
Preface

Perhaps the simplest motivation for algebraic topology is the following basic question:

If m and n are distinct positive integers, is R
m ever homeomorphic to R

n?

Results from point set topology imply the answer is NO if one of m and n is equal to 1. If
a homeomorphism h : R

m → R existed then for each x ∈ R
m we could conclude that R

n − {x} is
homeomorphic to R − {h(x)}. Since R

m − {x} is connected for all x ∈ R if m > 1 while R − {t}
is not connected for any choice of t ∈ R, it follows that R

m − {x} is never homeomorphic to
R − {t} if m > 1 and hence R

m cannot be homeomorphic to R. Similarly, results on fundamental
groups imply that for all relevant choices of x the set R

m −{x} is simply connected if m > 2 while
R

2 − {x} has an infinite cyclic fundamental group, so we also know that R
m is not homeomorphic

to R
2 provided m > 2. One basic goal of an introductory course in algebraic topology is to show

that R
m is never homeomorphic to R

n if m 6= n.

The idea behind proving such results is to define certain abelian groups which give an algebraic

picture of a given topological space; in particular, if two topological spaces are homeomorphic,
then their associated groups will be algebraically isomorphic. Unfortunately, the definitions for
these homology groups are less straightforward than the definition of the fundamental group,
and much of the work in this course involves the construction of such groups and the proofs that
they have good formal properties.

In analogy with standard results for fundamental groups, the homology groups of two spaces
will be isomorphic if the spaces satisfy a condition that is somewhat weaker than the existence of
a homeomorphism between them; namely, an the groups are isomorphic if the two spaces have the
same homotopy type as defined on page 363 of the book by Munkres cited below.

Since the constructions for the associated groups are somewhat complicated, it is natural to
expect that they should be useful for more than simply answering the homeomorphism question for
Euclidean spaces. In particular, one might ask if these groups (and a course in algebraic topology)
can shed new light on some questions left open in undergraduate or beginning graduate courses in
mathematics.

1. The material in introductory graduate level courses does not really give much insight into
the popular characterization of topology as a “rubber sheet geometry.” In other words,
topology is generally viewed as the study of properties that do not change under various
sorts of bending or stretching operations. Some aspects of this already appear in the study
of fundamental groups, and one objective of this course is to develop these ideas much
further.

2. As a refinement of the problem at the beginning of this preface, one can ask if there is
some topological criterion which characterizes the algebraic notion of n–dimensionality,
at least for spaces that are relatively well-behaved.
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3. An algebraic topology course should also yield better insight into several issues that arise
in undergraduate courses, including (a) the Fundamental Theorem of Algebra, (b) various
facts about planar and nonplanar networks, (c) insides and outsides of plane curves and
closed surfaces in 3–dimensional space, and (d) Euler’s Formula for “nice” polyhedra in
R

3; namely, if P is a polyhedron bounding a convex body in R
3, then the numbers V , E

and F of vertices, edges and faces satisfy the equation E + 2 = V + F .

4. Some of the basic results on the topology of the edge-path graphs in Mathematics 205B
should be placed into a broader context. In particular, the notion of Euler characteristic
should be extended to a larger class of spaces.

5. If time permits, another goal will be to give a unified approach to certain results in
multivariable calculus involving the ∇ operator, Green’s Theorem, Stokes’ Theorem and
the Divergence Theorem, and to formulate analogs for higher dimensions.

Throughout the course we shall use the following text for the basic graduate topology courses
as a reference for many topics and definitions:

J. R. Munkres. Topology (Second Edition), Prentice-Hall, Saddle River NJ, 2000.
ISBN: 0–13–181629–2.

The official text for this course is the following book:

A. Hatcher. Algebraic Topology (Third Paperback Printing), Cambridge University

Press, New York NY, 2002. ISBN: 0–521–79540–0.

This book can be legally downloaded from the Internet at no cost for personal use, and here is the
link to the online version:

www.math.cornell.edu/∼hatcher/AT/ATpage.html

Here are four other references. The first is a book that has been used as a text in the past,
the second is a fairly detailed history of the subject during its formative years, and the last two are
classic (but not outdated) books; the first also has detailed historical notes.

J. W. Vick. Homology Theory . (Second Edition). Springer–Verlag, New York etc.,
1994. ISBN: 3–540–94126–6.

J. Dieudonné. A History of Algebraic and Differential Topology (1900 − 1960).
Birkhäuser Verlag, Zurich etc., 1989. ISBN: 0–817–63388–X.

S. Eilenberg and N. Steenrod. Foundations of Algebraic Topology . (Second Edition).
Princeton University Press, Princeton NJ, 1952. ISBN: 0–691–07965–X.

E. H. Spanier. Algebraic Topology, Springer–Verlag, New York etc., 1994.

The amazon.com sites for Hatcher’s and Spanier’s books also give numerous other texts in
algebraic topology that may be useful. Finally, there are two other books by Munkres that we
shall quote repeatedly throughout these notes. The first will be denoted by [MunkresEDT] and the
second by [MunkresAT]; if we simply refer to “Munkres,” it will be understood that we mean the
previously cited book, Topology (Second Edition).

J. R. Munkres. Elementary differential topology . (Lectures given at Massachusetts
Institute of Technology, Fall, 1961. Revised edition. Annals of Mathematics Studies, No.
54.) Princeton University Press, Princeton, NJ , 1966. ISBN: 0–691–09093–9.

J. R. Munkres. Elements of Algebraic Topology . Addison-Wesley, Reading, MA, 1984.
(Reprinted by Westview Press, Boulder, CO, 1993.) ISBN: 0–201–62728–0.
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Overview of the course

One important feature of homology groups is that if f : X → Y is a continuous mapping of
topological spaces, then there is an associated homomorphism f∗ from the homology groups of X to
the homology groups of Y ; this is again similar to the situation for fundamental groups of pointed
spaces, and it plays an important role in addressing the issues listed above. In fact, algebraic
topology turns out to be an effective means for analyzing the following central problem:

Given two “reasonably well-behaved” spaces X and Y , describe the homotopy
classes of continuous mappings from X to Y .

In general, the descriptions of the homotopy classes can be quite complicated, and only a few cases
of such problems can be handled using the methods of a first course, but we shall mention a few
special cases at various points in the course.

Many of the basic properties of homology groups and homomorphisms are best stated using
the formalisms of Category Theory, and many of the constructions and theorems in algebraic
topology are best stated within the framework of Homological Algebra. We shall develop these
subjects in the course to the extent that we need them.
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Prerequisites

The name “algebraic topology” suggests that the subject uses input from both algebra and
topology, and this is in fact the case; since topology began as a branch of geometry, it is also
reasonable to expect that some geometric input is also required. Our purpose here is to summarize
the main points from prerequisite courses that will be needed. Additional background material
which is usually not covered explicitly in the prerequisites will be described in the first unit of these
notes.

Set theory

Everything we shall need from set theory is contained in the following online directory:

http://math.ucr.edu/∼res/math144

In particular, a fairly complete treatment is contained in the documents setsnotesn.pdf, where
1 ≤ n ≤ 8.

There are two features of the preceding that are somewhat nonstandard. The first is the
definition of a function from a set A to another set B. Generally this is given formally by the
graph, which is a subset G ⊂ A × B such that for each a ∈ A there is a unique b ∈ B such that
(a, b) ∈ G. Our definition of function will be a triple f = (A,G,B), where G ⊂ A × B satisfies
the condition in the preceding sentence. The reason for this is that we must specify the target
set or codomain of the function explicitly; in fact, the need to specify the codomain has already
arisen at least implicitly in prerequisite graduate topology courses, specifically in the definition of
the fundamental group. A second nonstandard feature is the concept of disjoint union or sum

of an indexed family { Xα } of sets. The important features of the disjoint sum, which is written
qα Xα, are that it is a union of subsets Yα which are canonically in 1–1 correspondence with the
sets Xα and that Yα ∩ Yβ = ∅ if α 6= β. Another source of information on such objects is Unit V
of the online notes for Mathematics 205A which are cited below.

Topology

This course assumes familiarity with the basic material in graduate level topology courses
through the theory of fundamental groups and covering spaces (in other words, the material in
Mathematics 205A and 205B). Everything we need from the first of these courses can be found in
the following online directory:

http://math.ucr.edu/∼res/math205A

In particular, the files gentopnotes2008.* contain a fairly complete set of lecture notes for the
course. This material is based upon the textbook by Munkres cited in the Preface. Two major
differences between the notes and Munkres appear in Unit V. The discussion of quotient topologies is
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somewhat different from that of Munkres, and in analogy with the previously mentioned discussion
of set-theoretic disjoint sums there is a corresponding construction of disjoint sum for an indexed
family of topological spaces.

There is a similar directory for the second course, which deals with the basic notions of homo-
topy, fundamental groups and covering spaces:

http://math.ucr.edu/∼res/math205B

There is no self-contained set of notes in this directory, but there are comments and (additional)
exercises to supplement the text and indicate the sections which will be needed for this course. In
addition to the sections mentioned in these references, it might be worthwhile to look also at the
supplementary exercises for Chapter 13.

Chapter 14 of Munkres is not a required part of the material covered in the Department’s
qualifying exam, but it is sometimes covered in 205B and at some points in this course the topics
covered in Chapter 14 are relevant, and we shall mention them when it seems appropriate or useful.

Algebra

As in the later parts of Munkres, we shall assume some familiarity with certain topics in group
theory. Nearly everything we need is in Sections 67 – 69 of Munkres, but we shall also need the
following basic result:

STRUCTURE THEOREM FOR FINITELY GENERATED ABELIAN GROUPS. Let
G be a finitely generated abelian group (so every element can be written as a monomial in integral
powers of some finite subset S ⊂ G). Then G is isomorphic to a direct sum

( H1 ⊕ · · · ⊕ Hb ) ⊕ ( K1 ⊕ · · · ⊕ Ks )

where each Hi is infinite cyclic and each Kj is finite of order tj such that tj+1 divides tj for all j.
— For the sake of uniformity set tj = 1 if j > s. Then two direct sums as above which are given
by (b; t1, · · · ) and (b′; t′1, · · · ) are isomorphic if and only if b = b′ and tj = t′j for all j.

A proof of this fundamental algebraic result may be found in Sections II.1 and II.2 of the
following standard graduate algebra textbook:

T. Hungerford. Algebra. (Reprint of the 1974 original edition, Graduate Texts in
Mathematics, No. 73.) Springer-Verlag, New York–Berlin–etc., 1980. ISBN: 0–387–
90518–9.

Material from standard undergraduate linear algebra courses will also be used as needed.

Analysis

We shall assume the basic material from an upper division undergraduate course in real vari-
ables as well as material from a lower division undergraduate course in multivariable calculus
through the theorems of Green and Stokes as well as the 3-dimensional Divergence Theorem. The
classic text by W. Rudin (Principles of Mathematical Analysis, Third Edition) is an excellent ref-
erence for real variables, and the following multivariable calculus text contains more information
on the that subject than one can usually find in the usual 1500 page calculus texts (the book is not
perfect, but especially at the graduate level it is useful as a background reference).

J. E. Marsden and A. J. Tromba. Vector Calculus (Fifth Edition), W. H. Freeman

& Co., New York NY, 2003. ISBN: 0–7147–4992–0.
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I . Foundational and Geometric Background

Aside from the formal prerequisites, algebraic topology relies on some background material
from other subjects that is generally not covered in prerequisites. In particular, two concepts
from the foundations of mathematics, namely categories and functors, play a central role in
formulating the basic concepts of algebraic topology. Furthermore, since algebraic topology places
heavy emphasis on spaces that can be constructed from certain fundamental building blocks, some
relatively elementary but fairly detailed properties of the latter are indispensable. The purpose of
this unit is to develop enough of category theory so that we can use it to formulate things efficiently
and to describe the topological and geometric properties of a class of well-behaved spaces called
polyhedra that will be needed in the course.

I.1 : Categories and functors

(Hatcher, § 2.3)

If mathematics is the study of abstract systems, then category theory may be viewed as an
abstract formal setting for working with such systems. In fact, the theory was originally developed
by S. Eilenberg (1919–1998) and S. MacLane (1909–2005) in the 1940s to provide an effective con-
ceptual framework for handling various constructions and phenomena related to algebraic topology
(including some from the theory of groups). The formal definition may be viewed as a general-
ization of familiar properties of ordinary set-theoretic functions. There is a great deal of overlap
between the discussion here and the file categories.pdf in the math205A directory. There is a
classic book by P. Freyd (1936–), Abelian Categories: An Introduction to the Theory of Functors,
which is still an extremely readable introduction to category theory and its role in abstract algebra,
and it is available online at the following site:

http://www.emis.de/journals/TAC/reprints/articles/3/tr3/pdf

Definition. A CATEGORY is a system C consisting of

(a) a class Obj (C) of sets called the objects of C,

(b) for each ordered pair of objects X and Y an associated set Morph C(X,Y ) called the
morphisms from X to Y ,

(c) for each ordered triple of objects X, Y and Z, an associated map called a composition
pairing ϕ : Morph C(X,Y ) × Morph C(Y,Z) −→ Morph C(X,Z), whose value for (f, g) is
generally written g of , such that the following hold:

(1) The sets Morph C(X,Y ) and Morph C(Z,W ) are disjoint unless
X = Z and Y = W .

(2) For each object X there is a unique identity morphism 1X =
idX ∈ Morph C(X,X) such that for each f ∈ Morph C(X,Y ) and g ∈
Morph C(Z,X) we have f o1X = f and 1X

og = g.

(3) The composition pairings satisfy an associative law; i.e., if
f ∈ Morph C(X,Y ), g ∈ Morph C(Y,Z), and h ∈ Morph C(Z,W ), then
(h og) of = h o(g of).
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By the assumptions, for each f ∈ Morph C(X,Y ) the objects X and Y are uniquely determined,
and they are called the domain and codomain of f respectively. When working within a given
category we generally use familiar notation like f : X → Y to indicate that f ∈ Morph C(X,Y ).

As in set theory, at some points one must take care to avoid difficulties with classes that are
“too large” to be sets (for example, we cannot discuss the set of all sets), but in practice it is always
possible to circumvent such problems by careful choices of definitions and wordings (for example,
using the theory of Grothendieck universes), so we shall generally not dwell on such points.

Examples of categories

By the remarks preceding the definition of a category, it is clear that we have a category SETS

whose objects are given by all sets, whose morphisms are set-theoretic functions from one set to
another (with the conventions mentioned in the Prerequisites!), and whose composition is merely
ordinary composition of mappings. Here are some further examples:

1. Given a field F, there is the category VECF whose objects are vector spaces, whose
morphisms are F-linear transformations, and whose composition is ordinary composition.
The important facts here are that the identity on a vector space is a linear transformation,
and the composite of two linear transformations is a linear transformation.

2. There is also a category GRP whose objects are groups and whose morphisms are group
homomorphisms (with the usual composition). Once again, the crucial properties needed
to check the axioms for a category are that identity maps are homomorphisms and the
composite of two homomorphisms is a homomorphism.

3. Within the preceding example, there is the subcategory ABGRP whose objects are
abelian groups, with the same morphisms and compositions. In this category, the set
of morphisms from one object to another has a natural abelian group structure given
by pointwise addition of functions, and the resulting abelian group of homomorphisms is
generally denoted by Hom(X,Y ).

4. More generally, if C is a category, then a subcategory A is a collection of morphisms and
objects which is closed under (i) taking domains and codomains of objects, (ii) taking
identity morphisms of objects, (iii) taking composites of morphisms. It is said to be a
full subcategory if for each pair of objects X and Y in A we have Morph A(X,Y ) =
Morph C(X,Y ). It follows that ABGRP is a full subcategory of GRP. On the other hand,
if we let GRP1−1 be the category whose objects are groups and and whose morphisms
are injective homomorphisms, then GRP1−1 is a subcategory of GRP but it is not a full
subcategory.

5. If P is a partially ordered set with ordering relation ≤, then one has an associated category
whose objects are the elements of P and such that Morph (x, y) consists of a single point
if x ≤ y and is empty otherwise. This is an example of a small category in which the
class of objects is a set.

6. One can also use partially ordered sets to define a category POSETS whose objects are
partially ordered sets and whose morphisms are monotonically nondecreasing functions
from one partially ordered set to another; as in most other cases, composition has its
usual meaning.
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7. If G is a group, then G also defines a small category as follows: There is exactly one object,
the morphisms of this object to itself are given by the elements of G, and composition is
given by the multiplication in G.

8. There is a category TOP whose objects are topological spaces, whose morphisms are
continuous maps between topological spaces, and whose composition is the usual notion.
Again, the crucial properties needed to verify the axioms for a category are that identity
maps are continuous and composites of continuous maps are also continuous.

9. There are also categories whose objects are topological spaces and whose morphisms are
open maps or closed maps. The categories with various types of morphisms are distinct.
Of course, it is also possible to take combinations of such conditions and obtain structures
like the category of spaces with continuous open mappings as the morphisms.

10. More generally, given any class of continuous mappings that is closed under taking iden-
tities and compositions, one can define a category of topological spaces with such maps
as the morphisms. Two examples are maps that are proper (inverse images of compact
subsets are compact) or light (inverse images of points are discrete sets; see Exercise II.3.4
in gentopexercises2008.pdf from the math205A directory for more on the latter).

11. One also has a category MET–UNIF whose objects are metric spaces and whose mor-
phisms are uniformly continuous mappings (with the usual composition).

12. Similarly, there is the category MET–LIP whose objects are metric spaces and whose
morphisms are Lipschitz mappings: i.e., there is a constant M such that

d
(

f(x1), f(x2)
)

≤ M · d(x, y)

for all x and y in the domain (such an inequality is called a Lipschitz condition). Standard
results of (abstract) multivariable calculus show that if K is a compact convex set and
f : K → R

m extends to a function on an open neighborhood W of K whose coordinates
have continuous first partial derivatives, then f satisfies a Lipschitz condition.

13. Still further in the same direction, there is the category MET–ISO whose objects are
metric spaces and whose morphisms are isometries (but not necessarily surjective).

14. (A fundamentally important general construction.) Given an arbitrary category C, one
has the dual or opposite category D = COP with the same objects as C, but with
Morph D(X,Y ) = Morph C(Y,X) (note the reversal!) and the composition pairing ∗ de-
fined by g ∗ f = f og. Note that if D = COP then C = DOP.

In most of the preceding examples of categories, there is a fundamental notion of isomor-

phism, and in fact one can formulate this abstractly for an arbitrary category:

Definition. Let C be a category, and let X and Y be objects of C. A morphism f : X → Y is
an isomorphism if there is a morphism g : Y → X (an inverse) such that g of = 1X and f og = 1Y .

This generalizes notions like an invertible linear transformation, a group isomorphism, and a
homeomorphism of topological spaces.

PROPOSITION 1. Suppose that f : X → Y is an isomorphism in a category C and g and h

are inverses to f . Then h = g.

Proof. Consider the threefold composite h of og. Since h of = 1X , this is equal to g, and since
f og = 1Y , it is also equal to h.
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Functors

The examples of categories illustrate a basic principle in modern mathematics: Whenever one
defines a type of mathematical system, there is usually a corresponding type of morphism for such
systems (and in some cases there are several reasonable choices for morphisms). Since a category is
an example of a mathematical system, it is natural to ask whether there is a corresponding notion
of morphisms in this case too. In fact, there are two concepts of morphism that turn out to be
important and useful. We shall start with the simpler one.

Definition. Let C and D be categories. A covariant functor assigns (i) to each object X of C

an object T (X) of D, (ii) to each morphism f : X → Y in C a morphism T (f) : T (X) → T (Y ) in
D such that the following hold:

(1) For each object X in C we have T (1X) = 1T (X).

(2) For each pair of morphisms f and g in C such that g of is defined, we have T (g of) =
T (g) oT (f).

HISTORICAL TRIVIA. Eilenberg and MacLane “borrowed” the word category from the philo-
sophical writings of the 18th century German philosopher I. Kant (1724–1804) and the word func-

tor from the philosophical writings of the 20th century German-American philosopher R. Carnap
(1891–1970), who was strongly influenced by Kant’s writings on the philosophy of science.

Examples of covariant functors

Numerous constructions from undergraduate and elementary graduate courses can be inter-
preted as functors; in many cases this does not shed much additional light on the objects con-
structed, but in other cases the concept does turn out to be extremely useful.

1. Given a category C, there is the identity functor from C to itself, which takes all objects
and morphisms to themselves.

2. Given a category C and a (possibly different) nonempty category D, for each object A of
D there is a constant functor kA from C to D which sends every object of C to A and
every morphism to the identity morphism 1A.

3. In categories where the objects are given by sets with some extra structure and the mor-
phisms are ordinary functions with additional properties, there are forgetful functors

which take objects to the underlying sets and morphisms to the underlying mappings
of sets. For example, there are forgetful functors from VECF, GRP, POSETS, and
TOP to SETS. Likewise, there is an obvious forgetful functor from MET–UNIF to
TOP which takes a metric space to its underlying topological space and simply views a
uniformly continuous mapping as a continuous mapping.

4. There is a power set functor P∗ on the category SETS defined as follows: The set
P∗(X) is just the set of all subsets (also known as the power set), and if f : X → Y is a
set-theoretic function, then P∗(f) : P∗(X) → P∗(Y ) takes an element A ∈ P (X) — which
by definition is just a subset of X — to its image f [A] ⊂ Y . A short argument is needed to
verify this construction actually defines a covariant functor, but it is elementary. First, we
need to check that for every setX we have P∗(1X) = 1P (X); this follows because 1X [A] = A
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for all A ⊂ X. Next, we must check that P∗(g of) = P∗(g) oP∗(f) for all composable f
and g. But this is a consequence of the elementary identity g[ f [A] ] = g of [A].

5. If we are given two partially ordered sets and a weakly order-preserving mapping f from
the first to the second such that u ≤ v implies f(u) ≤ f(v), then f may be interpreted as
a covariant functor on the associated categories.

6. If we are given two groups and a homomorphism f from the first to the second, then f

may be interpreted as a covariant functor on the associated categories.

7. Finally, we shall give a more substantial example that played a central role in Mathematics
205B. Define a new category TOP∗ of pointed topological spaces whose objects are pairs
(X, y), where X is a topological space and y ∈ X; the point y is said to be the basepoint of
the pointed space. A morphism f : (X, y) → (Z,w) in this category will be a continuous
mapping from X to Z (usually also denoted by f) which maps y to w (i.e., a basepoint

preserving continuous mapping). The fundamental group π1(X, y) then has a natural
interpretation as a covariant functor from TOP∗ to GRP, for if f is a morphism of pointed
spaces, then then one has an associated homomorphism f∗ from π1(X, y) to π1(Z,w), and
these have the required properties that 1(X,y)∗ is the identity and (g of)∗ = g∗ of∗.

Contravariant functors and examples

Experience shows there are many instances in which it is useful to work with functors that
reverse the order of function composition; such objects are called contravariant functors.

Definition. Let C and D be categories. A contravariant functor assigns (i) to each object X of
C an object U(X) of D, (ii) to each morphism f : X → Y in C a morphism U(f) : U(Y ) → U(X)
in D (note that the domain and codomain are the opposites of those in the covariant case!) such
that the following hold:

(1) For each object X in C we have U(1X) = 1U(X).

(2) For each pair of morphisms f and g in C such that g of is defined, we have U(g of) =
U(f) oU(g).

The simplest examples of contravariant functors are given by the pseudo-identity functors,
which map the objects and morphisms in the category C to their obvious counterparts in the
opposite category COP. In fact, there is an obvious correspondence between contravariant functors
from C to D and covariant functors from C to DOP, or equivalently covariant functors from COP

to D. The best way to motivate the definition is to give some less trivial examples.

1. Let C be the category of all vector spaces over some field, and consider the construction
which associates to each vector space its dual space V ∗ of linear mappings from V to
the scalar field F . There is a simple way of defining a corresponding construction for
morphisms; if L : V → W is a linear transformation, consider the linear transformation
L∗ : W ∗ → V ∗ whose value on a linear functional h : W → F is given by L∗(h) = h oL,
which is a linear functional on V . Standard results in linear algebra show that L∗ is a
linear transformation, that L∗ is an identity map if L is an identity map, and if L is a
composite L1

oL2, then we have L∗ = L∗

2
oL∗

1.

2. There is a contravariant power set functor P ∗ on the category SETS defined as follows:
The set P ∗(X) is just the set of all subsets, but now if f : X → Y is a set-theoretic

10



function, then P ∗(f) : P ∗(Y ) → P ∗(X) takes an element B ∈ P (Y ) — which by definition
is just a subset of Y — to its inverse image f−1[B] ⊂ X. As in the case of P∗, a short
elementary argument is needed to verify this construction actually defines a contravariant
functor. The construction preserves identity maps because 1−1

X [B] = B for all B ⊂ X,
and the identity P ∗(g of) = P ∗(f) oP ∗(g) is essentially a restatement of the elementary
identity f−1[ g−1[B] ] = (g of)−1[B].

3. Example 2 actually yields a little more. Define a Boolean algebra to be a set with two
binary operations ∩ and ∪, a unary operation x→ x′, and special elements 0 and 1 such
that the system satisfies the usual properties for unions, intersections, and complementa-
tion for the algebra P (X) of subsets of a set X, where 0 corresponds to the empty set and
1 corresponds to X. One then has an associated category BOOL–ALG whose objects are
Boolean algebras and whose morphisms preserve unions, intersection, complementation,
and the special elements. Obviously each power set P (X) is a Boolean algebra, and in
fact P ∗ defines a contravariant functor from SETS to BOOL–ALG. — In contrast, the
covariant functor P∗ does NOT define such a functor because P∗(f) does not preserves in-
tersections even though it does preserve unions (for example, we can have f [A]∩f [B] 6= ∅
when A ∩B = ∅).

4. The desirability of having both contravariant and covariant functors is illustrated by the
following examples. Given a category C, modulo foundational questions we can informally
view the set Morph C(X,Y ) of morphisms from X to Y as a function of two variables
on C. What happens if we hold one of these variables constant to get a single variable
construction? — Suppose first that we hold X constant and set AX(Y ) = Morph C(X,Y ).
Then we can make AX into a covariant functor aas follows: Given a morphism g : Y → Z,
let AX(g) take f ∈ AX(Y ) = Morph C(X,Y ) to the composite g of . The axioms for a
category then imply that AX(1Y ) is the identity and that AX(h og) = AX(h) oAX(g) if
g and h are composable. — Now suppose that we hold Y constant and set BY (X) =
Morph C(X,Y ). Then we can make BY into a contravariant functor as follows: Given a
morphism k : W → X, let BY (g) take f ∈ BY (X) = Morph C(X,Y ) to the composite f ok.
The axioms for a category then imply that BY (1X) is the identity and that BY (k oh) =
BY (h) oBY (k) if h and k are composable.

5. Given a topological space X, let CComp(X) and AComp(X) denote the sets of com-
ponents and arc components of X respectively. These constructions extend to covariant
functors from the category of topological spaces and continuous maps to the category of
sets because a continuous map f : X → Y sends a component or arc component of X into
a single component or arc component of Y . Similarly, there is a notion of quasicompo-
nents for topological space such that each connected component lies in a quasicomponent
(but the converse might not hold). This notion is described in Exercise 10 on page 163 of
Munkres (see also Exercise 4 on page 236). One can show that if f : X → Y is continuous,
the image of a quasicomponent of X is contained in a quasicomponent of Y (prove this!),
it follows that one has a third functor QComp(X).

6. In the preceding example, suppose that C is the category of topological spaces and con-
tinuous mappings, and let Y be the real numbers with the usual topology. In this case
the contravariant functor BY has the algebraic structure of a commutative ring with unit
given by pointwise multiplication of continuous real valued functions, and if f : W → X

is continuous then BY (f) is in fact a homomorphism of commutative rings with unit.
Therefore, if we define a category of continuous rings with unit (whose morphisms are
unit preserving homomorphisms), it follows that BY defines a functor from topological
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spaces and continuous mappings to commutative rings with unit. — In contrast, there is
no comparable structure for the covariant functor BX if X is the real numbers.

Properties of functors

One of the most important properties of functors is that they send isomorphic objects in one
one category to isomorphic objects in the other.

PROPOSITION 2. Let C and D be categories, let T : C → D be a (covariant or contravari-
ant) functor, and let f : X → Y be an isomorphism in C. Then T (f) is an isomorphism in D.
Furthermore, if g is the inverse to f , then T (g) is the inverse to T (f).

Proof. CASE 1. Suppose the functors are covariant. Then we have

1T (X) = T (1X) = T (g of) = T (g) oT (f)

1T (Y ) = T (1Y ) = T (f og) = T (f) oT (g)

and hence T (g) is inverse to T (f).

CASE 2. Suppose that the functors are contravariant. Then we have

1T (X) = T (1X) = T (g of) = T (f) oT (g)

1T (Y ) = T (1Y ) = T (f og) = T (g) oT (f)

and hence T (g) is inverse to T (f).

The next result states that a composite of two functors is also a functor.

PROPOSITION 3. Suppose that C, D and E are categories and that F : C → D and
G : D → E are functors (in each case, the functor may be covariant or contravariant). Then the
composite G oF also defines a functor; this functor is covariant if F and G are both covariant or
contravariant, and it is contravariant if one of F, G is covariant and the other is contravariant.

This result has a curious implication:

COROLLARY 4. There is a “category of small categories” SMCAT whose objects are small
categories and whose morphisms are covariant functors from one small category to another.

SEMANTIC TRIVIA. (For readers who are familiar with contravariant and covariant tensors.) In
the applications of linear algebra to differential geometry and topology, one often sees objects called
contravariant tensors and covariant tensors, and for finite-dimensional vector spaces these are given
by finitely iterated tensor products V ⊗ · · · ⊗ V of V with itself in the contravariant case and
similar objects involving V ∗ in the covariant case; for our purposes it will suffice to say that if
U and W are vector spaces with bases {ui } and {wj } respectively, then their tensor product
U ⊗W is a vector space having a basis of the form {ui ⊗ wj } where i and j are allowed to vary
independently (hence the dimension of U ⊗W is [dimU ] · [dimW ]). Since the identity functor on
the category of vector spaces is covariant and the dual space functor is covariant, at first it might
seem that something is the opposite of what it should be. However, the classical tensor notation
refers to the manner in which the coordinates transform; now coordinates for a vector space may
be viewed linear functionals on that space, or equivalently as elements of the dual space, which is
contravariant. Therefore individual coordinates on V ⊗ · · · ⊗ V correspond to elements of the
dual space of the latter, and in fact the construction which associates the space (V ⊗ · · · ⊗ V )∗
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to V defines a contravariant functor on the category of finite-dimensional vector spaces over the
given scalars; likewise, the construction which associates the space (V ∗ ⊗ · · · ⊗ V ∗)∗ to V defines
a covariant functor on the category of finite-dimensional vector spaces over the given scalars.

Natural transformations

The final concept in category theory to be considered here is the notion of natural trans-

formation from one functor to another. In fact, the motivation for category theory in the work
of Eilenberg and MacLane was a need to discuss “natural mappings” in a mathematically precise
manner. There are actually two definitions, depending whether both functors under consideration
are covariant or contravariant.

Definition. Let C and D be categories, and let F and G be covariant functors from C to D. A
natural transformation θ from F to G associates to each object X in C a morphism θX : F (X) →
G(X) such that for each morphism f : X → Y we have θY

oF (f) = G(f) oθX .

The morphism identity is often expressed graphically by saying the the diagram

F (X)
F (f)

−−−−−→ F (Y )




yθX





yθY

G(X)
G(f)

−−−−−→ G(Y )

is a commutative diagram. The idea is that all paths of arrows from one object-vertex to another
yield the same function.

The definition of a natural transformation of contravariant functors is similar.

Definition. Let C and D be categories, and let T and U be contravariant functors from C

to D. A natural transformation θ from F to G associates to each object X in C a morphism
θX : T (X) → U(X) such that for each morphism f : X → Y we have θX

oT (f) = U(f) oθY .

Here is the corresponding commutative diagram:

T (Y )
T (f)

−−−−−→ T (X)




yθY





yθX

U(Y )
U(f)

−−−−−→ U(X)

Once again we need to give some decent examples

1. Given any functor T : C → D, there is an obvious identity transformation jT from T to
itself; specifically, jT

X is the identity map on T (X).

2. Let C be one of the categories as above for which reasonable products and diagonal maps
can be defined. Then there is a natural diagonal transformation ∆ from the identity to
the diagonal functor such that for each object X the mapping ∆X : X → X ×X is the
diagonal map.

3. On the category of vector spaces over some field F , one can iterate the dual space functor
to obtain a covariant double dual space functor (V ∗)∗. There is a natural transformation
eV : V → (V ∗)∗ defined as follows: For each v ∈ V , let eV (v) : V ∗ → F be the linear
function given by evaluation at v; in other words, the value of eV (v) on a linear functional
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f is given by f(v). If V is finite-dimensional, this map is an isomorphism (a natural
isomorphism).

Note that if V is finite-dimensional then V and its dual space V ∗ are isomorphic, but the
isomorphism depends upon some additional data such as the choice of a basis, an inner product, or
more generally a nondegenerate bilinear form. In contrast, the natural isomorphism eV does not
depend upon any such choices.

4. In the category of sets or topological spaces and continuous mappings, let A be an arbitrary
object and define functors LA and RA such that LA(X) = A×X and RA(X) = X × A.
One can make these into covariant functors by sending the morphism f : X → Y to
LA(X) = 1A × f and RA(f) = f × 1A. There is an obvious natural transformation
t : L + A → RA such that tA(X) : A × X → X × A sends (a, x) to (x, a) for all a ∈ A

and x ∈ X, and it is an elementary exercise to verify that this is a natural transformation
such that each map tA(X) is an isomorphism; in other words, tA is a natural isomorphism
from the functor LA to the functor RA.

5. For the morphism examples AX and BY discussed previously, if h : W → X is a morphism
in the category, then it defines a natural transformation h∗ : AX → AW which sends
f ∈ AX(Y ) to f oh ∈ AW (Y ); the naturality condition follows from associativity of
composition. Similarly, if g : Y → Z is a morphism then there is a natural transformation
g∗ : BY → BZ sending f to g of ; once again, the key naturality condition follows from
the associativity of composition. Furthermore, h∗ is a natural isomorphism if h is an
isomorphism and g∗ is a natural isomorphism if g is an isomorphism,

6. For the arc component, connected component and quasicomponent functors described
above, there are natural transformations θ : AComp → CComp reflecting the fact that
every arc component of a topological space X is contained in a connected component and
ψ : CComp → QComp reflecting the fact that every conected component of a space is
contained in a quasicomponent.

A basic exercise in category theory is to prove the following:

PROPOSITION 5. There are 1 − 1 correspondences between natural transformations from AX

to AW and morphisms from W to X and between natural transformations from BY to BZ and
morphisms from Y to Z.

Sketch of proof. The main point is to retrieve the function from the natural transformation.
Given θ : AX → AW , one does this by considering the image of 1X , and given ϕ : BY → BZ , one
does this by considering the image of 1Y .

Finally, we have the following result on natural isomorphisms (i.e., natural transformations θ
such that each map θX is an isomorphism):

PROPOSITION 6. Let θ : F → G be a natural transformation such that for each object X
the map θX is an isomorphism. The there is a natural transformation ϕX : G → F such that for
each X the map ϕX is inverse to θX .

Proof. The main thing to check is that the relevant diagrams are commutative; we shall only do
the case where F and G are covariant, leaving the other case to the reader. Since θX

oϕX is the
identity on G(X) and ϕX

oθX is the identity on F (X), we have

θY
oϕY

oG(f) = G(f) = g(f) oθX
oϕX = θY

oF (f) oϕX
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and if we compose with the inverse θX on the left of these expressions we obtain

ϕY
oG(f) = F (f) oϕX

which is the naturality condition.

We say that two functors are naturally isomorphic if there is a natural isomorphism from one
to the other.

Equivalences of categories

One can obviously define an isomorphism of categories to be a covariant functor T : C → D

for which there is an inverse covariant functor U : D → C such that the composites T oU and U oT

are the identities on C and D respectively. However, for many purposes one needs a less rigid
notion of category equivalence.

Definition. A covariant functor T : C → D is a category equivalence (or equivalence of categories)
if there is a covariant functor U : D → C such that the composites T oU and U oT are naturally

isomorphic to the identities on C and D respectively.

In particular, if T and U define an equivalence of categories, then every object in D is isomor-
phic to an object of the form T (X), and conversely every object in C is isomorphic to an object of
the form U(A).

... to be continued ...
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