Cell attachment and homology

This drawing illustrates the sets in the argument on page 70 of the notes.

The entire rectangle is \mathbf{X}, while \mathbf{A} is the purple shaded region and the cell $\mathbf{e}^{\mathbf{k}}$ is given by the interiors of the three concentric circles. The open set $\mathbf{V}(\mathbf{3} / \mathbf{4})$ corresponds to the union of the purple set \mathbf{A} and the dark blue annulus (without the frontier at which it meets the light blue annulus), while the closure of the set $\mathbf{V}(\mathbf{1} / \mathbf{2})$ is the union of these with the light blue annulus. Note that \mathbf{A} is a deformation retract of both $\mathbf{V}(\mathbf{1 / 2})$ and its closure, and the open set $\mathbf{V}(\mathbf{3} / 4)$ lies in $\mathbf{V}(\mathbf{1} / \mathbf{2})$ (which is contained in the interior of its closure).

One then has that the inclusion map induces isomorphisms in homology from (\mathbf{X}, \mathbf{A}) to ($\mathbf{X}, \mathbf{B}=\mathbf{C l o s u r e} \mathbf{V}(\mathbf{1} / \mathbf{2})$), and excision induces isomorphisms in homology from the latter to ($\mathrm{X}-\mathrm{V}(\mathbf{3} / 4), \mathrm{B}-\mathrm{V}(\mathbf{3} / 4)$). On the other hand, the latter pair is homeomorphic to the pair ($\mathbf{D}(\mathbf{3} / \mathbf{4})$, $\mathbf{A}(\mathbf{1} / \mathbf{2}, \mathbf{3} / \mathbf{4})$), where $\mathbf{D}(\mathbf{r})$ is a disk of radius \mathbf{r} and $\mathbf{A}(\mathbf{p}, \mathbf{q})$ is the annulus of all points whose distance from the center is between \mathbf{p} and \mathbf{q}, and the latter pair is homotopy equivalent to the pair ($\mathbf{D}^{\mathbf{k}}, \mathbf{S}^{\mathbf{k}-1}$).

