph of y = sin(1/x) over the interval 0 ≤ x ≤ 1.

(2) The vertical line segment {1} × [−2, 1].

(3) The horizontal line segment [0, 1] × {−2}.
(4) The vertical line segment {0} × [−2, 1].

One important fact about the Polish circle is that it is arcwise connected but not locally arcwise
connected. The proof of this is analogous to the discussion on page 66 of the online notes

http://math.ucr.edu/∼res/math205A/gentopnotes2008.pdf
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which shows that the space B, which is given by closure (in R2) of the graph of sin(1/x) for x > 0,
is connected but not arcwise connected. For the sake of completeness, we shall indicate how one
modifies the argument to show the properties of P stated above. First of all, since P is the union of
four arcwise connected subspaces A∪B∪C∪D such that A∩B, B∩C and C∪D are all nonempty,
the arcwise connectedness of P follows immediately. To prove that P is not arcwise connected, we
need the following result, whose proof is similar to the previously cited argument which shows that
B is not arcwise connected:

LEMMA 12. Let Y be a compact, arcwise connected, locally arcwise connected topological
space, let f : Y → P be continuous, and suppose that a0 ∈ Y is such that the first coordinate of
f(a0) is zero and f(a0) 6= (0,−2). Then there is an arcwise connected open neighborhood V of a0

in Y such that f [V ] is contained in the intersection of Y with the y−axis.

This observation has far-reaching consequences for the fundamental group and singular homol-
ogy of P , all of which come from the following:of c in Y

PROPOSITION 13. Let Y and f be as in the preceding lemma. Then there is some ε > 0
such that f [Y ] is disjoint from the open rectangular region (0, ε) × (−2, 2).

In terms of the presentation of P given above, this means that f [Y ] is contained in the union of
B∪C ∪D with the graph of sin(1/x) over the interval [ε, 1]. This subspace Mε is homeomorphic to
a closed interval and as such is contractible. Therefore Proposition 13 has the following application
to the algebraic-topological invariants of the Polish circle:

THEOREM 14. If P is the Polish circle, then π1(P, p) is trivial for all p ∈ P , and the inclusion
of {p} in P induces an isomorphism of singular homology groups.

Proof of Theorem 14, assuming Proposition 13. We begin with the result on the funda-
mental group. Suppose that γ is a closed curve in P based at p. By Proposition 13 we know that
the image of γ lies in Mε for some ε > 0, so that the class of γ in π1(P, p) lies in the image of
π1(Mε, p). Since Mε is contractible, it follows that the image of π1(Mε, p) in π1(P, p) is trivial, and
therefore the latter must also be trivial.

The proof for singular homology is similar. If z ∈ Sq(P ) is a cycle, then there is some Mε such
that p ∈Mε and z lies in the image of Sq(Mε). Of course, this means that the class u represented by
z lies in the image of the homomorphism Hq(Mε)→ Hq(P ), and since Mε is contractible it follows
that this image is trivial if q > 0. On the other hand, if q = 0, then the arcwise connectedness
of all the spaces implies that the various inclusion maps all induce isomorphisms in 0-dimensional
singular homology.

Proof of Proposition 13. Let E denote the inverse image of the intersection of P with
{0} × [− 3

2
, 1]. Then for each c ∈ E there is an arcwise connected open neighborhood Vc of c

in Y such that f [Vc] is contained in the intersection of Y with the y−axis. Let Wc be an open
neighborhood of c whose closure is contained in Vc. By continuity E is closed in Y and hence E
is a compact subset, so there is a finite subcollection of the sets Wc, say {W1, · · · ,Wn}, which
covers E.

Define G ⊂ Y to be the closed subset

Y − ∪n
i=1 Wi

so that f [G] is compact and disjoint from P ∩ {0} × [− 3
2 , 1]. If A ⊂ P is the piece of the graph of

sin(1x) described above, then it follows that the second coordinates of all points in f [G] ∩ A are

111



positive and by compactness must be bounded away from zero; in other words, there is some ε > 0
such that f [G] ∩A is disjoint from (0, ε) × R. But this means that

f [Y ] = f [G] ∪
(
∪n

i=1 f [Wi]
)

must be disjoint from (0, ε) × (−2, 2).

In contrast to the preceding, we have the following result:

THEOREM 15. The Čech homology groups of the Polish circle P are given by Ȟq(P ) = Z if
q = 0, 1 and zero otherwise.

The results on Čech homology groups in Eilenberg and Steenrod show that these groups
are functorial for continuous mappings and that homotopic mappings induce the same algebraic
homomorphisms in Čech homology. If we combine this with Theorem 15 and the results on singular
homology, we see that the Polish circle P is a space which is simply connected and has the singular
homology of a point, but P is not a contractible space.

An alternate proof of the preceding statement is given in

http://math.ucr.edu/∼res/math205Bcommentaries.pdf
which establishes the existence of a continuous map r|P from P to S1 that is not homotopic to
a constant. In fact, it follows that the map r|P induces an isomorphism from Ȟ∗(P ) to Ȟ(S1) ∼=
H∗(S

1).

Proof. We shall prove this using the continuity property of Čech homology as stated above, and
we shall use the presentation of P as an intersection of the decreasing closed subsets Bn in the
previously cited polishcircle.pdf. Since P = ∩n Bn it follows that

Ȟ∗ ∼= lim
←

Ȟ∗(Bn)

and since each Bn is homeomorphic to a finite simplicial complex (describe this explicitly — it is
fairly straightforward), we can replace Čech homology with singular homology on the right hand
side. It will suffice to prove that each Bn is homotopic to a circle and the inclusion mappings
Bn+1 ⊂ Bn are all homotopy equivalences. We shall do this using the subspaces Cn from the
polishcircle document.

By construction, Cn is a subset of Bn, and we claim that Cn is a deformation retract of Bn.
Let Xn be the closed rectangular box

[
2

(4n+ 3)π

]
× [−1, 1]

(the piece shaded in blue in the third figure), and let Qn denote the bottom edge of Xn defined by
the equation y = −1. It follows immediately that Qn is a strong deformation retract of Xn; since
the closure of Bn−Xn intersects Xn in the two endpoints of Yn, we can extend the retract Xn → Yn

and homotopy Xn × [0, 1] → Xn by taking the identity on Bn −Xn to extend the retraction and
the trivial homotopy from the identity to itself on Bn −Xn . This completes the proof that Cn is
a strong deformation retract of Bn.

By construction the space Cn is homeomorphic to the standard unit circle, and furthermore it
is straightforward to check that the composite

Cn+1 ⊂ Bn+1 ⊂ Bn −→ Cn
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(where the last map is the previously described homotopy inverse) must be a homeomorphism
which is the identity off the points which lie in the vertical strip

(
2

4n+ 7
,

2

4n+ 3

)
× R

and on this strip it is the flattening map which sends a point (x, y) ∈ Cn+1 to (x,−1) ∈ Cn.
Therefore the map in homology from Hq(Cn+1) to Hq(Cn) is an isomorphism of infinite cyclic
groups in dimensions 0 and 1 and of trivial groups otherwise, and it follows that the map from
Hq(Bn+1) to Hq(Bn) is also an isomorphism of of infinite cyclic groups in dimensions 0 and 1 and
of trivial groups otherwise. As in the proof of the second half of Theorem 6, it follows that Ȟq(X)
must be infinite cyclic if q = 0 or 1 and trivial otherwise.

In fact, as noted before the proof of Theorem 15 one can show that a standard map from
P to S1 induces isomorphisms in Čech homology. This requires the naturality property of the
comparison map from singular to Čech homology.

Dimensions of nowhere dense subsets

We have seen that if A is a compact subset of Rn with a nonempty interior, then the Lebesgue
covering dimension of A is equal to n; we shall conclude this section with a converse to this result.
In order to prove the converse we shall need some refinements of the ideas which arise in the proof
of the embedding theorem stated as Theorem 50.5 in Munkres (see pages 311–313).

Definition. Let (X,d) be a metric space, let f : X → Y be a continuous map of topological
spaces, and let ε > 0. We shall say that f is an ε−map if for all u, v ∈ X the equation f(u) = f(v)
implies that d(u, v) ≤ ε; an equivalent formulation is that for all y ∈ Y the diameter of the level
set f−1[{y}] is less than or equal to ε.

Clearly a continuous map f is 1–1 if and only if it is an ε−map for all ε > 0 (equivalently, it
suffices to have this condition for all numbers of the form 1/k where k is a positive integer or all
numbers of the form 2−k where k is a positive integer).

We shall need the following result, which is entirely point set-theoretic.

LEMMA 17. Let (X,dX) and (Y,dY ) be compact metric spaces, let ε > ε′ > 0, and let
f : X → Y be a continuous ε′−map. Then there is a δ > 0 such that if A ⊂ Y has diameter less
than or equal to δ, then f−1[A] has diameter less than ε.

Proof. Let η = 1
2 (ε+ ε′) and let Kη ⊂ X ×X be the set of all (x1, x2) such that dX(x1, x2) ≥ η.

Then Kη is a closed (hence compact) subset of X ×X and f × f [Kη] is a compact subset of Y ×Y
which is disjoint from the diagonal ∆Y because f is an ε′−map. It follows that the restriction
of the distance function dY to f × f [Kη] is bounded away from zero by a positive constant h; in
other words, if Uh ⊂ Y × Y is the set of all (y1, y2) ∈ Y × Y such that dY (y1, y2) ≤ h/2, then
(y1, y2) 6∈ f × f [Kη].

Suppose now that the diameter of A is less than δ = h/2; then we have A × A ⊂ Uh, and it
follows that if (p, q) ∈ f−1[A], then dY

(
f(p), f(q)

)
< δ, and this means that (p, q) cannot lie in

Kη because the image of the latter under f × f is disjoint from Uh, which contains A×A. In other
words, if the diameter of A is less than δ, then the diameter of f−1[A] must be less than or equal
to η, which is less than ε.

The next result gives a method for approximating n-dimensional compact metric spaces by
n-dimensional simplicial complexes.
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PROPOSITION 18. Let X be a compact metric space, and let n be a nonnegative integer.
Then the Lebesgue covering dimension of X is ≤ n if and only if for every ε > 0 there is an ε−map
from X into some n-dimensional polyhedron P .

Proof. Suppose first that the Lebesgue covering dimension of X is ≤ n. Take the open covering
of X by open disks of radius ε/2 about the points of X, and extract a finite subcovering

U =
{
Nε/2(x1), · · · , Nε/2(xm)

}
.

Let {ϕj } be a partition of unity subordinate to this finite covering, and consider the canonical map
k from X to N(U). If k(u) = k(v), then ϕj(u) = ϕj(v) for all j; at least one of these values must
be positive, and therefore we can find some j such that u, v ∈ Nε/2(xj). Since the latter implies
d(u, v) ≤ diameterNε/2(xj) ≤ ε, it follows that k is an ε−map.

As usual, with respect to this metric there is a Lebesgue number η > 0 for this open covering.
Let 0 < ε′ < ε < η, and let f : X → P be an ε′−map from X to some polyhedron P of dimension
≤ n. By the preceding lemma there is some δ > 0 such that if A ⊂ Y has diameter less than δ then
f−1[A] has diameter less than ε.

Take a sufficiently large barycentric subdivision of P such that all simplices have diameter at
most δ/2, and let V be the open covering given by the inverse images (under f) of open stars of the
vertices in P . Then the intersection of any n+ 2 open subsets in V is empty; if we can show that
V is a refinement of U , then we are done. But the open stars of vertices in P all have diameter at
most δ, and thus by Lemma 17 their inverse images have diameters which are at most ε. Since ε is
less than a Lebesgue number for U , it follows that each of the open subsets in V must be contained
in some open set from U , and thus V is an open refinement of U such that every subcollection n+2
subsets in V has an empty intersection.

Before proceeding, we shall show that Proposition 18 yields the previously stated result about
the dimensions of Cartesian products (namely, dim(X × Y ) ≤ dimX + dimY ). In this argument
we assume that dimX and dimY are both finite; it is straightforward to verify that if X and Y are
T1 spaces and either dimX =∞ or dimY =∞, then dim(X×Y ) =∞ (look at the contrapositive
statement).

Proof of Proposition 9. Suppose that dimX ≤ m and dimY ≤ n, and let ε > 0. By Proposition
18, it will suffice to construct an ε-map from X × Y to some polyhedron T of dimension at most
m+ n. For the sake of definiteness, in this argument the metrics on products are given by the d2

metrics associated to metrics on the factors (using the notation of the 205A notes).

The construction is fairly straightforward. By the dimension hypotheses and Proposition 18
we know there are (ε/

√
2)-maps f : X → P and g : Y → Q, where P and Q are polyhedra of

dimension at most m and n respectively. It follows that the product map f × g : X × Y → P ×Q
is an ε-map into a polyhedron whose dimension is at most m+ n.

Using Proposition 18, we can prove the result on the dimensions of nowhere dense subsets
mentioned above.

THEOREM 19. Suppose that A ⊂ R
n is compact and nowhere dense. Then the Lebesgue

covering dimension of A is at most n− 1.

The estimate in the theorem is the best possible estimate because we know that the Lebesgue
covering dimension of the nowhere dense subset Sn−1 is equal to n− 1.

Proof. We shall prove that A satisfies the criterion in Proposition 18. One step in the proof
involves the following result:
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CLAIM. If v is an interior point of the disk Dn where n > 0, then Sn−1 is a retract of Dn−{v}.
The quickest way to prove this is to take the map ρ : Dn×Dn−diagonal→ Sn−1 constructed

in the file brouwer.pdf and restrict it to (Dn − {v}) × {v}.
The first steps in the proof are to let ε > 0 and to take a large hypercube Q containing A.

We know that Q has a simplicial decomposition, and if we take repeated barycentric subdivisions
we can construct a decomposition whose simplices all have diameter less than ε/2. Let σ be an n-
simplex in this decomposition. Since σ has a nonempty interior (in the sense of point set topology)
and A is nowhere dense in Rn, it follows that there is some interior point w(σ) in σ such that
w(σ) 6∈ A. By the claim above, we know that the boundary ∂σ is a retract of σ − w(σ), and we
can piece the associated retractions together to obtain a retraction

r : Q −
(

⋃

dim σ=n

{w(σ)}
)
−→ Q[n−1]

where Q[n−1] (the n-skeleton) is the union of all simplices in Q with dimension strictly less than n.
By construction the set A is contained in the domain of r, and therefore we also obtain a retraction
r : A → Q[n−1]. The inverse image of a point z in the codomain is contained in all simplices
which contain z, and since these simplices all have diameter less than ε/2, it follows that each
set r−1[{z}] has diameter less than ε. Therefore we have shown that r|A is an ε−map into the
(n − 1)-dimensional polyhedron Q[n−1]. By Proposition 18, it follows that the Lebesgue covering
dimension of A is at most n− 1.

Using results from Section 50 of Munkres (including the exercises), it is a straightforward
exercise to prove the following generalization of Theorem 19:

COROLLARY 20. Let Mn be a second countable topological n-manifold, and suppose that
A ⊂ M is a closed nowhere dense subset of Mn. Then the Lebesgue covering dimension of A is
strictly less than n.

V.5.Appendix : The Flag Property

DEFAULT HYPOTHESIS. Unless stated otherwise, all spaces discussed in this Appendix are com-
pact metric spaces with finite Lebesgue covering dimensions.

In our discussion of product formulas for the Lebesgue covering dimension, we noted that
dimX × Y > dimX if dimY > 0, and we gave references for the proof when dimY = 1. We also
asserted that the general case followed quickly from this special case because dimY > 0 implies
the existence of a closed subset A ⊂ Y with dimA = 1. In fact, we have the following:

PROPOSITION A1. (Flag Property) Suppose that X satisfies the Default Hypothesis and
dimX = n > 0. Then there is a chain of closed subsets

{y} = A0 ⊂ A1 ⊂ · · · ⊂ An = X

such that dimAk = k for all k.
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Note. The name for this result is motivatived by a standard geometrical concept of a flag of
subspaces in Rn, which is a sequence of vector subspaces

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vn = R
n

such that dimVk = k for all k; of course, there is a similar concept if R is replaced by an arbitrary
field.

The proof of the Flag Property is a fairly direct consequence of equality of the Lebesgue
covering dimension and the previously cited Menger-Urysohn or weak inductive dimension for
compact metric spaces. Here is a summary of what we need in order to prove the Flag Property:

THEOREM A2. Let X be a compact metric space such that dimX ≤ n, and let x ∈ X. Then
there is a countable neighborhood base at x of the form

B = {W1 ⊃ W2 · · · }
such that for each k the set Bdyx(Wk) has dimension at most n−1. Conversely, if such neighborhood
bases exist for each point of X, then dimX ≤ n.

As in Munkres, the boundary (or frontier) BdyX(E) of E ⊂ X (in X) is the intersection of
the limit point sets LX(E) ∩ LX(X −E); since we are working with metric spaces, this is a closed
subset of X.

Idea of proof for Theorem A2. The statement in the conclusion is essentially the same as
the condition for the Menger-Urysohn dimension of X to be at most n (this is given on page 24 of
Hurewicz and Wallman). Therefore the conclusion will follow if we know that the Lebesgue covering
dimension and the Menger-Urysohn dimension are equal for compact metric spaces. Virtually every
book on dimension theory from the past 50 years contains some abstract version of this equality.
More directly, one can use Theorem V.8 on page 67 of Hurewicz and Wallman (in which “dimension”
means the Menger-Urysohn dimension) to show that the two definitions are the same for compact
metric spaces.

One reason that the standard references for dimension theory phrase things in more abstract
terms is that the Lebesgue covering dimension and Menger-Urysohn dimension are not necessarily
equal for more general topological spaces (usually it is easy to find examples; see also the Wikipedia
article on inductive dimension mentioned earlier).

Proof of Proposition A1. (Compare Hurewicz and Wallman, Proposition III.1.D, pp. 24–
25.) If dimX = 1 then X is nonempty and the conclusion follows immediately. Proceeding
by induction on the dimension, we shall assume the result is true for compact metric spaces of
dimension ≤ n− 1. Suppose that X is an n-dimensional compact metric space. Since dimX is not
less than or equal to n − 1, Theorem A2 implies the existence of some point z ∈ X such that for
all countable neighborhood bases at z of the form

A = {V1 ⊃ V2 · · · }
we have dim (BdyX(Vk)) > n − 2 for infinitely many k (why?). In particular, this holds for the
neighborhood base B for z described in the statement of Theorem A2 (we know such a neighborhood
base exists because dimX = n). It follows that dim (BdyX(Wk)) = n − 1 for all such k. Choose
a specific m such that dim (BdyX(Wm)) = n− 1. By the induction hypothesis, there is a chain of
closed subspaces

{y} = A0 ⊂ A1 ⊂ · · · ⊂ An−1 = BdyX(Wm)

and we may extend this to a chain of subspaces as in the conclusion of the proposition by taking
An = X.
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VI. Cohomology

Suppose that F is a field and (X,A) is a pair of topological spaces. One can then define the q-
dimensional cohomology Hq(X,A; F) to be the vector space dual HomF

(
Hq(X,A; F), F

)
, and this

construction extends to a contravariant functor on the category of pairs of spaces and continuous
maps. Similarly, by taking adjoint maps of dual spaces we obtain natural coboundary morphisms
δ : Hq(A; F)→ Hq+1(X,A; F) and long exact cohomology sequences for pairs.

One natural question is why one would bother to do this, especially since it follows that
Hq(X; F) ∼= Hq(X; F) if X has the homotopy type of a finite cell complex (because the homology
is finite dimensional and is isomorphic to its vector space dual). There are two related answers:

(1) Even when mathematical objects and their duals are equivalent, in many cases it is more
convenient to work with the dual object rather than the original one, and vice versa.
— For example, vector fields and differential 1-forms on a smooth manifold are dual to
each other, but they play markedly different roles in the theory of smooth manifolds. In
particular, vector fields are better for working with differential equations, while differential
forms provide a more convenient way for manipulating expressions like line integrals.

(2) Frequently the dual objects have some extremely useful extra structure which is not easily
studied in the original objects. — To continue with our example of vector fields and differ-
ential 1-forms, the latter have better functoriality properties, and the exterior derivative
construction on differential forms does not have a functorial counterpart for vector fields
unless one adds some further structure like a riemannian metric. On the other hand,
there can also be some nice structure on the original objects which is not on their duals;
for example, the Lie bracket construction on vector fields has no obvious counterpart on
1-forms unless one adds some further structure.

In fact, it turns out that cohomology groups have a useful additional structure; namely, there
are natural bilinear cup product mappings

∪ : Hp(X,A; F)×Hq(X,A; F) −→ Hp+q(X,A; F)

which do not have comparably simple counterparts in homology. This illustrates the second point
about objects and their duals. Later in these notes we shall illustrate how the first point manifests
itself in homology and cohomology.

A useful result

At several points in this unit we shall need the following result on acyclic (no homology) chain
complexes.

THEOREM 0. Let C∗ be a chain complex such that Ck = 0 for k < M for some integer M and
each Ck is free abelian on some set of generators Gk. Then H∗(C) = 0 in all dimensions if and only
if there is a contracting chain homotopy Dq : Cq → Cq+1 (for all q) such that Dd+ dD = idC .

Proof. If D exists then clearly the homology is zero by the usual sort of argument. Conversely,
suppose that H∗(C) = 0, and let m be the first degree in which C is nonzero. We may construct
Dm as follows: If T ∈ Gm, then dT = 0 and hence T = du for some u ∈ Cm+1. Define Dm(T ) = u
and extend the map using the freeness property. Now suppose by induction that we have defined
Dk for k ≤ N − 1.
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Let T be an element of the free generating set GN . Then we need to find an element uT ∈ Cn+1

so that duT = T −DdT . Since the complex has no homology, such a class exists if and only if the
right hand side is a boundary. But now we have a familiar sort of inductive calculation:

d(T −DdT ) = dT − dDdT = dT − (1−Dd)dT = dT − dT −DddT = −DddT = D0T = 0

Hence we can define D(T ) = uT and extend by freeness. This completes the inductive step and
proves the existence of the contracting chain homotopy.

VI.1 : The basic definitions

(Hatcher, §§ 3.1–3.2)

We begin by defining the singular cohomology of a space with coefficients in an arbitrary D-
module, where D is a commutative ring with unit (a setting broad enough to contain coefficients
in fields, the integers, and quotients of the latter). However, we shall quickly specialize to the case
of fields in order to minimize the amount of algebraic machinery that is needed.

Definition. Let (X,A) be a pair of topological spaces, and let π be a module over the ring D

as above. The singular cochain complex
(
S∗(X,A;π), δ

)
of (X,A) with coefficients in π is

defined with Sq(X,A) = Hom
(
Sq(X,A), π

)
and the coboundary mapping

δq−1 : Sq−1(X,A;π) −→ Sq(X,A;π)

given by the adjoint map Hom(dq , π).

Many basic properties of singular cochain complexes follow immediately from the definitions,
including the following:

PROPOSITION 1. (i) We have δq oδq−1 = 0.

(ii) The singular cochain complex is contravariantly functorial with respect to continuous
mappings on pairs of topological spaces.

The first of these follows because dq
odq+1 = 0 and the functor Hom(−,−) is additive, while

the second is basically just a consequence of the definition and the covariant functoriality of the
singular chain complex.

Before going further, we shall define the q-dimensional singular cohomology H q(X,A;π) of
(X,A) with coefficients in π to be the kernel of δq modulo the image of δq−1. Elements of the
kernel are usually called cocycles, and elements of the image are usually called cobooundaries.
As in the case of singular chain complexes, it follows that the map of singular cochains

f# : S∗(Y,B;π) −→ S∗(X,A;π)

associated to a continuous map f : (X,A)→ (Y,B) will pass to a homomorphism

f∗ : H∗(Y,B;π) −→ H∗(X,A;π)

and this makes singular cohomology into a contravariant functor on pairs of spaces and continuous
maps.
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If (X,A) is a pair of topological spaces, then for each q we know that Sq(X) ∼= Sq(A)⊕Sq(X,A)
as free abelian groups (but this is NOT an isomorphism of chain complexes!), and from this it
follows that for each q we have a split short exact sequence of modules

0 −→ S∗(X,A;π)
j#

−−−−−→S∗(X;π)
i#−−−−−→S∗(A;π) −→ 0

where j : X → (X,A) and i : A → X are the usual inclusions. As in the case of singular chains,
this leads to a natural long exact cohomology sequence; to simplify the notation we shall omit
the coefficient module π in the display below:

· · · Hk−1(A)
δ−→ Hk(X,A)

j∗

−→ Hk(X)
i∗−→ Hk(A)

δ−→ Hk+1(X,A) · · ·

As in the case of homology, this sequence extends indefinitely to the left and right.

Notational convention. The contravariant algebraic maps induced by inclusions are often
called restriction maps; one motivation for this terminology is that a map like i# restricts attention
from objects defined for X to objects defined only for the subspace A (for example, consider the
restriction map from continuous real valued functions on X to those defined on A, which is defined
by composing a function f : X → R with the inclusion mapping i).

We can now proceed as in the study of singular homology to prove homotopy invariance,
excision, and Mayer-Vietoris theorems for singular cohomology; informally speaking, one need only
apply the functor Hom(−, π) to everything in sight, including chain homotopies. At some points
one needs Theorem 0 to conclude that if C∗ is an acyclic, free abelian chain complex, then it has
a contracting chain homotopy and the latter implies that Hom(C∗, π) has no nonzero cohomology
(verify this!).

Cup products

We shall now assume that our coefficients π are a commutative ring with unit, which we shall
call D.

Definition. Let X be a space; then the augmentation mapping εX(D) = εX ∈ S0(X; D) is the
homomorphism from S0(X) to D which sends each singular 0-simplex T : ∆0 → X to the unit
element of D.

The following is an immediate consequence of the definitions.

PROPOSITION 2. If f : X → Y is continuous, then f#(εY ) = εX . Furthermore, δ0(εX) = 0.

The augmentation plays a key role in the multiplicative structure mentioned earlier. Before
proceeding, we need some geometric definitions.

Definition. Let p and q be nonnegative integers, and as usual let ∆p+q denote the standard sim-
plex. Then the front and back faces Frontp(∆p+q) and Backq(∆p+q) are the p- and q-dimensional
faces whose vertices are respectively the first (p+1) and last (q+1) vertices of the original simplex.
Note that these intersect in the pth vertex of ∆p+q.

Definition. Given two cochains f ∈ Sp(X,A; D) and g ∈ Sq(X,A; D), their cup product
f ∪ g ∈ Sp+q(X,A; D) is given as follows: For each standard free generator of Sp+q(X,A) — in
other words, each singular simplex of X whose image is not entirely contained in A — we define

f ∪ g(T ) = (f |Frontp) · (g|Backq) .
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We then have the following:

PROPOSITION 3. The cup product is functorial for continuous maps of pairs. Furthermore,
it is bilinear and associative, and if A = ∅ then εX is a two sided multiplicative identity.

At this point we do not want to address questions about the possible commutativity proper-
ties of the cup product. This is a decidedly nonelementary issue, and in several respects it is a
fundamental difficulty which has an enormous impact across most if not all of algebraic topology.

Clearly one would hope the cup product will pass to cohomology, and the following result
guarantees this:

PROPOSITION 4. In the notation of the cup product definition, we have

δ(f ∪ g) = (δf) ∪ g + (−1)p f ∪ (δg) .

In particular, it follows that f ∪ g is a cocycle if both f and g are, and if we are given equivalent
representatives f ′ and g′ for the same cohomology classes, then f ∪ g − f ′ ∪ g′ is a coboundary.

Proof. The identity involving the coboundary of f ∪ g is derived in Lemma 3.6 on page 206 of
Hatcher. If f and g are both coboundaries, the formula immediately implies that f ∪ g is also a
coboundary. Suppose now that we also have f − f ′ = δv and g − g′ = δw. It then follows that

δ(v ∪ g) = (f − f ′) ∪ g , δ(f ′ ∪ w) = ± f ′ ∪ (g − g′) .

The first of these implies that f ∪ g and f ′ ∪ g determine the same cohomology class, while the
second implies that f ′ ∪ g and f ′ ∪ g′ also determine the same cohomology class.

In many contexts it is useful to have a slight refinement of the cup product described above.
Specifically, if A and B are both subspaces of X, then there is a cochain level cup product

Sp(X,A; D)× Sq(X,B; D) −→ Sp+q(X,A ∪B; D)

which is a very slight modification of the original definition. To see this, note first that a homomor-
phism f from Sp(X,A) to D is equivalent to a homomorphism F from Sp(X) which vanishes on the
subgroup Sp(A), and similarly a homomorphism g from Sq(X,B) to D is equivalent to a homomor-
phism G from Sq(X) which vanishes on the subgroup Sq(B). Consider what happens if we form
F ∪G; this is a cochain on X which vanishes on A ∪ B because one factor vanishes on A and the
other vanishes on B. Therefore it has a natural interpretation as a cochain in Sp+q(X,A ∪ B; D).
This refined cup product has analogs of all the properties one might expect to generalize from the
case A = B.

VI.2 : A weak Universal Coefficient Theorem

(Hatcher, § 3.1)

We have already asserted the q-dimensional cohomology of a space is the dual space of the
q-dimensional homology if we take coefficients in a field. However, our basic definition is somewhat
different from this, so the next step is to verify the assertion at the beginning of this unit. Hatcher
formulates and proves more general results (for example, see Theorem 3.2 on page 195). In this
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course we do not have enough time to develop the homological algebra necessary to prove such a
result, and in any case the results for fields are strong enough to yield some important insights.

The Kronecker Index

As usual let D be a commutative ring with unit, let C∗ be a chain complex of D-modules,
and define an associated cochain complex by C q = HomD(Cq,D), with a coboundary map dq =
Hom(dq+1,D) analogous to the construction for singular cochains. Then evaluation defines a bilinear
map Cq ×Cq → D which is called the Kronecker index pairing and its value at f ∈ C q and x ∈ Cq

is usually written as 〈f, x〉.
LEMMA 1. Suppose that f, f ′ ∈ Cq are cocycles and x, x′ ∈ Cq are cycles such that f − f ′ = δa
and x− x′ = db. Then 〈f, x〉 = 〈f ′, x′〉.
Proof. For an arbitrary cochain g and chain y it follows immediately that 〈δg, y〉 = 〈g, dy〉.
Therefore we have

〈f, x− x′〉 = 〈f, db〉 = 〈δf, b〉 〈0, b〉 = 0

and similarly
〈f − f ′, x′〉 = 〈δa, x′〉 = 〈a, dx′〉 〈a, 0〉 = 0

which combine to show that 〈f, x〉 = 〈f ′, x′〉.
COROLLARY 2. The chain/cochain level Kronecker index pairing passes to a well-defined
bilinear pairing from Hq(C)×Hq(C) to D.

Manipulations with dual vector spaces

We now assume that F is a field. If V is a vector space over F and U is a subspace of V , then
we have a short exact sequence of vector spaces

0 → U → V → V/U → 0

and applying the dual space functor we obtain the following short exact sequence of dual spaces:

0 → (V/U)∗ → V ∗ → U∗ → 0

The image of the map from (V/U)∗ to V ∗ is the annihilator of U , which consists of all linear

functionals which vanish on U and will be denoted by U †.
Suppose now that V1 and V2 are vector spaces over F and T : V1 → V2 is a linear transformation.

Then we can factor T into a composite

V1 → J1
∼= J2 ⊂ V2

where J1 is the quotient of V1 by the kernel of T , the map from J1 to J2 is an isomorphism, and J2

is the image of T . There is also a corresponding factorization for the induced map of dual spaces

V ∗2 → J∗2
∼= J∗1 ⊂ V ∗1

These factorizations will be useful in proving the following abstract version of a key result in linear
algebra:
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PROPOSITION 3. In the notation above, let T ∗ : V2 → V ∗1 be the associated map of dual

spaces. Then we have (Kernel T )† = Image T∗ ⊂ V ∗1 and (Image T )† = Kernel T ∗ ⊂ V ∗2 .

Proof. By our previous observations we know that (Kernel T )† corresponds to J∗1 = J∗2 , and

since J2 is the image of T , we have the asserted relationship. Similarly, we know that (ImageT )†
corresponds to (V2/J2)

∗, and one can check directly that this corresponds to all linear functionals
f on V2 such that 0 = f oT = T ∗(f).

We now have enough machinery to derive the relationship between homology and cohomology
over a field.

PROPOSITION 4. Let C∗ be a chain complex over a field F, and let C∗ be the dual cochain
complex. Then for each q there is a natural isomorphism from H q(C) to Hq(C)∗.

Proof. We shall focus on verifying the assertion about the isomorphism first. By definition we
know that

Hq ∼= (Kernel δq)/(Image δq−1) .

Using the relationship δ = d∗ we may rewrite the right hand side in the form

(Image dq+1)
†/(Kernel dq)

†

and conclude by noting that the latter subquotient of C ∗q corresponds to

H∗q
∼=

(
(Kerneldq)/(Image dq+1)

)∗
.

Under these correspondences and the defining isomorphism

Hq
∼=

(
(Kerneldq)/(Image dq+1)

)

all the standard pairings which evaluate linear functionals at vectors are preserved. In particular,
this means that the isomorphism is given by the pairing described in Corollary 2. Now this pairing
is natural by construction, and therefore our isomorphism is also natural.

Only a little more work is needed to derive the description of singular cohomology that we
want.

COROLLARY 5. If (X,A) is a topological space and F is a field, then for each q there is a
natural isomorphism from Hq(X,A; F) to the dual space Hq(X,A; F)∗.

Proof. At this point all we need to do is describe a natural isomorphism

S∗(X,A; F) ∼= Hom(S∗(X,A),F) −→ HomF (S∗(X,A)⊗ F,F)

because the latter is the cochain complex to which Proposition 4 applies. However, the isomorphism
in question is given directly by the universal properties of the tensor product construction sending
the chain groups Sq(X,A) to Sq(X,A)⊗ F; in other words, there is a 1–1 correspondence between
abelian group homomorphisms from Sq(X,A) to F and F-linear maps from Sq(X,A) ⊗ F to F.

If (X,A) is a pair of topological spaces, then similar considerations show that under this
isomorphism the connecting morphism in cohomology

δ∗ : Hp(A; F) −→ Hp+1(X,A; F)
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corresponds to the map HomF (∂,F), where ∂ : Hp+1(X, ; F) → Hp(A; F) is the connecting mor-
phism in homology. This reflects the fact that chain complex boundaries and cochain complex
coboundaries are adjoint to each other with respect to the Kronecker index pairing; details of the
verification are left to the reader.

VI.3 : Examples of cup products

(Hatcher, §§ 3.2, 3.B)

One obvious point about the preceding discussion is that we have not yet produced examples
for which the cup product of two positive-dimensional cohomology classes is nontrivial. Our next
order of business is to find classes of spaces with this property.

Cross products

Given two topological spaces X and Y , the cohomology cross product of v ∈ H p(X; F)
and w ∈ Hq(Y ; F) is given by

v × w = π∗X(v) ∪ π∗Y (w) ∈ Hp+q(X × Y ; F)

and there is a corresponding definition of cross product at the cochain level. These maps are
functorial with respect to pairs of continuous mappings f : X → X ′ and g : Y → Y ′, and on the
cochain level one has the following analog of a key identity for cup products:

δ(a × b) = δ(a) × b + (−1)p a× δ(b) , where a ∈ Sp(X; F)

In fact, the cross product and cup product are equivalent, for if X = Y then one also has the
identity

v ∪w = ∆∗X(v × w)

where ∆X : X → X ×X is the diagonal mapping. There is also a relative cross product pairing

µ : Hp(X,A; F)×Hq(Y,B; F) −→ Hp+q(X × Y,A× Y ∪X ×B; F)

which comes from a pairing at the cochain level, and we also have the following basic identity:

PROPOSITION 1. In the preceding setting, suppose that B 6= ∅, and let δ∗ generically
denote the connecting morphisms in long exact cohomology sequences for pairs. Then for each
v ∈ Hp(A; F) and w ∈ Hq(Y ; F) we have δ∗(v × w) = δ∗(v)× w.

This follows directly from the cochain level formula for the coboundary of a cross product.

We can now proceed as in Example 3.11 on pages 210–211 of Hatcher to prove the following
nontriviality result for cross products:

PROPOSITION 2. Let Y be an arbitrary nonempty topological space, let I = [0, 1] denote the
unit interval, and let ∂I = {0, 1} be its boundary. Denote the generator of H 1(I, ∂I; F) ∼= F by ω.
Then for each q ≥ 0 the map

Lω : Hq(Y ; F) −→ Hq+1(I × Y, ∂I × Y ; F) , Lω(a) = ω × a
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is bijective.

This result follows by combining Proposition 1 with the identity ω = δ(u1 − u0), where ut is
the image of the (augmentation) unit element in H0({t}×Y ; F) in H0(∂I×Y ; F) under the natural
splitting isomorphism

H∗(∂I × Y ; F) ∼= H∗({0} × Y ; F) ⊕ H∗({1} × Y ; F) .

Note that u1 + u0 is the unit element in H0(∂I × Y ; F).

We also have the following modified version of the preceding result:

PROPOSITION 3. Let Y be an arbitrary nonempty topological space. Denote the generator
of H1(S1; F) ∼= F by Ω. Then for each q ≥ 0 the map

Lω : Hq(Y ; F) −→ Hq+1(S1 × Y ; F) , Lω(a) = ω × a

is injective, and its image is the kernel of the map

i∗ : Hq+1(S1 × Y ; F) −→ Hq+1(Y ; F)

where i : Y → S1 × Y is the slice inclusion sending y ∈ Y to (1, y).

Derivation of Proposition 3. For the sake of conciseness we shall omit the coefficients F in the
discussion which follows.

Consider the standard decomposition of S1 into upper and lower semicircles D1
± consisting of

all (x, y) ∈ S1 such that y ≥ 0 or y ≤ 0. Similarly, set W± equal to the complement of (∓ 1, 0), so
that D1

± is a strong deformation retract of W± and S0 is a strong deformation retract of W+∩W−.
It follows immediately that all mappings in the sequence

H∗(S1×Y, {(0,−1)}×Y ) ← H∗(S1×Y,W−×Y ) → H∗(S1×Y,D−×Y ) → H∗(D1
+×Y, S0×Y )

are isomorphisms. Since (D1, S0) is homeomorphic to (I, ∂I), the class ω corresponds to a class
ω′ ∈ H1(S1, {0,−1}) under these mappings, and by Proposition 2 we know that cross product
multiplication by ω′ is injective.

To conclude the proof, we first need to see that if p ∈ S1, then there is a direct sum decom-
position

H∗(S1 × Y ) ∼= H∗(S1 × Y, {p} × Y ) ⊕ H∗(Y )

because the restriction map from H∗(S1 × Y ) to H∗({p} × Y ) ∼= H∗(Y ) is split surjective (the
map induced by projection onto Y is a one-sided inverse). Proposition 2 implies that the image of
the cross product map is the entire first summand, and this immediately yields the conclusion we
want.

Products of cell complexes

If (X, EX) and (Y, EY ) are cell complexes, then there is a product cell complex structure on
X × Y whose cells are given by the following simple rule: If eX is a p-cell of X and fY is a q-cell
of Y , then eX × fY is a (p+ q)-cell of X × Y . The attachments of the cells are determined by the
homeomorphisms

(Dp ×Dq, Sp−1 ×Dq ∪Dp × Sq−1) ∼= (Dp+q, Sp+q−1)
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sending (x, y) with |x|, |y| ≤ 1 to √
|x|2 + |y|2

max(|x|, |y|) ·
(
x, y

)

if (x, y) 6= (0, 0) and sending (0, 0) to itself; this is continuous at the exceptional point because
the ratio in the display is bounded from above by

√
2. If Xi and Yj denote the respective i- and

j-dimensional skeleta, then the n-skeleton of X×Y is equal to the union of the subspaces Xp×Yq,
where p and q run through all pairs such that p+ q = n.

Of course, this construction can be iterated any finite number of times. In particular, if we
start out with the standard cell decomposition of S1 with one 0-cell and one 1-cell, for each positive
integer n we obtain a corresponding cell decomposition of the torus T n.

Cohomology of the torus T n

Let µ ∈ H1(S1) ∼= F be a generator; as before, we suppress the coefficients because we assume
they lie in F. If we express the torus as S1 × Tn−1 and take π1 and ρ to be the projections onto
the two factors, then the preceding results show that H ∗(Tn) splits as a direct sum into the image
of ρ∗ and π∗1µ times the image of ρ (with respect to the cup product. In particular, it follows that
bases for the cohomology of T n are given by monomials in the elements αi = π∗i µ, where πi denotes
projection onto the ith factor and we take monomials

∏
j αij

such that the indices ij are increasing
with respect to j. In particular, we have the following:

PROPOSITION 4. For all positive integers n we have Hn(Tn) ∼= F, and the generator is a cup
product of 1-dimensional classes.

In order to understand the cup product structure completely, it suffices to know how to multiply
1-dimensional classes because an inductive argument shows that they generate the cup product
structure. We shall first do this when n = 2 and then explain how one can pass to the general case.

Let e ∈ H1(S
1) ∼= F be a generator, and choose µ ∈ H1(S1) such that 〈µ, e〉 = 1. Let i1 and

i2 denote slice inclusions of S1 whose images are S1 × {1} and {1} × S1 respectively.

PROPOSITION 5. The classes i1∗e and i2∗e form a basis for H1(T
2), and a dual basis for

H1(T 2) with respect to the Kronecker index is given by π∗1µ and π∗2µ. The cup product π∗1µ∪ π∗2µ
generates H2(T 2), and we have π∗2µ ∪ π∗1µ = −π∗1µ ∪ π∗2µ (note the sign!). Furthermore, the cup
squares of π∗1µ and π∗2µ are trivial.

Proof. The final statement follows because the maps π∗j are multiplicative and µ2 = 0 (since

H2(S1) is trivial). To prove the assertion about dual bases it suffices to compute the Kronecker
indices 〈π∗jµ, ik∗e〉. These are given by 〈µ, πj∗

oik∗e〉; since πj
oik is the identity if j = k and constant

if j 6= k it follows that the relevant Kronecker indices are 1 if j = k and 0 if j 6= k, which shows that
the bases are dual to each other. By our previous discussions, we know that π∗1µ ∪ π∗2µ generates
H2(T 2).

Let U ∈ H2(T
2) be a generator, and let τ be the transposition (or twist) map of T 2 sending

(z, w) to (w, z). We claim that τ∗U = −U . One way to see this is to consider the attaching
map p : (I × I,boundary)→ (T 2, 1− skel.) sending (s, t) to (exp 2π i s, exp 2π i t). If τ ′ denotes the
corresponding twist map on I × I, then it follows that p oτ ′ = τ op; since the map from H2(T

2) to
H2(T

2, 2 − skel.) is an isomorphism, the effect of τ∗ on H2(T
2) is completely determined by the

effect of τ ′∗ on H2(I × I,boundary). We can compute this directly using a simplicial decomposition
of I × I formed by splitting the latter into two solid triangles along the diagonal, and if we do so
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we see that the map induced by τ ′ on relative 2-dimensional cohomology is just multiplication by
−1 as asserted in the statement of the proposition.

We shall now apply all this to computing the reverse order cup product π∗2µ ∪ π∗1µ. Since
π1

oτ = π2 and π2
oτ = π1 we have

π∗2µ ∪ π∗1µ = τ∗π∗1µ ∪ τ∗π∗2µ = τ∗(π∗1µ ∪ π∗2µ) .

Now τ∗ is multiplication by −1 on 2-dimensional homology, and hence its dual space map, which
is τ∗, must be multiplication by −1 on 2-dimensional cohomology. If we combine this with the
preceding equations, we find that π∗2µ ∪ π∗1µ = −π∗1µ ∪ π∗2µ as claimed.

THE GENERAL CASE. Suppose now that we have an arbitrary torus T n, and as before let pii
denote projection onto the ith factor, so that we want to see what happens if we compute π∗jµ∪π∗kµ
where j > k. Let Sjk denote the symmetry of T n given by interchanging the j and k coordinates.
Then as in the case n = 2 we have

π∗jµ ∪ π∗kµ = S∗jk

(
π∗jµ ∪ π∗kµ

)
.

If j = k + 1 then we can use the case n = 2 and naturality considerations to conclude that the
right hand side is equal to −π∗kµ ∪ π∗jµ. More generally, we know that Sjk can be written as a
composite of an odd number of transpositions Suv where u and v satisfy u = v + 1, and if we use
such a factorization we can conclude that π∗jµ ∪ π∗kµ = −π∗kµ∪ π∗jµ in all cases. — To summarize,
we have shown the following:

THEOREM 6. The cohomology algebra H∗(Tn) is isomorphic to the exterior algebra ∧∗(Fn)
such that Hq(Tn) corresponds to ∧q(Fn) and the cup product corresponds to the wedge product.

GRADE-COMMUTATIVITY OF THE CUP PRODUCT. Theorem 6 implies that the cup product
in H∗(Tn) is not commutative but satisfies the following related property which is often called
grade-commutativity:

If a is a p-dimensional cohomology class and b is a q-dimensional cohomology class, then
b ∪ a = (−1)pq a ∪ b.

This result is stated as Theorem 3.14 on page 215 of Hatcher. Its proof requires some additional
digressions, and one argument is worked out on pages 215–217 of Hatcher. More systematic ap-
proaches to the study of products in singular homology and cohomology are given in the following
references:

Chapter 3 of Davis and Kirk, Lecture Notes in Algebraic Topology.
Chapter VII of Dold, Lectures on Algebraic Topology (Second Edition).
Chapers 5–7 of Munkres, Elements of Algebraic Topology.
Chapter 12 of Rotman, Introduction to Algebraic Topology.
Chapter 5 of Spanier, Algebraic Topology.
Chapter 13 of Switzer, Algebraic Topology — Homology and Homotopy.
Chapter 5 of Vick, Homology Theory — An Introduction to Algebraic Topology.

More general products with spheres

The preceding discussion can be generalized and iterated to yield information on the cup
product structure of arbitrary product spaces of the form T n×Y . The statement of the result will
be simpler if we introduce the following algebraic construction:
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Definition. Suppose that A∗ and B∗ are graded modules over a commutative ring with unit D

(in other words, each is a sequence of modules indexed by the integers). Then their graded tensor
product C∗ = A∗ ⊗D B∗ is given by

Cn =
⊕

p+q=n

Ap ⊗D Bq .

In most cases of interest at this level, the modules Ap and Bq are zero for p, q < 0, and in such
cases it follows that Cn will also be zero if n < 0.

In the remainder of this discussion, we shall assume that our ground ring and coefficients are
a field F.

THEOREM 8. If n > 0 and Y is an arbitrary nonempty space, then the cohomology algebra
H∗(Tn×Y ) is F-linearly isomorphic to H∗(Tn)⊗H∗(Y ). This isomorphism is natural with respect
to Y , and it has the following multiplicative property: If ρ1 and ρ2 are projections onto T n and
Y respectively, then for each ordered triple (a, b, c) ∈ H ∗(Tn) × H∗(Tn × Y ) × H∗(Y ) the class
a⊗ b⊗ c corresponds to the cup product ρ∗1(a) ∪ b ∪ ρ∗2(c).

We have already essentially proved this in the case n = 1. Proving the general result by
induction on n is fairly straightforward with the tools we have developed, but it is somewhat
lengthy and will be left to the reader as an exercise. If we combine this result with the grade-
commutativity property described earlier, we can given a complete description of the cup product
structure on H∗(Tn × Y ) in terms of H∗(Y ).

If we wish to describe the identity in Theorem 8 abstractly, we can say that H ∗(Tn×Y ) is a left
H∗(Tn)-module and a right H∗(Y )-module with mixed associativity (in other words, a bimodule).

Similar results hold if T n is replaced by an arbitrary product of spheres; we shall restrict
attention to the case where the product has only one factor.

THEOREM 9. If n > 0 and Y is an arbitrary nonempty space, then there are natural
isomorphisms

Hk(Sn × Y ) ∼= Hk(Y ) ⊕ Hk−n(Y )

such that the first summand is the image of Hk(Y ) under the homomorphism π∗Y induced by the
coordinate projection πY : Sn × Y → Y . The second summand is isomorphic to the image of the
mapping Hk(Sn × Y, {point} × Y )→ Hk(Sn × Y ) and is given by taking the cross product with a
generator Ωn of Hn(Sn, {point}) ∼= F.

Proof. We shall begin by proving the existence of the isomorphism. Once again, this is known
for n = 1, so we proceed by induction on n, assuming the result is known for n − 1. As before,
let W± denote the complements of the north and south poles, so that W± is homeomorphic to R

n,
W+ ∪W− = Sn, and W+ ∩W− ∼= Sn−1 × R. One can then derive the result for Sn using the
Mayer-Vietoris cohomology sequence for the decomposition Sn = W+ ∪W− and the validity of the
result for Sn−1 (note that W± × Y is homotopy equivalent to Y and (W+ ∩W−)× Y is homotopy
equivalent to Sn−1 × Y ). It follows from the construction and induction hypotheses that one can
take the first summand to be the image of H∗(Y ) in the product.

Proving the statement about cup products is similar but requires a little more attention to
details, and it resembles the usual inductive proof that Hn(Sn) ∼= Hn−1(Sn−1). We need to prove
that the cross product defines suspension isomorphisms Hk(Sn × Y, {point} × Y )→ Hk(Sn × Y ),
and by the preceding discussion we know this is true when n = 1, so we shall assume inductively
that the conclusion is true for n− 1 ≥ 1.
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Consider the following commutative diagram, in which the maps from the object at the
upper left are cross products with suitably related generators of Hn−1(Sn−1, {pt.}) ∼= F and
Hn(Sn, {pt.}) ∼= F:

Hk−n(Y ) −→ Hk−1(Sn−1 × Y, {pt.} × Y ) = Hk−1(Sn−1 × Y, {pt.} × Y )
y

y

Hk(Sn × Y, {pt.} × Y ) −→ Hk(Sn × Y,Dn
− × Y ) −→ Hk(Dn

+ × Y, Sn−1 × Y )

If Y is a point then this diagram gives the suspension isomorphism in cohomology mentioned above.
By excision, homotopy invariance and exactness it follows that all the morphisms in the diagram
other than the two maps coming from Hk−n(Y ) are isomorphisms. Now the induction hypothesis
implies that the map from Hk−n(Y ) to Hk−1(Sn−1×Y, {pt.}×Y ) is an isomorphism, and therefore
it follows from the diagram that the map from Hk−n(Y ) to Hk(Sn×Y, {pt.}×Y ) must also be an
isomorphism.

More generally, we have the following basic fact which is verified in Sections 3.2 and 3.B of
Hatcher (for example, see Theorem 3.16 on page 219). Once again, the proof of this result requires
a deeper study of products in singular theory than we can give in the present course.

THEOREM 10. Suppose that X and Y are (finite) cell complexes and that a ∈ H p(X) and
b ∈ Hq(Y ) are nonzero. Then their cross product a× b is a nonzero element of H p+q(X × Y ).

NOTE. The result in Hatcher is formulated for coefficients in more general rings and assumes
that either H∗(X) or H∗(Y ) is a free graded module over the coefficient ring. If we assume the
coefficient ring is a field, then the freeness condition is automatic.

VI.4 : Two applications

(Hatcher, §§ 3.2, 4.2)

Although we have only obtained relatively weak versions of the basic results on products in
singular homology and cohomology theory, they suffice to yield two fairly significant results. One
is a restriction on the maps in homology associated to a homotopy self-equivalence from S 2m×S2m

to itself, and the other is a proof that for all m > 1 there is a continuous mapping from S 4m−1

to S2m which is not homotopic to a constant. The existence of such maps reflects several of the
fundamental difficulties one encounters when trying to study homotopy theory.

Cell decompositions for products of spheres

Let n be a positive integer, and let D be a commutative ring with unit. If we take the simplest
cell decomposition for Sn with a 0-cell and an n-cell, then the product construction yields a cell
decomposition of Sn × Sn with one 0-cell, two n-cells and one 2n-cell. If n ≥ 2 then there are
no possible nonzero differentials in the cellular chain complex for computing H∗(S

n × Sn; D) and
hence one can read off the homology immediately. If σ ∈ Hn(Sn; D) ∼= D is a generator and i1, i2
are the usual slice inclusions, then the classes i1∗σ and i2∗σ form a free basis for Hn(Sn × Sn; D).
The top cell of this complex is attached to the n-skeleton, which is a wedge of two copies of Sn by
a continuous map

P : S2n−1 −→ Sn ∨ Sn
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that we shall call the universal Whitehead product.

Let n be as in the preceding paragraph, and let PT n ⊂ Tn denote the (n − 1)-skeleton
with respect to the standard cell decomposition of T n described earlier. Then the quotient space
Tn/PTn is homeomorphic to Sn; let κ : T n → Sn denote the associated collapsing map. It
follows that κ∗ and κ∗ induce isomorphisms in n-dimensional homology and cohomology (say with
field coefficients in the second case). Furthermore, it follows that κ × κ : T n × Tn → Sn × Sn

induces a monomorphism in cohomology; verifying this is a fairly straightforward exercise using
the corresponding property of κ∗, the known structure of H∗(Sn × Sn), and the known structure
of H∗(Tn × Fn).

The preceding discussion reduces the computation of the cohomology cup product for Sn×Sn

to questions about the corresponding structure for T 2n = Tn × Tn. Here is a formal statement of
the conclusions:

PROPOSITION 1. Let Ω ∈ Hn(Sn) be such that the Kronecker index 〈Ω, σ〉 = 1, and let
π1, π2 denote the projections of Sn × Sn onto the factors. Then the cohomology classes π∗j Ω are
dual to the homology classes ij∗σ with respect to the Kronecker index pairing, and these classes
satisfy the following conditions:

(i) Their cup squares are zero.

(ii) The class π∗1Ω ∪ π∗2Ω generates H2n(Sn × Sn).

(iii) We have the grade-commutative relationship π∗2Ω ∪ π∗1Ω = (−1)nπ∗1Ω ∪ π∗2Ω. — In
particular, the cup product is commutative if n is even.

To prove this result, it suffices to look at the image of the cohomology in H ∗(T 2n). If we
let θj ∈ H1(T 2n) be dual to the standard basis of H1(T

2n) given by slice inclusions of embedded
circles, then it follows that (κ × κ)∗ maps π∗1Ω and π∗2Ω to the cup products of θ1, · · · , θn and
θn+1, · · · , θ2n respectively. One can read off all the conclusions in the theorem from these identities
and the previously determined structure of H∗(T 2n).

These computations lead directly to our first application.

THEOREM 2. Suppose that m ≥ 1 and f is a homotopy self-equivalence of S2m×S2m. Let σ1

and σ2 denote the free basis for H2m(S2m × S2m; Z) described earlier. Then either the associated
map in homology f∗ sends the σj to εjσj , where εj = ± 1, or else f∗ sends σ1 to ε1σ2 and sends σ2

to ε1σ1 where again εj = ±1.

All of the possibilities in the theorem can be realized. For the first alternatives this can be done
by considering various product of the form 1, 1×ρ, ρ×1 and ρ×ρ, where ρ is the reflection involution
on a sphere, and the second alternatives can be realized by composing the first alternatives with
the transposition map τ on S2m × S2m.

Suppose now that n is an arbitrary positive integer. Since Hn(Sn × Sn; Z) ∼= Z2, the only
general algebraic restriction one can get on a map f∗ induced by a homotopy self-equivalence is
that it must correspond to a 2 × 2 matrix over the integers with determinant equal to ± 1. It is
fairly simply to construct examples of homotopy self equivalences of T 2 which realize every such
matrix (the associated linear transformations of R

2 pass to homeomorphisms of T 2). If n is odd,
then the possible 2× 2 matrices are also understood, but this is a deeper result; the conclusion is
that one can realize every matrix if n = 1, 3, 7, while for the remaining odd values of n it is possible
to realize every integral 2×2 matrix with determinant ±1 whose reduction mod 2 is a permutation
matrix. For the exceptional odd values of n, one can show this using standard “multiplications”
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on Sn (complex, quaternionic, and Cayley number multiplication respectively). For the remaining
odd values of n, this fact is due to J. F. Adams and was proved in the nineteen fifties.

Proof of Theorem 2. As noted in the preceding paragraph, if σ1 and σ2 are the given standard
free basis for H2m(S2m×S2m; Z) ∼= Z2, then there are integers a, b, c, d such that ad− bc = ±1 and
f∗(σ1) = aσ1 + bσ2, f∗(σ2) = cσ1 + dσ2. By the naturality of homology with respect to coefficient
homomorphisms, it follows that one has a similar description of f∗ with rational coefficients. If
we tak the dual basis ξ1, ξ2 of H2m(S2m × S2m; Q), then it follows that f ∗ξ1 = aξ1 + cξ2 and
f∗ξ2 = bξ1 + dξ2. Since f preserves cup products and ξ2

j = 0, the same is true for f ∗(ξj). But
Proposition 1 implies that

f∗(ξ1)
2 = 2ac ξ1 ∪ ξ2 , f∗(ξ2)

2 = 2bd ξ1 ∪ ξ2

and since ξ1∪ ξ2 is nonzero it follows that ac = bd = 0, so that either a = 0 or c = 0 and also either
b = 0 and d = 0. The cases a = b = 0 and c = d = 0 both imply that ad − bc = 0, so neither can
hold, and therefore the only possibilities are a = d = 0 or c = b = 0. In the first case the condition
ad − bc implies that b, c ∈ {± 1}, while in the second case we must have a, d ∈ {± 1}. These are
precisely the options listed in the theorem.

Homotopically nontrivial mappings of spheres

If m < n then simplicial approximation implies that every continuous mapping from Sm to
Sn is homotopically trivial, and if m = n we know that there are infinitely many homotopy classes
of maps Sn → Sn which can be distinguished homotopically by their degrees; we have not proved
that two maps of the same degree are homotopic, but it would not be exceedingly difficult for us to
do so at this point (for example, see the argument in Maunder, Algebraic Topology , pages 288–291;
the statement of this result in Hatcher is Corollary 4.25 on page 361). The important point is that
if m ≤ n, then homotopy classes of maps from Sm to Sn can be distinguished using homology
theory. Given that every map from Sm to S1 is nullhomotopic if m > 1, it was natural to hope that
all maps Sm → Sn would be homotopic to constant maps. However, counterexamples began to
surface during the nineteen thirties, and describing the homotopy classes of mappings from Sn+k

to Sn where k > 0 turns out to be an exceedingly difficult problem, although it is known that the
answer for any specific choice of n and k is finitely computable. We shall limit ourselves to a single
class of important examples:

THEOREM 3. Suppose that m is a positive integer. Then there is a continuous mapping
f : S4m−1 → S2m which is not homotopic to a constant.

In fact, refinements of our methods show that there are infinitely many distinct homotopy
classes of such maps. There is actually a very striking converse to this result due to J.-P. Serre:
For all m,n > 0, there are only finitely many homotopy classes of continuous mappings from Sn to
Sm unless m = n or m is even and n = 2m− 1.

Proof. Throughout this discussion the coefficient field will be the rational numbers Q.

The examples will be composites of the form ∇ oP , where P : S4m−1 → S2m ∨ S2m is the
universal Whitehead product described earlier and ∇ : S2m ∨ S2m → S2m folds the two wedge
summands together (so its restriction to each summand is the identity). This class is generally
known as the Whitehead product of the identity map on S2m with itself and denoted by [ι2m, ι2m]
(compare Hatcher, Example 4.52, page 381). The argument wll require the following relatively
elementary observation:
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LEMMA 4. Suppose that f : Sp−1 → A is a continuous map into a compact metric space and
X is the space obtained by attaching a p-cell to A along f . If f is homotopic to a constant map,
then the inclusion of A in X is a retract.

Proof of Lemma 4. If f is homotopic to a constant, then f extends to a mapping g : Dp → A.
Write X = A ∪ E, where E is the p-cell. Then the retraction from X to A is defined by taking
the identity on A and using g to define the mapping on E. By construction, it follows that these
definitions fit together to yield a well-defined continuous retraction from X to A.

Returning to the proof of Theorem 3, let K(f) be the space obtained by adjoining a 4m-cell to
S2m along the mapping ∇ oP . We then have the following commutative diagram, in which the two
horizontal arrows on the left are attaching maps, the middle horizontal arrows are inclusions, and
the horizontal arrows on the right are maps which collapse the codomains of the attaching maps
to points.

S4m−1 P−→ S2m ∨ S2m −→ S2m × S2m −→ S4m

y=
y∇

yh
y=

S4m−1 ∇P−→ S2m −→ K(f) −→ S4m

This diagram yields the following commutative diagrams in cohomology for each q > 0; the rows
of these diagrams are short exact sequences:

0 −→ Hq(S4m) −→ Hq(K(f)) −→ Hq(S2m) −→ 0
y=

yh∗
y∇∗

0 −→ Hq(S4m) −→ Hq(S2m × S2m) −→ Hq(S2m ∨ S2m) −→ 0

It follows that H∗(K(f)) is isomorphic to Q in dimensions 0, 2m, 4m and is trivial otherwise. Let
θ denote a generator for H2m

(
K(f)

)
. It follows that h∗(θ) is a nonzero multiple of ξ1 + ξ2, and

we might as well choose θ so that it maps to this class in H 2m(S2m × S2m). Furthermore, we have

h∗(θ)2 = 2 ξ1 ∪ ξ2 6= 0

so that θ2 must also be nonzero in H4m
(
K(f)

)
.

We claim that the statement in the preceding sentence implies that f cannot be nullhomotopic.
If it were, then there would be a retraction ρ : K(f)→ S2m, and θ would have to be in the image
of ρ∗. But if θ = ρ∗θ0 for some θ0 ∈ H∗(S2m), then θ2

0 = 0 and hence θ2 = 0, contradicting the
conclusions in the preceding paragraph. Hence the only possibility consistent with the latter is that
f is not nullhomotopic.
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