
EXERCISES FOR MATHEMATICS 246A

FALL 2010

Hatcher’s book is the default source for references.

I . Foundational material

I.1 : Categories and functors

1. Definition. A morphism f : A → B in a category is a monomorphism if for all
g, h : C → A we have that f oh = f og only if h = g. Dually, a morphism f : A → B in a category
is an epimorphism if for all u, v : B → D we have that u of = v of only if u = v.

(a) Prove that a monomorphism in the category Set is 1 − 1 and an epimorphism in Set is
onto. [Hint: Prove the contrapositives.]

(b) Prove that in the category of Hausdorff topological spaces (and continuous maps) a mor-
phism f : A → B is an epimorphism if f(A) is dense in B.

(c) Prove that the composite of two monomorphisms is a monomorphism and the composite
of two epimorphisms is an epimorphism.

(d) A morphism r : X → Y in a category is called a retract if there is a morphism q : Y → X
such that qr = idX . For example, in the category of sets or topological spaces the diagonal map
dX : X → X × X is a retract with q = projection onto either factor. Prove that every retract is a
monomorphism.

(e) A morphism p : A → B in a category is called a retraction if there is a morphism s : B → A
such that q or = idB . For example, if r and q are as in (d) then q is a retraction. Prove that every
retract is a monomorphism and every retraction is an epimorphism.

2. Let A be a category, and let f : A → B be a morphism in A such that

Morph (f, C) : Morph (B,C) → Morph (A,C)

is an isomorphism for all objects C in A. Prove that f is an isomorphism. [Hint: Choose C = B or
A and consider the preimages of the identity elements.] Also prove the (relatively straightforward)
converse.

3. An object 0 is called an initial object in the category A if for each object A in A there
is a unique morphism 0 → A. An object 1 is a terminal object in A if for each object A there is a
unique morphism A → 1.

(a) Prove that the empty set is initial and every one point set is terminal in Set.

(b) Prove that a zero-dimensional vector space is both initial and terminal in the category
Vec–F of vector spaces over a field F .
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(c) Prove that every two initial objects in a category A are uniquely isomorphic (there is a
unique isomorphism from one to the other), and similarly for terminal objects.

(d) If A contains an object Z that is both initial and terminal (a null object), prove that for
each pair of objects A,B in A there is a unique morphism A → B that factors as A → Z → B.
Also, if W is any other such object, prove that this composite equals the composite A → W → B.
[Hint: Consider the unique maps from W to Z and vice versa.]

4. Prove that a covariant functor takes retracts to retracts and retractions to retractions.
State the corresponding result for contravariant functors.

5. If E is a terminal object in the category A and f : E → X is a morphism in A, prove
that f is a monomorphism (in fact, something stronger is true—what is it?).

6. Let A = (N+,Morph , ϕ), where N
+ denotes the positive integers, Morph (p, q) denotes

all p × q matrices with integer coefficients, and

ϕ : Morph (p, q) × Morph (q, r) → m(p, r)

is matrix multiplication. Verify that A is a category.

7. If f is a morphism in a category A, a morphism g (in the same category) is called a
quasi-inverse for f if and only if f og of = f . Prove that every morphism that has a quasi-inverse
is itself the quasi-inverse of some morphism in the category.

8. In the category of sets, show that the Axioms of Choice implies that every mapping
has a quasi-inverse. Also, in the matrix category of Exercise 6, show that every matrix has a
quasi-inverse. [Hint: Look at the associated linear transformations, and choose bases in a suitable
manner.]

NOTE. In fact, there are canonical choices of quasi-inverses. See the following Wikipedia articles
for further information on generalizations of matrix inverses:

http://en.wikipedia.org/wiki/Moore-Penrose inverse

http://en.wikipedia.org/wiki/Group inverse

http://planetmath.org/encyclopedia/DrazinInverse.html

9. Suppose that C is a category in which every map has a quasi-inverse. Prove that
every monomorphism in C is a retract. Using this, give examples of mappings in the category of
topological spaces (and continuous mappings) which do not have quasi-inverses.

10. Let A and B be small categories. Prove that one can define a product category A×B

whose objects are given by ordered pairs (X,Y ), where X and Y are objects of A and B respectively,
whose morphisms are given by ordered pairs (f, g) of morphisms f in A and g in B, and whose
domain, codomain and composition operations are given as follows:

Domain(f, g) =
(

Domain(f),Domain(g)
)

Codomain(f, g) =
(

Codomain(f),Codomain(g)
)

(f1, g1) o (f0, g0) = (f1
of0, g1

og0)
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Prove that A×B with these definitions of objects, morphisms, domains, codomains and composition
forms a category, and show that “projections onto the first and second coordinates” define covariant
functors from this category into A and B respectively.

11. Suppose that we are in a category C with morphisms f : X → Y and g : Y → Z. Prove
that if any two of f , g and g of are isomorphisms, then so is the third.

12. Let IC0 be the category whose objects are open intervals in the real line and whose
morphisms are continuous mappings, and let IC1 be the subcategory with the same objects, but
whose morphisms are maps with continuous first derivatives. Give an example of a morphism in
IC1 which is an isomorphism in IC0 but not in IC1 (hence subcategories are not necessarily closed
under taking inverses).

13. Let {Xα} be an indexed family of objects in a category C. Then a categorical product
of the Xα is given by an object P and morphisms pα : P → Xα such that for each indexed family
of maps fα from a fixed object Y into the objects Xα, there is a unique f : Y → P such that
pα

of = fα for all α. — All the standard examples of product constructions turn out to have this
property.

(a) Prove that if (P, pα) and (Q, qα) are categorical products, then there is a unique isomor-
phism h : Q → P such that qα = pα

oh for all α. [Hint: The only morphism ϕ from P to itself
satisfying pα = pα

oϕ for all α is the identity.]

(b) Formulate the dual notion of coproduct in a category (a product in the opposite category),
and state the dual of the conclusion in (a).

(c) Show that the (external) direct sum is both a product and coproduct in VECF for finite
families of vector spaces, and show that the coproduct can be viewed as a proper subspace of the
product for infinite families.

14. Let FLD be the category of (commutative) fields with morphisms given by field homo-
morphisms. Show that the category FLD does not have products. [Hints: Suppose we could con-
struct a product A of the complex numbers with itself in this category, and consider the morphisms
from C to itself given by the identity and complex conjugation. Recall that every homomorphism
of fields is injective.]

15. Let TOP be the category of topological spaces and continuous mappings. Show that
there is a homotopy category HTP whose objects are topological spaces and whose morphisms are
homotopy classes of continuous maps from one space to another. [Hint: The key thing to note is
that one has identities and a decent well-defined notion of composition in HTP.]

16. We have mentioned that the reason for specifying codomains as part of the structure for
morphisms is that functors to not necessarily preserve the injectivity of mappings. Illustrate this
for the fundamental group functor π1(X,x) on pointed topological spaces by giving an example of a
continuous map of pointed spaces f : (X,x) → (Y, y) such that f is injective but f∗ is surjective and
not injective, and also give an example of a continuous map of pointed spaces f : (X,x) → (Y, y)
such that f is surjective but f∗ is injective and not surjective.

I.2 : Barycentric coordinates and polyhedra

1. Suppose that P is a polyhedron which has a simplicial decomposition K with N ver-
tices. Prove that P is homeomorphic to a subset of the simplex ∆N such that the simplices in K

correspond to sub-simplices of ∆n.
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2. Suppose that (P,K) is a simplicial complex, and let L be a subcollection of K which
is closed under taking faces. If Q is the union of all the simplices in L, prove that (Q,L) is a
polyhderon.

Definition. Let X be a metrizable topological space, let n be a nonnegative
integer, and let x ∈ X. Then x is said to be an n-fold branch point of X if there is
an open neighborhood base U1 ⊃ U2 · · · of x in X such that each Uk is connected,
each deleted neighborhood Uk − {x} has exactly n components, and if m < k
then the inclusion mappings Uk − {x} ⊂ Um − {x} induce 1–1 correspondences
between the connected components of these spaces (hence different components
of Uk − {x} map to different components of Um − {x}); see Example 5 on page
11 of the notes for the precise definition of the map of connected components
associated to a continuous function f : X → Y .

3. (a) Let X and x be as above. Explain why x is a 0-fold branch point of X if and only if
x is isolated in X (in other words {x} is open).

(b) Suppose that x is an n-fold branch point of X. Prove that for every sufficiently small open
neighborhood V of x, the deleted neighborhood V −{x} contains at least n connected components.

(c) Suppose that (P,K) is a connected 1-dimensional polyhedron in some R
n such that every

vertex of K is contained in a 1-simplex. Prove that for each x ∈ P there is some positive integer n
such that x is an n-fold branch point of P . [Hint: Why can we take n = 2 if x is not a vertex? If
x is a vertex, then x lies on some finite number of 1-simplices.]

(d) Suppose that x is an n-fold branch point of X and m 6= n is another nonnegative integer.
Prove that x cannot be an m-fold branch point of X. [Hint: Use (b).]

(e) Use the preceding two parts of the exercise to show that if (P,K) satisfies the conditions
in (c) then for each x ∈ X there is a unique positive integer nx such that x is an nx-fold branch
point of x. Also, explain why the set Vn(P ) of n-fold branch points is finite if and only if n 6= 2.

(f) Let X ⊂ R
2 be the union of the circles of radius 1/n centered at the points (0, 1/n), where

n is a positive integer. Show that there is no n ≥ 0 such that n is an n-fold branch point of the
origin. [Hint: For each M > 0 show that there is some open neighborhood UM of (0, 0) such that
if V ⊂ UM then V − {x} contains at least M components.]

4. (a) Suppose that (P,K) and (Q,L) are connected 1-dimensional polyhedra in some R
n

such that every vertex in eiher polyhedron is contained in a 1-simplex, and let f : P → Q be
a homeomorphism. Prove that for all positive integers n the map h sends Vn(P ) to Vn(Q). In
particular, show that if n 6= 2 then Vn(P ) and Vn(Q) have the same numbers of elements and that
V2(P ) and V2(Q) have the same (finite) numbers of components.

(b) Using the notion of n-fold branch points, show that there are at least 7 homeomorphism
types represented by the standard hexadecimal digits as written below (in sans-serif type):

0 1 2 3 4 5 6 7 8 9 A B C D E F

Are new homeomorphism types added if we consider the remaining letters of the alphabet? Explain.

(c) As noted in the next to last paragraph on page 358 of Munkres, the Figure 8 and Figure
Theta spaces, corresponding to 8 and θ respectively, have the same homotopy type, but neither
is a deformation retract of the other, and in fact neither is homeomorphic to a subspace of the

4



other. Prove the last assertion in the preceding sentence. [Hint: Suppose more generally that
we have 1-dimensional polyhedra P and Q such that P is homeomorphic to a subset of Q, and let
x ∈ P . Modify earlier arguments to show that Vn(X;P ) ≤ Vn(x,Q), and explain why this shows
that the Figure Eight cannot be a subset of the Figure Theta and vice versa by describing the sets
Vn(Figure Eight) and Vn(Figure Theta) for n > 2.]

5. Let (P,K) be a 1-dimensional complex satisfying the conditions in previous exercises.
Prove that V2(P ) is an open subset with finitely many connected (equivalently, arc/path) compo-
nents, prove that each of these components is homeomorphic to an open interval, and prove that
the closure of each component is homeomorphic to a closed interval.

Note. Using this result it is not difficult to prove the following statement, which
is often called the Hauptvermutung for 1-complexes: If (P,K) and (Q,L)
are 1-dimensional simplicial complexes such that P and Q are homeomorphic,
then there are linear subdivisions (as defined in the next section) K1 of K and
L1 of L such that (P,K1) and (Q,L1) are isomorphic simplicial complexes. —
Although the proof is somewhat lengthy and inelegant, it can be done only using
the methods and results described above. — The history of such statements
dates back to at least 1908, when E. Steinitz and H. Tietze raised the ques-
tion of whether this holds for polyhedra of arbitrary dimensions in connection
with the constructions for simplicial homology groups in Unit III of these notes.
Studies of the Hauptvermutung and related issues have had an enormous impact
on geometric topology, and a fairly comprehensive bibliography is given on the
Hauptvermutung website http://www.maths.ed.ac.uk/∼aar/haupt; one other
important reference is the following paper of E. M. Brown: The Hauptvermu-
tung for 3-complexes, Transactions of the American Mathematical Society Vol.
144 (1969), 173–196. — To summarize known results, the Hauptvermutung is
true for complexes of dimension ≤ 3 and false in all higher dimensions. In fact,
for every simplicial complex (P,K) of dimension ≥ 5, there is another complex
(Q,L) of the same dimension such that P and Q are homeomorphic but K and
L do not have isomorphic subdivisions.

6. A simplicial complex (P,K) is said to be a star complex if there is some vertex v of K

such that every maximal simplex σ of K has v as one of its vertices. Prove that if (P,K) is a star
complex, then P is contractible (and in fact {v} is a deformation retract of P .

I.3 : Subdivisions

1. Suppose that (P,K) is a simplicial complex of dimension ≥ 1. Prove that P has infinitely
many different simplicial decompositions, and in fact, if M is an arbitrary positive number then
there is a simplicial decomposition of P with more than M vertices.

2. (a) Suppose that (P,K) is a polyhedron and (Q,L) is a subpolyhedron. If U is an open
neighborhood of Q in P , prove at there is some r > 0 such that in the rth barycentric subdivision,
every simplex of Br(K) which contains points of Q is a subset of U .

(b) Using the preceding and the methods and results from Section II.9 of Eilenberg and Steen-
rod, prove that there is an open set V such that Q ⊂ V ⊂ V and Q is a strong deformation retract
of both V and V .
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3. (a) Prove that R
n contains an infinite sequence of points such that any n + 1 points in

the set are affinely independent.

(b) Let A be a simplex with vertices vi, and let f : A → R
n be the affine-linear map

f

(

∑

i

ti vi

)

=
∑

i

ti wi

for wi ∈ R
n. Prove that f is an isomorphism of simplices preserving barycentric coordinates if the

vectors wi are affinely independent.

(c) Using the preceding observations, prove that if (P,K) is a simplicial complex of dimension
n, then it is isomorphic to a polyhedron in R

2n+1. — Later in this course we shall give examples
of 1-dimensional complexes which cannot be even topologically embedded in R

2.
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