
Preface

Perhaps the simplest motivation for algebraic topology is the following basic question:

If m and n are distinct positive integers, is Rm ever homeomorphic to Rn?

Results from point set topology imply the answer is NO if one of m and n is equal to 1. If a
homeomorphism h : Rm → R existed then for each x ∈ Rm we could conclude that Rn − {x} is
homeomorphic to R−{h(x)}. Since Rm −{x} is connected for all x ∈ R if m > 1 while R−{t} is
not connected for any choice of t ∈ R, it follows that Rm −{x} is never homeomorphic to R−{t}
if m > 1 and hence Rm cannot be homeomorphic to R. Similarly, results on fundamental groups
imply that for all relevant choices of x the set Rm−{x} is simply connected if m > 2 while R2−{x}
has an infinite cyclic fundamental group, so we also know that Rm is not homeomorphic to R2 if
m > 2. One basic goal of an introductory course in algebraic topology is to show that Rm is never
homeomorphic to Rn if m 6= m.

The idea behind proving such results is to define certain abelian groups which give an algebraic
picture of a given topological space; in particular, if two topological spaces are homeomorphic,
then their associated groups will be algebraically isomorphic. Unfortunately, the definitions for
these homology groups are less straightforward than the definition of the fundamental group,
and much of the work in this course involves the construction of such groups and the proofs that
they have good formal properties.

In analogy with standard results for fundamental groups, the homology groups of two spaces
will be isomorphic if the spaces satisfy a condition that is somewhat weaker than the existence of
a homeomorphism between them; namely, an the groups are isomorphic if the two spaces have the
same homotopy type as defined on page 363 of the book by Munkres cited below.

Since the constructions for the associated groups are somewhat complicated, it is natural to
expect that they should be useful for more than simply answering the homeomorphism question for
Euclidean spaces. In particular, one might ask if these groups (and a course in algebraic topology)
can shed new light on some questions left open in undergraduate or beginning graduate courses in
mathematics.

1. The material in introductory graduate level courses does not really give much insight into
the popular characterization of topology as a “rubber sheet geometry.” In other words,
topology is generally viewed as the study of properties that do not change under various
sorts of bending or stretching operations. Some aspects of this already appear in the study
of fundamental groups, and one objective of this course is to develop these ideas much
further.
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2. As a refinement of the problem at the beginning of this preface, one can ask if there is
some topological criterion which characterizes the algebraic notion of n–dimensionality,
at least for spaces that are relatively well-behaved.

3. An algebraic topology course should also yield better insight into several issues that arise
in undergraduate courses, including (a) the Fundamental Theorem of Algebra, (b) various
facts about planar and nonplanar networks, (c) insides and outsides of plane curves and
closed surfaces in 3–dimensional space, and (d) Euler’s Formula for “nice” polyhedra in
R3; namely, if P is a polyhedron bounding a convex body in R3, then the numbers V , E
and F of vertices, edges and faces satisfy the equation E + 2 = V + F .

4. If time permits, another goal will be to give a unified approach to certain results in
multivariable calculus involving the ∇ operator, Green’s Theorem, Stokes’ Theorem and
the Divergence Theorem, and to formulate analogs for higher dimensions.

Throughout the course we shall use the following book as a reference for many topics and
definitions:

J. R. Munkres. Topology (Second Edition), Prentice-Hall, Saddle River NJ, 2000.
ISBN: 0–13–181629–2.

The official text for this course is the following book:

A. Hatcher. Algebraic Topology (Third Paperback Printing), Cambridge University

Press, New York NY, 2002. ISBN: 0–521–79540–0.

This book can be legally downloaded from the Internet at no cost for personal use, and here is the
link to the online version:

www.math.cornell.edu/∼hatcher/AT/ATpage.html
One important feature of homology groups is that if f : X → Y is a continuous mapping of
topological spaces, then there is an associated homomorphism f∗ from the homology groups of
X to the homology groups of Y ; this is again similar to the situation for fundamental groups
of pointed spaces, and it plays an important role in addressing the issues listed above. In fact,
algebraic topology turns out to be an effective means for analyzing the following central problem:

Given two “reasonably well-behaved” spaces X and Y , describe the homo-
topy classes of continuous mappings from X to Y .

In general, the descriptions of the homotopy classes can be3 quite complicated, and only a few
cases of such problems can be handled using the methods of a first course, but we shall mention a
few special cases at various points in the course.

Many of the basic properties of homology groups and homomorphisms are best stated using
the formalisms of Category Theory, and many of the constructions and theorems in algebraic
topology are best stated within the framework of Homological Algebra. We shall develop these
subjects in the course to the extent that we need them.
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Prerequisites

The name “algebraic topology” suggests that the subject uses input from both algebra and
topology, and this is in fact the case; since topology began as a branch of geometry, it is also
reasonable to expect that some geometric input is also required. Our purpose here is to summarize
the main points from prerequisite courses that will be needed. Additional background material
which is usually not covered explicitly in the prerequisites will be described in the first unit of these
notes.

Set theory

Everything we shall need from set theory is contained in the following online directory:

http://math.ucr.edu/∼res/math144
In particular, a fairly complete treatment is contained in the documents setsnotesn.*, where
1 ≤ n ≤ 8 and the file type * is one of doc, ps or pdf. In most cases the pdf versions are the most
convenient to use, but parts of the doc files are in color rather than black and white.

There are two features of the preceding that are somewhat nonstandard. The first is the
definition of a function from a set A to another set B. Generally this is given formally by the
graph, which is a subset G ⊂ A × B such that for each a ∈ A there is a unique b ∈ B such that
(a, b) ∈ G. Our definition of function will be a triple f = (A,G,B), where G ⊂ A × B satisfies
the condition in the preceding sentence. The reason for this is that we must specify the target
set or codomain of the function explicitly; in fact, the need to specify the codomain has already
arisen at least implicitly in prerequisite graduate topology courses, specifically in the definition of
the fundamental group. A second nonstandard feature is the concept of disjoint union or sum
of an indexed family { Xα } of sets. The important features of the disjoint sum, which is written
qα Xα, are that it is a union of subsets Yα which are canonically in 1–1 correspondence with the
sets Xα and that Yα ∩ Yβ = ∅ if α 6= β. Another source of information on such objects is Unit V
of the online notes for Mathematics 205A which are cited below.

Topology

This course assumes familiarity with the basic material in graduate level topology courses
through the theory of fundamental groups and covering spaces (in other words, the material in
Mathematics 205A and 205B). Everything we need from the first of these courses can be found in
the following online directory:

http://math.ucr.edu/∼res/math205A
In particular, the files gentopnotes2005.* contain a fairly complete set of lecture notes for the
course. This material is based upon the textbook by Munkres cited in the Preface. Two major
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differences between the notes and Munkres appear in Unit V. The discussion of quotient topologies is
somewhat different from that of Munkres, and in analogy with the previously mentioned discussion
of set-theoretic disjoint sums there is a corresponding construction of disjoint sum for an indexed
family of topological spaces.

The necessary material on fundamental groups and covering spaces appears in the following
sections of Munkres:

51 – 56

58 – 59

61 – 64

67 – 71

79 – 82

Supplementary exercises for Chapter 13.

At many points of these notes we shall rely heavily on the contents of these sections.

Algebra

As in the later parts of Munkres, we shall assume some familiarity with certain topics in group
theory. Nearly everything we need is in Sections 67 – 69 of Munkres, but we shall also need the
following basic result:

STRUCTURE THEOREM FOR FINITELY GENERATED ABELIAN GROUPS. Let
G be a finitely generated abelian group (so every element can be written as a monomial in integral
powers of some finite subset S ⊂ G). Then G is isomorphic to a direct sum

( H1 ⊕ · · · ⊕ Hb ) ⊕ ( K1 ⊕ · · · ⊕ Ks )

where each Hi is infinite cyclic and each Kj is finite of order tj such that tj+1 divides tj for all j.
— For the sake of uniformity set tj = 1 if j > s. Then two direct sums as above which are given
by (b; t1, · · · ) and (b′; t′1, · · · ) are isomorphic if and only if b = b′ and tj = t′j for all j.

A proof of this fundamental algebraic result may be found in Sections II.1 and II.2 of the
following standard graduate algebra textbook:

Hungerford, Thomas W. Algebra. Reprint of the 1974 original. (Graduate Texts in
Mathematics, 73.) Springer-Verlag, New York–Berlin–etc., 1980. ISBN: 0-387-90518-9.

Material from standard undergraduate linear algebra courses will also be used as needed.

Analysis

We shall assume the basic material from an upper division undergraduate course in real vari-
ables as well as material from a lower division undergraduate course in multivariable calculus
through the theorems of Green and Stokes as well as the 3–dimensional Divergence Theorem. The
classic text by W. Rudin (Principles of Mathematical Analysis, Third Edition) is an excellent ref-
erence for real variables, and the following multivariable calculus text contains more information
on the that subject than one can usually find in the usual 1500 page calculus texts.

J. E. Marsden and A. J. Tromba. Vector Calculus (Fifth Edition), W. H. Freeman

& Co., New York NY, 2003. ISBN: 0–7147–4992–0.
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I . Foundational and Geometric Background

Aside from the formal prerequisites, algebraic topology relies on some background material
from other subjects that is generally not covered in prerequisites. In particular, two concepts
from the foundations of mathematics, namely categories and functors, play a central role in
formulating the basic concepts of algebraic topology. Furthermore, since algebraic topology places
heavy emphasis on spaces that can be constructed from certain fundamental building blocks, some
relatively elementary but fairly detailed properties of the latter are indispensable. The purpose of
this unit is to develop enough of category theory so that we can use it to formulate things efficiently
and to describe the topological and geometric properties of a class of well-behaved spaces called
polyhedra that will be needed in the course.

I.1 : Categories and functors

(Hatcher, § 2.3)

If mathematics is the study of abstract systems, then category theory may be viewed as an
abstract formal setting for working with such systems. In fact, the theory was originally developed
by S. Eilenberg and S. MacLane in the 1940s to provide an effective conceptual framework for
handling various constructions and phenomena related to algebraic topology. The formal definition
may be viewed as a generalization of familiar properties of ordinary set-theoretic functions.

Definition. A CATEGORY is a system C consisting of

(a) a class Obj (C) of sets called the objects of C,

(b) for each ordered pair of objects X and Y a set Morph C(X,Y ) called the morphisms
from X to Y ,

(c) for each ordered triple of objects X, Y and Z a composition pairing Morph C(X,Y ) ×
MorphC(Y,Z) −→ Morph C(X,Z), whose value for (f, g) is generally written g of , such
that the following hold:

(1) The sets Morph C(X,Y ) and Morph C(Z,W ) are disjoint unless X = Z and Y = W .

(2) For each object X there is an identity morphism 1X = idX ∈ Morph C(X,X) such that for
each f ∈ Morph C(X,Y ) and each g ∈ Morph C(Z,X) we have f o1X = f and 1X

og = g.

(3) The composition pairings satisfy an associative law; in other words, if f ∈ Morph C(X,Y ),
g ∈ Morph C(Y,Z), and h ∈ Morph C(Z,W ), then (h og) of = h o(g of).

By the assumptions, for each f ∈ Morph C(X,Y ) the objectsX and Y are uniquely determined,
and they are called the domain and codomain of f respectively. When working within a given
category we generally use familiar notation like f : X → Y to indicate that f ∈ Morph C(X,Y ).

As in set theory, at some points one must take care to avoid difficulties with classes that are
“too large” to be sets (for example, we cannot discuss the set of all sets), but in practice it is always
possible to circumvent such problems by careful choices of definitions and wordings (for example,
using the theory of Grothendieck universes), so we shall generally not dwell on such points.
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Examples of categories

By the remarks preceding the definition of a category, it is clear that we have a category SETS
whose objects are given by all sets, whose morphisms are set-theoretic functions from one set to
another (with the conventions mentioned in the Prerequisites!), and whose composition is merely
ordinary composition of mappings. Here are some further examples:

1. Given a field F, there is the category VECF whose objects are vector spaces, whose
morphisms are F-linear transformations, and whose composition is ordinary composition.
The important facts here are that the identity on a vector space is a linear transformation,
and the composite of two linear transformations is a linear transformation.

2. There is also a category GRP whose objects are groups and whose morphisms are group
homomorphisms (with the usual composition). Once again, the crucial properties needed
to check the axioms for a category are that identity maps are homomorphisms and the
composite of two homomorphisms is a homomorphism.

3. Within the preceding example, there is the subcategory ABGRP whose objects are
abelian groups, with the same morphisms and compositions. In this category, the set
of morphisms from one object to another has a natural abelian group structure given
by pointwise addition of functions, and the resulting abelian group of homomorphisms is
generally denoted by Hom(X,Y ).

4. If P is a partially ordered set with ordering relation ≤, then one has an associated category
whose objects are the elements of P and such that Morph (x, y) consists of a single point
if x ≤ y and is empty otherwise. This is an example of a small category in which the
class of objects is a set.

5. One can also use partially ordered sets to define a category POSETS whose objects are
partially ordered sets and whose morphisms are monotonically nondecreasing functions
from one partially ordered set to another; as in most other cases, composition has its
usual meaning.

6. If G is a group, then G also defines a small category as follows: There is exactly one object,
the morphisms of this object to itself are given by the elements of G, and composition is
given by the multiplication in G.

7. There is a category TOP whose objects are topological spaces, whose morphisms are
continuous maps between topological spaces, and whose composition is the usual notion.
Again, the crucial properties needed to verify the axioms for a category are that identity
maps are continuous and composites of continuous maps are also continuous.

8. There are also categories whose objects are topological spaces and whose morphisms are
open maps or closed maps. The categories with various types of morphisms are distinct.

9. One also has a category MET–UNIF whose objects are metric spaces and whose mor-
phisms are uniformly continuous mappings (with the usual composition).

10. Given an arbitrary category C, one has the dual or opposite category D = COP with
the same objects as C, but with Morph D(X,Y ) = Morph C(Y,X) and composition ∗
defined by g ∗ f = f og. Note that if D = COP then C = DOP.

In most of the preceding examples of categories, there is a fundamental notion of isomor-
phism, and in fact one can formulate this abstractly for an arbitrary category:
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Definition. Let C be a category, and let X and Y be objects of C. A morphism f : X → Y is
an isomorphism if there is a morphism g : Y → X (an inverse) such that g of = 1X and f og = 1Y .

This generalizes notions like an invertible linear transformation, a group isomorphism, and a
homeomorphism of topological spaces.

PROPOSITION 1. Suppose that f : X → Y is an isomorphism in a category C and g and h
are inverses to f . Then h = g.

Proof. Consider the threefold composite h of og. Since h of = 1X , this is equal to g, and since
f og = 1Y , it is also equal to h.

Functors

The examples of categories illustrate a basic principle in modern mathematics: Whenever one
defines a type of mathematical system, there is usually a corresponding type of morphism for such
systems (and in some cases there are several reasonable choices for morphisms). Since a category is
an example of a mathematical system, it is natural to ask whether there is a corresponding notion
of morphisms in this case too. In fact, there are two concepts of morphism that turn out to be
important and useful. We shall start with the simpler one.

Definition. Let C and D be categories. A covariant functor assigns (i) to each object X of C
an object T (X) of D, (ii) to each morphism f : X → Y in C a morphism T (f) : T (X) → T (Y ) in
D such that the following hold:

(1) For each object X in C we have T (1X) = 1T (X).

(2) For each pair of morphisms f and g in C such that g of is defined, we have T (g of) =
T (g) oT (f).

HISTORICAL TRIVIA. Eilenberg and MacLane “borrowed” the word category from the philo-
sophical writings of the 18th century German philosopher I. Kant and the word functor from
the philosophical writings of the 20th century German-American philosopher R. Carnap, who was
strongly influenced by Kant’s writings on the philosophy of science.

Examples of covariant functors

Numerous constructions from undergraduate and elementary graduate courses can be inter-
preted as functors; in many cases this does not shed much additional light on the objects con-
structed, but in other cases the concept does turn out to be extremely useful.

1. Given a category C, there is the identity functor from C to itself, which takes all objects
and morphisms to themselves.

2. Given a category C and another nonempty category D, for each object A of D there is a
constant functor kA from C to D which sends every object of C to A and every morphism
to the identity morphism 1A.

3. In categories where the objects are given by sets with some extra structure and the mor-
phisms are ordinary functions with additional properties, there are forgetful functors
which take objects to the underlying sets and morphisms to the underlying mappings
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of sets. For example, there are forgetful functors from VECF, GRP, POSETS, and
TOP to SETS. Likewise, there is an obvious forgetful functor from MET–UNIF to
TOP which takes a metric space to its underlying topological space and simply views a
uniformly continuous mapping as a continuous mapping.

4. There is a power set functor P∗ on the category SETS defined as follows: The set
P∗(X) is just the set of all subsets (also known as the power set), and if f : X → Y is a
set-theoretic function, then P∗(f) : P∗(X) → P∗(Y ) takes an element A ∈ P (X) — which
by definition is just a subset of X — to its image f [A] ⊂ Y . A short argument is needed to
verify this construction actually defines a covariant functor, but it is elementary. First, we
need to check that for every setX we have P∗(1X) = 1P (X); this follows because 1X [A] = A
for all A ⊂ X. Next, we must check that P∗(g of) = P∗(g) oP∗(f) for all composable f
and g. But this is a consequence of the elementary identity g[ f [A] ] = g of [A].

5. If we are given two partially ordered sets and a mapping f from the first to the second
such that u ≤ v implies f(u) ≤ f(v), then f may be interpreted as a covariant functor on
the associated categories.

6. If we are given two groups and a homomorphism f from the first to the second, then f
may be interpreted as a covariant functor on the associated categories.

7. Finally, we shall give a more substantial example that played a central role in mathematics
205B. Define a new category TOP∗ of pointed topological spaces whose objects are pairs
(X, y), where X is a topological space and y ∈ X; the point y is said to be the basepoint of
the pointed space. A morphism f : (X, y) → (Z,w) in this category will be a continuous
mapping from X to Z (usually also denoted by f) which maps y to w (i.e., a basepoint
preserving continuous mapping). The fundamental group π1(X, y) then has a natural
interpretation as a covariant functor, for if f is a morphism of pointed spaces, then then
one has an associated homomorphism f∗ from π1(X, y) to π1(Z,w), and these have the
required properties that 1(X,y)∗ is the identity and (g of)∗ = g∗ of∗.

Contravariant functors and examples

Experience shows there are many instances in which it is useful to work with functors that
reverse the order of function composition; such objects are called contravariant functors.

Definition. Let C and D be categories. A contravariant functor assigns (i) to each object X of
C an object U(X) of D, (ii) to each morphism f : X → Y in C a morphism U(f) : U(Y ) → U(X)
in D (note that the domain and codomain are the opposites of those in the covariant case!) such
that the following hold:

(1) For each object X in C we have U(1X) = 1U(X).

(2) For each pair of morphisms f and g in C such that g of is defined, we have U(g of) =
U(f) oU(g).

The simplest examples of contravariant functors are given by the pseudo-identity functors,
which map the objects and morphisms in the category C to their obvious counterparts in the
opposite category COP. In fact, there is an obvious correspondence between contravariant functors
from C to D and covariant functors from C to DOP, or equivalently covariant functors from COP

to D. The best way to motivate the definition is to give some less trivial examples.
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1. Let C be the category of all vector spaces over some field, and consider the construction
which associates to each vector space its dual space V ∗ of linear mappings from V to
the scalar field F . There is a simple way of defining a corresponding construction for
morphisms; if L : V → W is a linear transformation, consider the linear transformation
L∗ : W ∗ → V ∗ whose value on a linear functional h : W → F is given by L∗(h) = h oL,
which is a linear functional on V . Standard results in linear algebra show that L∗ is a
linear transformation, that L∗ is an identity map if L is an identity map, and if L is a
composite L1

oL2, then we have L∗ = L∗
2

oL∗
1.

2. There is a contravariant power set functor P ∗ on the category SETS defined as follows:
As before, the set P ∗(X) is just the set of all subsets, but now if f : X → Y is a set-
theoretic function, then P ∗(f) : P ∗(Y ) → P ∗(X) takes an element B ∈ P (Y ) — which
by definition is just a subset of Y — to its inverse image f−1[B] ⊂ X. As in the case of
P∗, a short elementary argument is needed to verify this construction actually defines a
contravariant functor. The construction preserves identity maps because 1−1

X [B] = B for
all B ⊂ X, and the identity P∗(g of) = P ∗(f) oP ∗(g) is essentially a restatement of the
elementary identity f−1[ g−1[B] ] = (g of−1[B].

3. The preceding example actually yields a little more. Define a Boolean algebra to be a set
with two binary operations ∩ and ∪, a unary operation x → x′, and special elements 0
and 1 such that the system satisfies the usual properties for unions, intersections, and
complementation for the algebra P (X) of subsets of a set X, where 0 corresponds to the
empty set and 1 corresponds to X. One then has an associated category BOOL–ALG
whose objects are Boolean algebras and whose morphisms preserve unions, intersection,
complementation, and the special elements. Obviously each power set P (X) is a Boolean
algebra, and in fact P ∗ defines a contravariant functor from SETS to BOOL–ALG. —
In contrast, the covariant functor P∗ does NOT define such a functor because P∗(f) does
not preserves intersections even though it does preserve unions (for example, we can have
f [A] ∩ f [B] 6= ∅ when A ∩B = ∅).

4. The desirability of having both contravariant and covariant functors is illustrated by the
following examples. Given a category C, modulo foundational questions we can informally
view the set Morph C(X,Y ) of morphisms from X to Y as a function of two variables
on C. What happens if we hold one of these variables constant to get a single variable
construction? — Suppose first that we hold X constant and set AX(Y ) = Morph C(X,Y ).
Then we can make AX into a covariant functor aas follows: Given a morphism g : Y → Z,
let AX(g) take f ∈ AX(Y ) = Morph C(X,Y ) to the composite g of . The axioms for a
category then imply that AX(1Y ) is the identity and that AX(h og) = AX(h) oAX(g) if
g and h are composable. — Now suppose that we hold Y constant and set BY (X) =
MorphC(X,Y ). Then we can make BY into a contravariant functor as follows: Given a
morphism k : W → X, let BY (g) take f ∈ BY (X) = Morph C(X,Y ) to the composite f ok.
The axioms for a category then imply that BY (1X) is the identity and that BY (k oh) =
BY (h) oBY (k) if h and k are composable.

5. In the preceding example, suppose that C is the category of topological spaces and con-
tinuous mappings, and let Y be the real numbers with the usual topology. In this case
the contravariant functor BY has the algebraic structure of a commutative ring with unit
given by pointwise multiplication of continuous real valued functions, and if f : W → X
is continuous then BY (f) is in fact a homomorphism of commutative rings with unit.
Therefore, if we define a category of continuous rings with unit (whose morphisms are
unit preserving homomorphisms), it follows that BY defines a functor from topological
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spaces and continuous mappings to commutative rings with unit. — In contrast, there is
no comparable structure for the covariant functor BX if X is the real numbers.

Properties of functors

One of the most important properties of functors is that they send isomorphic objects in one
one category to isomorphic objects in the other.

PROPOSITION 2. Let C and D be categories, let T : C → D be a (covariant or contravari-
ant) functor, and let f : X → Y be an isomorphism in C. Then T (f) is an isomorphism in D.
Furthermore, if g is the inverse to f , then T (g) is the inverse to T (f).

Proof. CASE 1. Suppose the functors are covariant. Then we have

1T (X) = T (1X) = T (g of) = T (g) oT (f)

1T (Y ) = T (1Y ) = T (f og) = T (f) oT (g)

and hence T (g) is inverse to T (f). — CASE 2. Suppose that the functors are contravariant. Then
we have

1T (X) = T (1X) = T (g of) = T (f) oT (g)

1T (Y ) = T (1Y ) = T (f og) = T (g) oT (f)

and hence T (g) is inverse to T (f).

The next result states that a composite of two functors is also a functor.

PROPOSITION 3. Suppose that C, D and E are categories and that F : C → D and
G : D → E are functors (in each case, the functor may be covariant or contravariant). Then the
composite G oF also defines a functor; this functor is covariant if F and G are both covariant or
contravariant, and it is contravariant if one of F, G is covariant and the other is contravariant.

This result has a curious implication:

COROLLARY 4. There is a “category of small categories” SMCAT whose objects are small
categories and whose morphisms are covariant functors from one small category to another.

SEMANTIC TRIVIA. (For readers who are familiar with contravariant and covariant tensors.) In
the applications of linear algebra to differential geometry and topology, one often sees objects called
contravariant tensors and covariant tensors, and for finite-dimensional vector spaces these are given
by finitely iterated tensor products V ⊗ · · · ⊗ V of V with itself in the contravariant case and
similar objects involving V ∗ in the covariant case; for our purposes it will suffice to say that if
U and W are vector spaces with bases {ui } and {wj } respectively, then their tensor product
U ⊗W is a vector space having a basis of the form {ui ⊗ wj } where i and j are allowed to vary
independently (hence the dimension of U ⊗W is [dimU ] · [dimW ]). Since the identity functor on
the category of vector spaces is covariant and the dual space functor is covariant, at first it might
seem that something is the opposite of what it should be. However, the classical tensor notation
refers to the manner in which the coordinates transform; now coordinates for a vector space may
be viewed linear functionals on that space, or equivalently as elements of the dual space, which is
contravariant. Therefore individual coordinates on V ⊗ · · · ⊗ V correspond to elements of the
dual space of the latter, and in fact the construction which associates the space (V ⊗ · · · ⊗ V )∗

to V defines a contravariant functor on the category of finite-dimensional vector spaces over the
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given scalars; likewise, the construction which associates the space (V ∗ ⊗ · · · ⊗ V ∗)∗ to V defines
a covariant functor on the category of finite-dimensional vector spaces over the given scalars.

Natural transformations

The final concept in category theory to be considered here is the notion of natural trans-
formation from one functor to another. In fact, the motivation for category theory in the work
of Eilenberg and MacLane was a need to discuss “natural mappings” in a mathematically precise
manner. There are actually two definitions, depending whether both functors under consideration
are covariant or contravariant.

Definition. Let C and D be categories, and let F and G be covariant functors from C to D. A
natural transformation θ from F to G associates to each object X in C a morphism θX : F (X) →
G(X) such that for each morphism f : X → Y we have θY

oF (f) = G(f) oθX .

The morphism identity is often expressed graphically by saying the the diagram

F (X)
F (f)−−−−−→ F (Y )





yθX





yθY

G(X)
G(f)−−−−−→ G(Y )

is a commutative diagram. The idea is that all paths of arrows from one object-vertex to another
yield the same function.

The definition of a natural transformation of contravariant functors is similar.

Definition. Let C and D be categories, and let T and U be contravariant functors from C
to D. A natural transformation θ from F to G associates to each object X in C a morphism
θX : T (X) → U(X) such that for each morphism f : X → Y we have θX

oT (f) = U(f) oθY .

Here is the corresponding commutative diagram:

T (Y )
T (f)−−−−−→ T (X)





yθY





yθX

U(Y )
U(f)−−−−−→ U(X)

Once again we need to give some decent examples

1. Given any functor T : C → D, there is an obvious identity transformation jT from T to
itself; specifically, jT

X is the identity map on T (X).

2. Let C be one of the categories as above for which a diagonal functor can be defined. Then
there is a natural diagonal transformation ∆ from the identity to the diagonal functor
such that for each object X the mapping ∆X : X → X ×X is the diagonal map.

3. On the category of vector spaces over some field F , one can iterate the dual space functor
to obtain a covariant double dual space functor (V ∗)∗. There is a natural transformation
eV : V → (V ∗)∗ defined as follows: For each v ∈ V , let eV (v) : V ∗ → F be the linear
function given by evaluation at v; in other words, the value of eV (v) on a linear functional
f is given by f(v). If V is finite-dimensional, this map is an isomorphism.
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Note that if V is finite-dimensional then V and its dual space V ∗ are isomorphic, but the
isomorphism depends upon some additional data such as the choice of a basis or an inner product.
In contrast, the natural isomorphism eV does not depend upon any such choices.

4. In the category of sets or topological spaces and continuous mappings, let A be an arbitrary
object and define functors LA and RA such that LA(X) = A×X and RA(X) = X × A.
One can make these into covariant functors by sending the morphism f : X → Y to
LA(X) = 1A × f and RA(f) = f × 1A. There is an obvious natural transformation
t : L + A → RA such that tA(X) : A × X → X × A sends (a, x) to (x, a) for all a ∈ A
and x ∈ X, and it is an elementary exercise to verify that this is a natural transformation
such that each map tA(X) is an isomorphism; in other words, tA is a natural isomorphism
from the functor LA to the functor RA.

5. For the morphism examples AX and BY discussed previously, if h : W → X is a morphism
in the category, then it defines a natural transformation h∗ : AX → AW which sends
f ∈ AX(Y ) to f oh ∈ AW (Y ); the naturality condition follows from associativity of
composition. Similarly, if g : Y → Z is a morphism then there is a natural transformation
g∗ : BY → BZ sending f to g of ; once again, the key naturality condition follows from
the associativity of composition. Furthermore, h∗ is a natural isomorphism if h is an
isomorphism and g∗ is a natural isomorphism if g∗ is an isomorphism,

A basic exercise in category theory is to prove the following:

PROPOSITION 5. There are 1 − 1 correspondences between natural transformations from AX

to AW and morphisms from W to X and between natural transformations from BY to BZ and
morphisms from Y to Z.

Sketch of proof. The main point is to retrieve the function from the natural transformation.
Given θ : AX → AW , one does this by considering the image of 1X , and given ϕ : BY → BZ , one
does this by considering the image of 1Y .

Finally, we have the following result on natural isomorphisms (i.e., natural transformations θ
such that each map θX is an isomorphism:

PROPOSITION 6. Let θ : F → G be a natural transformation such that for each object X
the map θX is an isomorphism. The there is a natural transformation ϕX : G → F such that for
each X the map ϕX is inverse to θX .

Proof. The main thing to check is that the relevant diagrams are commutative; we shall only do
the case where F and G are covariant, leaving the other case to the reader. Since θX

oϕX is the
identity on G(X) and ϕX

oθX is the identity on F (X), we have

θY
oϕY

oG(f) = G(f) = g(f) oθX
oϕX = θY

oF (f) oϕX

and if we compose with the inverse θX on the left of these expressions we obtain

ϕY
oG(f) = F (f) oϕX

which is the naturality condition.

We say that two functors are naturally isomorphic if there is a natural isomorphism from one
to the other.
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Equivalences of categories

One can obviously define an isomorphism of categories to be a covariant functor T : C → D
for which there is an inverse covariant functor U : D → C such that the composites T oU and
U oT are the identities on C and D respectively. However, there is a less rigid notion of category
equivalence that suffices for most purposes.

Definition. A covariant functor T : C → D is a category equivalence (or equivalence of categories)
if there is a covariant functor U : D → C such that the composites T oU and U oT are naturally

isomorphic to the identities on C and D respectively.

In particular, if T and U define an equivalence of categories, then every object in D is isomor-
phic to an object of the form T (X), and conversely every object in C is isomorphic to an object of
the form U(A).

I.2 : Barycentric coordinates and polyhedra

(Hatcher, § 2.1)

Drawings to illustrate many of the concepts in this and other sections of the notes can be found
in the following document(s):

http://math.ucr.edu/∼res/math246A/algtopfigures.∗
Here the suffix ∗ is one of doc, ps or pdf.

A more leisurely and detailed discussion of barycentric coordinates, and more generally the
use of linear algebra to study geometric problems, is contained in Section I.4 of the following online
document, in which ∗ is one of the options in the preceding paragraph:

http://math.ucr.edu/∼res/math133/geomnotes1.∗
The files math133exercises1.∗, math133solutions1.∗ and solvedproblemsn.∗, where n =

1 or 2, in the directory

http://math.ucr.edu/∼res/math133
contain further material on these topics.

Affine independence and barycentric coordinates

The crucial algebraic information is contained in the following result.

PROPOSITION 1. Suppose that the ordered set of vectors v0, · · · ,vn lie in some vector space
V . Then the vectors v1 − v0, · · · ,vn − vn are linearly independent if and only if every vector
x ∈ V has at most one expansion of the form t0v0 + · · · + tnvn such that t0 + · · · + tn = 1.

A finite ordered set of vectors satisfying either (hence both) conditions is said to be affinely
independent. Note that since the second condition does not depend upon the choice of ordering, a
set of vectors is affinely independent if and only if for some arbitrary j the vectors vi − vj (where
i 6= j) is linearly independent. A linear combination in which the coefficients add up to 1 is called
an affine combination.
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Sketch of proof. To show the first statement implies the second, use the fact that x − v0

has at most one expansion as a linear combination of v1 − v0, · · · ,vn − vn. To prove the
reverse implication, show that if x − v0 has more than one expansion as a linear combination of
v1−v0, · · · ,vn−vn, then x has more than one expansion as an affine combination of v0, · · · ,vn.

COROLLARY 2. If S = {v0, · · · ,vn } is affinely independent, then every nonempty subset of
S is affinely independent.

This follows immediately from the uniqueness of expansions of vectors as affine combinations
of vectors in S.

The coefficients ti are called barycentric coordinates. If we put physical weights of ti
units at the respective vertices vi, then the center of gravity for the system will be at the point
t0v0 + · · · + tnvn. If, say, n = 2, then this center of gravity will be inside the triangle with the
given three vertices if and only if each ti is positive, and it will be on the triangle defined by these
vertices if and only if each ti is nonnegative and at least one is equal to zero.

More generally, if v0, · · · ,vn are affinely independent then the n-simplex with vertices
v0, · · · ,vn is the set of all points expressible as affine combinations such that each coefficient is
nonnegative (i.e., convex combinations).

Frequently the n-simplex described above will be denoted by v0 · · · vn. Note that if n = 0,
then a 0-simplex consists of a single point, while a 1-simplex is a closed line segment, a 2-simplex
is given by a triangle and the points that lie “inside” the triangle (also called a solid triangle), and
a 3-simplex is given by a pyramid with a triangular base (i.e., a tetrahedron) together with the
points inside this pyramid (also called a solid tetrahedron).

The following definition will also play an important role in our discussions.

Definition. If v0, · · · ,vn form the vertices of a simplex v0 · · · vn, then the faces of this
simples are the simplices whose vertices are given by proper subsets of {v0, · · · ,vn }; note that
such proper subsets are affinely independent by Corollary 2. If a proper subset T ⊂ S has k + 1
elements, then we shall say that the simplex ∆(T ) whose vertices are given by T is a k-face of the
original n-simplex, which in this notation is equal to ∆(S).

Sets with simplicial decompositions

In calculus textbooks, the derivation of Green’s Theorem is often completed only for special
sorts of closed regions such as the simplex whose vertices are (0, 0), (1, 0) and (1, 1). One then
finds discussions indicating how the general case can be retrieved from special cases by splitting
a general region into pieces that are nicely homeomorphic to closed regions of the special type; in
particular, there is one such discussion on page 523 of the text by Marsden and Tromba, and it is
taken further in the online document with figures for these notes (see Figure I.2.8 in the document
algtopfigures.pdf).

Here are the formal descriptions.

Definition. A subset P ⊂ Rm is a polyhedron if
(i) P is a finite union of simplices A1, · · · , Aq,

(ii) For each pair of indices i 6= j, the intersection Ai ∩Aj is a common face.

The simplices A1, · · · , Aq are said to form a simplicial decomposition of P , and if K is the
collection of simplices given by the Aj and all their faces, then the ordered pair (P,K) is called a
(finite) simplicial complex.
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If X is an arbitrary topological space, then a (finite) triangulation of X consists of a simplicial
complex (P,K) and a homeomorphism t : P → X.

With these definitions, we can say that Green’s Theorem holds for “decent” closed plane regions
because Such regions have nice triangulations.

SIMPLE EXAMPLE. Consider the solid rectangle in the plane given by [a, b] × [c, d], where a < b
and c < d. Everyday geometrical experience shows this can be split into two 2-simplices along a
diagonal, and in fact it is the union of two 2-simplices, one with vertices (a, c), (a, d) and (b, d),
and the other with vertices (a, c), (b, c) and (b, d). A point (x, y) which lies in the solid rectangle
will be in the first simplex if and only if

(y − c)(b− a) ≤ (d− c)(x− a)

and this point will be in the second simplex if and only if

(y − c)(b− a) ≥ (d− c)(x− a)

Generalizations of this example will play an important role in the standard approach to algebraic
topology.

If (P,K) is a simplicial complex, then a subset L ⊂ K is said to be a subcomplex if σ ∈ L
implies that every face of σ also lies in L. The union of the simplices in L is a closed subspace of
P which is denoted by |L|. With this notation we have P = |K|.

Decompositions of prisms

The rectangular example has the following important generalization:

PROPOSITION 3. Suppose that A ⊂ Rm is a simplex with vertices v0, · · · ,vn. Then
A× [0, 1] ⊂ Rm+1 has a simplicial decomposition with exactly n+ 1 simplices of dimension n+ 1.

Proof. For each i between 0 and n let xi = (vi, 0) and yi = (vi, 1). We claim that the vectors

x0, · · · ,xi,yi · · · ,yn

are affinely independent and the corresponding simplices

x0 · · · xiyi · · · yn

(where 0 ≤ i ≤ n) form a simplicial decomposition of A× [0, 1].

An illustration for the case n = 2 is given in Figure I.2.11 of algtopfigures.pdf).

To prove affine independence, take a fixed value of i and suppose we have

∑

j<i

tj xj + axi + byi +
∑

j>i

tj yj =

∑

j<i

t′j xj + a′ xi + b′ yi +
∑

j>i

t′j yj
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where the coefficients in each expression add up to 1; the summation will be taken to be zero if the
limits reduce to j < 0 or j > n. If we view Rm+1 as Rm × R and project down to Rm we obtain
the equation

∑

j<i

tj vj + (a+ b)xi +
∑

j>i

tj vj =
∑

j<i

t′j vj + (a′ + b′)vi +
∑

j>i

t′j vj

and by the affine independence of the vectors vk it follows that tj = t′j if j 6= i and also that
a+ b = a′ + b′. On the other hand, if we project down to the second coordinate (the copy of R),
then we obtain

b +
∑

j>i

tj = b′ +
∑

j>i

t′j

and since tj = t′j for all j it follows that b = b′. Finally, since the sum of all the coefficients is
equal to 1, the preceding observations imply that 1− a = 1− a′, and therefore we also have a = a′.
Therefore the vectors

x0, · · · ,xi,yi · · · ,yn

are affinely independent.

We shall next check that every point (z, u) ∈ A× [0, 1] lies in one of the simplices

x0 · · · xiyi · · · yn

listed above. Write z =
∑

j tj vj where tj ≥ 0 for all j and
∑

tj = 1. It follows that u ≤ 1 =
∑

j≥0 tj ; let i ≤ n be the largest nonnegative integer such that u ≤ ∑j≥i tj . We claim that (z, u)
lies in the simplex x0 · · · xiyi · · · yn. Let b =

∑

j≥i tj − u, and let a = u−∑j>i tj = ti − b.
Then we have a, b ≥ 0, and

(z, u) =
∑

j<i

tj xj + axi + byi +
∑

j>i

tj yj

where all the coefficients are nonnegative and add up to 1.

To conclude the proof, we need to show that the intersection of two simplices as above is a
common face. Suppose that k < i and

(z, u) ∈
(

x0 · · · xiyi · · · yn

)

∩
(

x0 · · · xkyk · · · yn

)

.

Then we must have

∑

j≤i

pj xj +
∑

j≥i

qj yj =
∑

j≤k

p′j xj +
∑

j≥k

q′j yj

where all the coefficients are nonnegative and the coefficients on each side of the equation add up
to 1. If we project down to Rm we obtain pj + qj = p′j + q′j for all j (by convention, we take
a coefficient to be zero if it does not lie in the corresponding summation as above). It follows
immediately that pj = p′j if j < k, while pj = q′j if k < j < i and qj = q′j if j > i. Furthermore, if
we project down to the last coordinate we see that

u =
∑

j≥i

qj =
∑

j≥k

q′k .
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Since qj = q′j if j > i, it follows that

qi =
∑

k≤j≤i

q′j

and since all the coefficients are nonnegative, it follows that qi ≥ q′i. On the other hand, we also
have q′i = p′i + q′i = pi + qi, and hence we conclude that qi = q′i and pi = 0. Applying the first of
these, we see that

0 =
∑

k≤j<i

q′j

and hence the nonnegativity of the coefficients implies that q ′j = 0 for all j such that k ≤ j < i.
We also know that p′j = 0 for j > k, and therefore it follows that p′j + q′j = 0 when k < j < i The
equations pj + qj = p′j + q′j and the nonnegativity of all terms now imply that pj = qj = 0 when
k < j < i.

The conclusions of the preceding paragraph imply that the point (z, u) actually lies on the
simplex

x0 · · · xkyi · · · yn

and since the latter is a common face of x0 · · · xiyi · · · yn and x0 · · · xkyk · · · yn it follows that
the (n+ 1)-simplices

x0 · · · xiyi · · · yn

(where 0 ≤ i ≤ n) form a simplicial decomposition of A× [0, 1].

COROLLARY 4. If P ⊂ Rm is a polyhedron, then A× [0, 1] ⊂ Rm+1 is also a polyhedron.

Before discussing the proof of this we note one important special case.

COROLLARY 5. For each positive integer m, the hypercube [0, 1]m ⊂ Rm is a polyhedron.

Proof of Corollary 5. If m = 1 this follows because the unit interval is a 1-simplex; by Corollary
4, if the result is true for m = k then it is also true for m = k + 1. Therefore the result is true for
all m by induction.

Proof of Corollary 4. Let K be a simplicial decomposition for P , and let K∗ be obtained from
K by including all the faces of simplices in K. Choose a linear ordering of the vertices in K∗ (note
there are finitely many). For each vertex v of K∗, as before let x = (v, 0) and y = (v, 1). Then
P × [0, 1] is the union of all simplices of the form

x0 · · · xiyi · · · yn

where vi < vi+1 with respect to the given linear ordering of the vertices in K∗ and also the
vertices vi are the vertices of a simplex in K∗. The set P × [0, 1] is the union of these simplices
by Proposition 3 and the fact that P is the union of the simplices v0 · · · vn. The fact that these
simplices form a simplicial decomposition will follow from the construction and the next result.

LEMMA 6. Suppose that we have two polyhedra P1 and P2 in Rq, and there exist simplicial
decompositions K1 and K2 such that the following hold:

(i) Both K1 and K2 are taking faces of simplices.

(ii) The set L1 of all simplices in K1 contained in P1 ∩ P2 equals the set L2 of all simplices in
K2, and this collection determines a simplicial decomposition of P1 ∩ P2.

Then K1 ∪K2 determines a simplicial decomposition of P1 ∪ P2.
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The hypothesis clearly applies to the construction in Proposition 3, so Corollary 4 indeed
follows once we prove Lemma 6.

Proof of Lemma 6. It follows immediately that P1∪P2 is the union of the points of the simplices
in K1 ∪ K2. Suppose now that we are given an intersection of two simplices in the latter. This
intersection will be a common face if both simplices lie in either K1 or K2, so the only remaining
cases are those where one simplex α lies in K1 and the other simplex β lies in K2.

We know that α ∩ β us convex. Furthermore, by the hypotheses we know that α ∩ β must be
a union of simplices that are faces of both α and β. Therefore it follows that every point in α ∩ β
is a convex combination of the vertices which lie in α ∩ β, and consequently α ∩ β is the common
face determined by all vertices which lie in α ∩ β.

DEFAULT HYPOTHESIS. Unless specifically indicated otherwise, we shall assume that the set of
simplices in a simplicial decomposition K is closed under taking faces. In order to justify this, we
need to know that if K∗ is obtained from K by adding all the faces of simplices in the latter, then
the intersection of two simplices in K∗ is a (possibly empty) common face. — To see this, suppose
that α and β are simplices in K∗, where α and β are faces of the simplices α′ and β′ in K. If
x ∈ α ∩ β, then x is a convex combination of vertices in α′ ∩ β′, and in fact these vertices must lie
in both α and β. Since α ∩ β is convex, it follows that α ∩ β must be the simplex whose vertices
lie in α and in β.

I.3 : Subdivisions

(Hatcher, § 2.1)

For many purposes it is convenient or necessary to replace a simplicial decomposition K of a
polyhedron P with another decomposition L with smaller simplices. More precisely, we would like
the smaller simplices in L to determine simplicial decompositions for each of the simplices in K.

Simple examples

1. If P is a 1-simplex with vertices x and y, and K is the standard decomposition given by
P and the endpoints, then there is a subdivision L given by trisecting P ; specifically, the
vertices are given by x, y, z = 2

3
x + 1

3
y, and z = 1

3
x + 2

3
y, and the 1-simplices are xw,

wz and zy. This is illustrated as Figure I.3.1 in the file algtopfigures.

2. Similarly, if [a, b] is a closed interval in the real line and we are given a finite sequence
a = t0 < · · · < tm = b, then these points and the intervals [tj−1, tj ], where 1 ≤ j ≤ n,
form a subdivision of the standard decomposition of [a, b].

3. If P is the 2-simplex with vertices x, y and z, and K is the standard decomposition given
by P and its faces, then there is an obvious decomposition L which splits P into two
simplices xyz and xyw, where w = 1

2y + 1
2z is the midpoint of the 1-simplex yz. Similar

eamples exist if we take z = ay + (1 − a)z, where a is an arbitrary number such that
0 < a < 1 (see Figure I.3.2 in the file algtopfigures).
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Definition of subdivisions

Each of the preceding examples is consistent with the following general concept.

Definition. Let (P,K) be a simplicial complex, and let L be a simplicial decomposition of P .
Then L is called a (linear) subdivision of K if every simplex of L is contained in a simplex of K.

The following observation is very elementary, but we shall need it in the discussion below.

PROPOSITION 0. Suppose P is a polyhedron with simplicial decompositions K, L and M
such that L is a subdivision of K and M is a subdivision of L. Then M is also a subdivision of K.

Figure I.3.3 in algtopfigures depicts two subdivisions of a 2-simplex that are different from
the one in Example 3 above. As indicated by Figure I.3.4 in the same document, in general if we have
two simplicial decompositions of a polyhedron then neither is a subdivision of the other. However,
it is possible to prove that if K and L are simplicial decompositions of the same polyhedron P ,
then there is a third decomposition which is a subdivision of both K and L. Proving this requires
more machinery than we need for other purposes, and since we shall not need the existence of such
subdivisions in this course we shall simply note that one can prove this result using methods from
the second part of the following book, which we shall call [Munkres2]:

J. R. Munkres. Elementary differential topology. Lectures given at Massachusetts
Institute of Technology, Fall, 1961. Revised edition. Annals of Mathematics Studies, No.
54. Princeton University Press, Princeton, N. J., 1966. ISBN: 0-691-09093-9.

SUBDIVISION AND SUBCOMPLEXES. These two concepts are related by the following ele-
mentary results.

PROPOSITION 1. Suppose that (P,K) is a simplicial complex and that (P1,K1) is a subcom-
plex of (P,K). If L is a subdivision of K and L1 is the set of all simplices in L which are contained
in P1, then (P1,L1) is a subcomplex of (P,L).

Recall our Default Hypothesis (at the end of Section I.2) that all simplicial decompositions
should be closed under taking faces unless specifically stated otherwise.

COROLLARY 2. Let P , K and L be as above, and let A ⊂ P be a simplex of K. Then L
determines a simplicial decomposition of A.

Barycentric subdivisions

We are particularly interested in describing a systematic construction for subdivisions that
works for all simplicial complexes and allows one to form decompositions for which the diameters
of all the simplices are very small. This will generalize a standard method for partitioning an interval
[a, b] into small intervals by first splitting the interval in half at the midpoint, then splitting the
two subintervals in half similarly, and so on. If this is done n times, the length of each interval in
the subdivision is equal to (b− a)/2n, and if ε > 0 is arbitrary then for sufficiently large values of
n the lengths of the subintervales will all be less than ε.

The generalization of this to higher dimensions is called the barycentric subdivision.

Definition. Given an n-simplex A ⊂ Rm with vertices v0, · · · ,vn, the barycenter bA of A is
given by

bA =
1

n+ 1

n
∑

i=0

vi .
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If n ≤ m ≤ 3, this corresponds to the physical center of mass for A, assuming the density in A is
uniform.

Definition. If P ⊂ Rm is a polyhedron and (P,K) is a simplicial complex, then the barycentric
subdivision B(K) consists of all simplices having the form b0 · · · bk, where (i) each bj is the
barycenter of a simplex Aj ∈ K, (ii) for each j > 0 the simplex Aj−1 is a face of Aj .

In order to justify this definition, we need to prove the following result:

PROPOSITION 3. Let A be an n-simplex, suppose that we are given simplices Aj ⊂ A such
that Aj − 1 is a face of Aj for each j, and let bj be the barycenter of Aj . Then the set of vertices
{b0, · · · ,bq} is affinely independent.

Proof. We can extend the sequence of simplices {Aj } to obtain a new sequence C0 ⊂ · · · ⊂
Cn = A such that each Ck is obtained from the preceding one Ck−1 by adding a single vertex, and
it suffices to prove the result for the corresponding sequence of barycenters. Therefore we shall
assume henceforth in this proof that each Aj is obtained from its predecessor by adding a single
vertex and that A is the last simplex in the list.

It suffices to show that the vectors bj − b0 are linearly independent. For each j let vji
be the

vertex in Aj that is not in its predecessor. Then for each j > 0 we have

bj − b0 =





1

j + 1

∑

k≤j

vik



 − v0 =
1

j + 1

∑

k≤j

vik
− vi0 .

which is a linear combination of the linearly independent vectors vi1 −vi0 , · · · ,vij
−vi0 such that

the coefficient of the last vector in the set is nonzero.

If we let uk = vik
− vi0 , then it follows that for all k > 0 we have bk − b0 = akuk + yk,

where yk is a linear combination of u1, · · · ,uk−1 and ak 6= 0. Since the vectors uj are linearly
independent, it follows that the vectors bk − b0 (where 0 < k ≤ n) are linearly independent and
hence the vectors b0, · · · ,bn are affinely independent.

The simplest nontrivial examples of barycentric subdivisions are given by 2-simplices, and
Figure I.3.6 in algtopfigures gives a typical example. We shall enumerate the simplices in such a
barycentric subdivision using the definition. For the sake of definiteness, we shall call the simplex
P and the vertices v0, v1 and v2.

(i) The 0-simplices are merely the barycenters bA, where A runs through all the nonemtpy
faces of P and P itself. There are 7 such simplices and hence 7 vertices in B(K).

(ii) The 1-simplices have the form bAbC , where A is a face of C. There are three possible
choices for the ordered pair (dimA,dimC); namely, (0, 1), (0, 2) and (1, 2). The number
of pairs {A, C} for the case (0, 1) is equal to 6, the number for the case (0, 2) is equal to
3, and the number for the case (0, 1) is also equal to 3, so there are 12 different 1-simplices
in B(K).

(iii) The 2-simplices have the form bAbCbE , where A is a face of C and C is a face of E.
There are 6 possible choices for {A, C, E}.

Obviously one could carry out a similar analysis for a 3-simplex but the analysis would be more
complicated.

Of course, it is absolutely essential to verify that barycentric subdivision actually defines
simplicial decompositions.
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THEOREM 4. If (P,K) is a simplicial complex and B(K) is the barcentric subdivision of
K, then (P,B(K) ) is also a simplical complex (in other words, the collection B(K) determines a
simplicial decomposition of P ).

Proof. We shall concentrate on the special case where P is a simplex. The general case can be
recovered from the special case and Lemma I.2.6.

Suppose now that P is a simplex with vertices vertices v0, · · · ,vn. We first show that P is
the union of the simplices in B(K). Given x ∈ P , write x as a convex combination

∑

j tj vj, and
rearrange the scalars into a sequence

tk0
≥ tk1

· · · ≥ tkn

(this is not necessarily unique, and in particular it is not so if tu = tv for u 6= v). For each i between
0 and n, let Ai be the simplex whose vertices are vk0

, · · · ,vki
. We CLAIM that x ∈ b0 · · · bn,

where bi is the barycenter of Ai.

Let si = tki
− tki+1

for 0 ≤ i ≤ n − 1 and set sn = tkn
. Then si ≥ 0 for all i, and it is

elementary to verify that

x =

n
∑

i=0

(i+ 1) si bi , where

n
∑

1=0

(i+ 1) si =

n
∑

i=0

tki
= 1 .

Therefore x ∈ b0 · · · bn, so that every point in A lies on one of the simplices in the barycentric
subdivision.

To conclude the proof, we must show that the intersection of two simplices in B(K) is a
common face. First of all, it suffices to show this for a pair of n-dimensional simplices; this follows
from the argument following the Default Hypothesis at the end of Section I.2.

Suppose now that α and γ are n-simplices in B(K). Then the vertices of α are barycenters of
simplices A0, · · · , An where Aj has one more vertex than Aj−1 for each j, and the vertices of γ are
barycenters of simplices C0, · · · , Cn where Cj has one more vertex than Cj−1 for each j. Label the
vertices of the original simplex as vi0 , · · · ,vin

where Aj = vi0 · · · vij
and also as vk0

, · · · ,vkn

where Cj = vk0
· · · vkj

. The key point is to determine how (i0, · · · , in) and (k0, · · · , kn) are
related.

If x lies on the original simplex and x is written as a convex combination
∑

j tj vj , then we
have shown that x ∈ A if ti0 ≤ · · · ≤ tin

. In fact, we can reverse the steps in that argument to show
that if x ∈ A then conversely we have ti0 ≤ · · · ≤ tin

. Similarly, if x ∈ C then tk0
≤ · · · ≤ tkn

.
Therefore if x ∈ A ∩ C then tij

= tkj
for all j. Choose m0, · · · ,mq ∈ {0, · · · , n} such that

tmj
> tmj+1

, with the convention that tn+1 = 0, and split {0, · · · ,n } into equivalence classes
M0, · · · ,Mq such that Mj is the set of all u such that tu = tmj

. It follows that x lies on the
simplex z0 · · · zq , where zj is the barycenter of the simplex whose vertices are M0 ∪ · · · ∪ Mj .
The vertices of this simplex are vertices of both A and C. Since A ∩C is convex, this implies that
it is the simplex whose vertices are those which lie in A ∩ C, and thus A ∩ C is a face of both A
and C.

Terminology. Frequently the complex (P,B(K)) is called the derived complex of (P,K). The
barycentric subdivision construction can be iterated, and thus one obtains a sequence of decom-
positions Br(K). The latter is often called the rth barycentric subdivision of K and (P,Br(K)) is
often called the rth derived complex of (P,K).
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Diameters of barycentric subdivisions

Given a metric space (X,d), its diameter is the least upper bound of the distances d(y, z),
where y, z ∈ X; if the set of distances is unbounded, we shall follow standard usage and say that
the diameter is infinite or equal to ∞.

PROPOSITION 5. Let A ⊂ Rn be an n-simplex with vertices v0, · · · ,vn. Then the diameter
of A is the maximum of the distances |vi − vj |, where 0 ≤ i, j ≤ n.

Proof. Let x,y ∈ A, and write these as convex combinations x =
∑

j tj vj and y =
∑

j sj vj .
Then

x− y =

(

∑

i

si

)

x −





∑

j

tj



 y =
∑

i,j

sitj vj −
∑

i,j

sitj vi .

Therefore we have
d(x, y) + |x − y| ≤

∣

∣

∑

i,j

sitj (xj − xi)
∣

∣ ≤

∑

i,j

sitj |vi − vj | ≤
∑

i,j

max |vk − v`| = max |vk − v`|

as required.

Definition. If K is a simplicial decomposition of a polyhedron P , then the mesh of K, written
µ(K), is the maximum diameter of the simplices in K.

PROPOSITION 6. In the preceding notation, the mesh of K is the maximum distance |v−w|,
where v and w are vertices of some simplex in K.

The main result in this discussion is a comparison of the mesh of K with the mesh of B(K).

PROPOSITION 7. Suppose that (P,K) be a simplicial complex and all simplices of K have
dimension ≤ n. Then

µ(B(K) ) ≤ n

n+ 1
· µ(K) .

Before proving this result, we shall derive some of its consequences.

COROLLARY 8. In the preceding notation, if r ≥ 1 then

µ(Br(K) ) ≤
(

n

n+ 1

)r

· µ(K) .

COROLLARY 9. In the preceding notation, if ε > 0 then there exists an r0 such that r ≥ r0
implies µ(Br(K) ) < ε.

Corollary 9 follows from Corollary 8 and the fact that limr→∞
n

n+1
= 0.

Proof of Proposition 7. By Proposition 5 and the definition of barycentric subdivision we
know that µ(B(K) ) is the maximum of all distances |b − bC |, where bA and bC are barycenters
of simplices A, C ∈ K such that A ⊂ C. Suppose that A is an a-simplex and C is a c-simplex, so
that 0 ≤ a < c ≤ n. We then have

|bA − bC | =

∣

∣

∣

∣

∣

1

a+ 1

∑

v∈A

v − 1

c+ 1

∑

w∈C

w

∣

∣

∣

∣

∣
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and as in the proof of Proposition 5 we have

1

a+ 1

∑

v∈A

v − 1

c+ 1

∑

w∈C

w =
1

(a+ 1)(c + 1)

∑

v,w

(v −w) .

There are (a + 1) terms in this summation which vanish (namely, those for which w = v), and
therefore we have

|bA − bC | =

∣

∣

∣

∣

∣

∣

1

(a+ 1)(c + 1)

∑

v 6=w

(v −w)

∣

∣

∣

∣

∣

∣

≤ 1

(a+ 1)(c+ 1)

∑

v 6=w

|v −w| ≤

1

(a+ 1)(c + 1)
· max|v −w| ·

[

(a+ 1)(c+ 1) − (a+ 1)
]

=

(

max|v −w|
)

·
(

1 − 1

c+ 1

)

≤
(

1 − 1

n+ 1

)

.

At the last step we use c ≤ n and the fact that the function 1 − (x/n) is an increasing function of
x if x > 0. The inequality in the corolary follows directly from the precedng chain of inequalities.

One further consequence of Proposition 7 will be important for our purposes.

COROLLARY 10. Let (P,K) be a simplicial complex, and let W be an open covering of P .
Then there is a positive integer r0 such that r ≥ r0 implies that every simplex of µ(Br(K) ) is
contained in an element of W.

Proof. By construction, P is a compact subset of a the metric space Rm. Therefore the Lebesgue
Covering Lemma implies the existence of a real number η > 0 such that every subset of diameter
< η is contained in an element of W. If we choose r0 > 0 such that r ≥ r0 implies µ(Br(K) ) < η,
then Br(K) will have the required properties.
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II . Homotopy and cell complexes

The notion of homotopy is introduced in Mathematics 205B, and it is central to both algebraic
and geometric topology as well as many of the applications of topology to algebra and analysis.
Part of the material is a review of topics from the second part of Munkres’ book; some of the revies
topics and most of the new material are also covered in Chapters 0 and 1 of Hatcher.

The new material covers two related topics. The first (in Section 3) is to describe generaliza-
tions of simplicial complexes called cell complexes that are more convenient for many purposes
of algebraic topology, and the second (in Section 4) provides a fundamental illustration of the
usefulness of such objects. One objective is an important result on the following central problem:

EXTENSION QUESTION. Suppose that X and Y are topological spaces, that A is a
subspace of X, and g : A → Y is continuous. Is there an extension of g to a continuous mapping
f : X → Y (in other words, a continuous mapping f such that the restriction f |A is equal to g?

One of the main results in Section 4 provides an extremely useful answer to this question in
terms of the main concepts of this unit: If X is a cell complex and A is a subcomplex, then g has
a continuous extension to X if and only if some mapping homotopic to g has such an extension.

This and subsequent units of the notes will be less self-contained that Unit I, and there will
be numerous references to Munkres or Hatcher for details.

II.1 : Homotopic mappings

(Hatcher, Ch. 0; Munkres, §§ 51, 58)

The general notion of homotopy for (continuous) mappings is defined on page 323 of Munkres
and page 3 of Hatcher. Following standard practice we shall write f ' g to indicate that f is
homotopic to g. We shall state some basic properties of homotopic mappings that are particularly
important for our purposes.

PROPOSITION 1. (Munkres, Lemma 51.1, p. 324.) The binary relation ' of homotopy on
the set of continuous mappings from one topological space X to a second topological space Y is an
equivalence relation.

In the proposition above, we allow the possibility that X = Y . The set of homotopy classes of
continuous mappings from X to Y is generally denoted by [X,Y ].

PROPOSITION 2. (Munkres, Exercise 1, p. 330.) If we are given continuous maps f0 ' f1 :
X → Y and g0 ' g1 : Y → Z, then g0 of0 ' g1 of1.

COROLLARY 3. There is a category HTOP (the homotopy category) whose objects are
topological spaces and whose morphisms are given by [X,Y ] such that if u ∈ [X,Y ] is represented
by f and v ∈ [X,Y ] is represented by g, then v ou = [g of ].

Not surprisingly, the identity morphism in [X,X] is the homotopy class of the identity on X.

Given a continuous mapping f : X → Y , then f represents an isomorphism in HTOP if and
only if there is a mapping g : Y → X such that g of ' 1X and f og ' 1Y . A mapping f which
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satisfies these properties is said to be a homotopy equivalence. — Since every map is homotopic
to itself, it follows immediately that every homeomorphism is a homotopy equivalence.

Definition. Two topological spaces X and Y are homotopy equivalent if there is a homotopy
equivalence from X to Y (in which case there is also a homotopy equivalence from Y to X). Note
that the relation “X is homotopy equivalent to Y ” is reflexive, symmetric and transitive. Frequently
one also says that X and Y have the same homotopy type.

Special types of homotopy equivalences

We shall begin with a homotopy between to basic types of continuous mappings.

Definition. A contracting homotopy of a topological space X is a mapping H : X × [0, 1] → X
such that H(x, 0) = x for all x ∈ X and H|X × {1} is a constant mapping.

We shall say that a topological space is contractible if it admits a contracting homotopy.

An arbitrary topological space X is not necessarily contractible, and in some sense most
spaces are not. For example, if X is the circle S1 this is not the case because in [S1, S1] ∼= π1(S

1, 1)
the identity map and the constant map determine different homotopy classes. In fact, one can
manufacture many similar examples using the following lemma.

PROPOSITION 4. If A, B and C are topological spaces, then there is an isomorphism

θ : [A,B × C] ∼= [A,B] × [A,C]

sending a homotopy class [f ] to the ordered pair ([pB
of ], [pC

of ]), where pB : B × C → B and
pC : B × C → C are the coordinate projections.

Sketch of proof. The mapping θ is well-defined by the preceding two results. It is onto, for if we
are given an ordered pair of homotopy classes ([g], [h]), then this class is θ([f ]), where f : A→ B×C
is the unique continuous mapping such that pB

of = g and pC
of = h. To see it is also 1–1, suppose

θ([f ]) = θ([f ′]). Then there are homotopies K : pB
of ' pB

of ′ and L : pC
of ' pC

of ′, and if
we take the map H whose projections onto B and C are K and L respectively, then H defines a
homotopy from f to f ′.

COROLLARY 5. If X is a nonempty topological space, then X × S1 is NOT contractible.

The proof of this result is relatively simple and formal, but it is important to understand it
because the argument reflects the viewpoint underlying much of algebraic topology.

Proof. It will suffice to show that the identity map on X × S1 is not homotopic to a constant
map. Let q : X × S1 to S1 be projection onto the second coordinate, let j : S1 → X × S1 project
to the constant map on the first factor and to the identity on the second, and let k be a constant
map from X ×S1 to itself. If the identity on X×S1 is homotopic to a constant map, then we have

[id(S1)] = [q oj] = [q] o [j] = [q] o [id(X × S1)] o [j] =

[q] o [k] o [j] = [q ok oj] = [constant]

which contradicts the fact that the identity on S1 is not homotopic to a constant. Therefore the
identity on X × S1 cannot be homotopic to a constant map.

One can clearly “leverage” this result to construct further examples; in particular, if T k is the
product of k copies of S1, then an inductive argument combined with the preceding corollary shows
that X × T k is not contractible.
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Example. If K is a convex subset of Rn, then K is contractible by a so-called straight line
homotopy : Take an arbitrary point y ∈ K and set

H(x, t) = (1 − t)x + ty

so that H shrinks K down to {y} along the straight lines joining points x ∈ K to the chosen point
y.

In the preceding example, the inclusion of {y} in K is a special case of the following general
concept.

Definition. Let X be a topological space, and let A ⊂ X with inclusion mapping iA. Then A
is said to be a deformation retract of X if there is a map r : X → A such that r|A is the identity
and iA orA is homotopic to the identity on X. — If there is a homotopy H : ia orA ' 1X such that
H(a, t) = a for all (a, t) ∈ A × [0, 1] (i.e., the homotopy is fixed on A), we say that A is a strong
deformation retract of X.

More generally, in a category C, a morphism f : X → Y is said to be a retract if there is a
morphism g : Y → X such that g of = 1X , and a morphism h : A→ B is said to be a retraction if
there is a morphism k : B → A such that k oh = 1B . — If A is a deformation retract of X, then
the inclusion iA is a retract and the mapping r is a retraction.

Example. The sphere Sn is a strong deformation retract of Rn+1 − {0}. The standard choice of
r in this case is given by r(x) = |x|−1 · x and i or is homotopic to the identity by the straight line
homotopy sending (x, t) to tx + (1 − t)r(x).

Counting homotopy classes

We shall conclude this section by proving a result mentioned earlier.

THEOREM 6. If K is a compact subset of Rn for some n and U is an open subset of Rm for
some m, then [K,U ] is countable.

One major step in the proof is the following result of independent interest:

LEMMA 7. Let X and U be as above, and let f : K → U be continuous. Then there is some
δ > 0 such that if g : K → U is another continuous function satisfying d( f(x), g(x) ) < δ for all x,
then g is homotopic to f as mappings from X to U .

Sketch of proof of Lemma 7. We can define a continuous function h : K → R by h(x) =
d( f(x),Rm − U ). In fact, this function is positive valued because f maps K into U , and by the
compactness of K it takes a minimum value δ. Therefore, if x is an arbitrary point in K and
d( f(x), v ) < δ, then the closed line segment joining f(x) to v lies entirely in U . Consequently, if
g satisfies the condition in the lemma for this choice of δ, the image of the straight line homotopy
from f to g lies entirely in U .

NOTE AND EXAMPLE. The preceding lemma reflects one reason for including the codomain
as an extra piece of data in our definition of a function. Given any two functions f and g as above,
they are always homotopic as maps into Rm by a straight line homotopy. The crucial point in the
lemma is that the image of the homotopy is contained in U . — Without the constraint involving a
positive constant δ, the result is false. To see this, let K = S1 and U = R2 −{0}, and take f to be
the usual inclusion. Then f is not homotopic to a constant map, for if r : U → K is the retraction

26



described above, then r of is not homotopic to a constant, but if f were homotopic to a constant
map k, then we would have

id(S1) ' r of ' r ok = constant

and we know this is not the case.

The observations of the previous paragraph have the following positive implication: If H :
S1 × [0, 1] → R2 is a homotopy from the inclusion map to the constant map, then there is some
(x0, t0 ) ∈ S1 × [0, 1] such that H(x0, t0 ) = 0.

A major objective of the course is to develop tools that will yield generalizations of the pre-
ceding observation to mappings from Sn × [0, 1] → Rn+1.

Sketch of proof of Theorem 6. Suppose that f : K → U as above is continuous, and let δ > 0
be given as in Lemma 7. Denote the coordinate projections of f by fi, where 1 ≤ i ≤ m.

By the Stone-Weierstrass Approximation Theorem, there are polynomial functions pi on K ⊂
Rn such that

| (pi|K) − fi | <
δ

2
√
n

for each i, and in fact we can also find polynomials gi with rational coefficients such that

| (pi|K) − (gi|K) | <
δ

2
√
n
.

If we let g : Rn → Rn be the function whose coordinates are given by the polynomials gi, it follows
that | f − (g|K) | < δ.

Standard set-theoretic computations show that there are only countably many polynomials in
n variables with rational coefficients, and it follows that there are only countably many choices for
g.

Combining the preceding two paragraphs with Lemma 7, we conclude that f is homotopic to
one of the countable family of continuous functions whose coordinates are given by polynomials in
n variables with rational coefficients, and therefore the set [K,U ] is countable.

Using the fact that the inclusion of S1 in R2 − {0} is a homotopy equivalence, one can show
that

Z ∼= [S1, S1] ∼= [S1,R2 − {0}]
(see the exercises for this section) and therefore the cardinality bound of ℵ0 on [K,U ] is the best
possible general result.

Important standard notation

Unless stated otherwise, in the remainder of these notes the symbol I will denot the closed
unit interval [0, 1].
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II.2 : The fundamental group

(Hatcher, §§ 1.1 – 1.3, 1.A – 1.B; Munkres, §§ 52, 54)

This subject was treated in Mathematics 205B, and it might be useful to review this material
before proceeding.

Section 1.B of Hatcher is devoted to proving a fundamental result in topology which has
numerous uses in geometry and complex variables:

THEOREM 1. Let G be an arbitrary group. Then there is an arcwise connected, locally arcwise
connected, and locally simply connected Hausdorff space BG such that π1(BG,pt.) is isomorphic
to G and the universal covering space of G is contractible. Furthermore, if X and Y are spaces
which have these properties, then X is homotopy equivalent to Y .

The existence argument is contained in Example 1.B.7 of Hatcher, while the uniqueness up to
homotopy type is stated as Theorem 1.B.8 and established by the argument in Proposition 1.B.9.

Definition. A topological space X is (strongly) aspherical if it is arcwise connected and it has
a contractible covering space.

As noted in Hatcher, the torus T k is aspherical because its universal covering space is Rk, and
the covering space projection is given by p(x1, · · · , xk) =

(

exp(2π i x1), · · · , exp(2π i xk)
)

. Also,

as noted in Hatcher, all compact connected surfaces except S2 and RP2 are aspherical.

Generalization. (For students who have taken Mathematics 205C or are familiar with the
notion of sectional curvature in a riemannian manifold.) There is an important generalization of
all these facts due to J. Hadamard: If M is a compact smooth n-manifold which has a riemannian
metric whose sectional curvature is everywhere nonpositive, then the universal covering of M is
diffeomorphic to Rn. — We shall not use this result at any future point in the course.

II.3 : Abstract cell complexes

(Hatcher, Ch. 0)

One possible way to view a polyhedron is to think of it as an object that is constructible in a
finite number of steps as follows:

(0) Start with the finite set P0 of vertices,

(n) If Pn−1 is the partial polyhedron constructed at Step n − 1, at Step n one adds finitely
many simplices Sj , identifying each face of each simplex Sj with a simplex in Pn−1.

In fact, one can do this in order of increasing dimension, attaching all 1-simplices to the vertices
at Step 1, then attaching 2-simplices along the boundary faces at Step 2, and so on. It is often
useful in topology to consider objects that are generalizations of this procedure that are more
flexible in certain key respects. The objects used these days in algebraic topology are known as
cell complexes.

One immediate difference between cell complexes and simplicial complexes is that the former
use the closed unit disk Dn ⊂ Rn and its boundary Sn−1 in place of an n-simplex ∆ and its
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boundary ∂∆, which is the union of its faces. In order to reconcile this replacement, one needs the
following basic result:

THEOREM 1. Let A be an n-simplex with boundary ∂A. Then there is a homeomorphism
from A to Dn such that ∂A is mapped to Sn−1 and the barycenter of A is mapped to 0 ∈ Dn.

Definition. The standard n-simplex ∆n is the set of all points (t0, · · · , tn) ∈ Rn+1 such that
tj ≥ 0 for all j and

∑

j tj = 1. Note that the set of unit vectors { e0, · · · , en } is affinely
independent because the set { e1 − e0, · · · , en+1 − e0 } is linearly independent.

Proof. The first two steps are simple adjustments. If A is an arbitrary n-simplex, we claim
there is a homeomorphism h from ∆n to A which sends ∂∆n to ∂A and sends the barycenter of
∆n to the barycenter of A. Specifically, if the vertices of A are given by v0, · · · ,vn, then the
homeomorphism h sends (t0, · · · , tn) ∈ ∆n to

∑

j tjej ∈ A. Because of this, it will suffice to prove
the theorem when A = ∆n; if g : ∆n → Dn is the homeomorphism with the desired properties and
A is an arbitrary n-simplex, then g oh−1 is a homeomorphism A to Dn with the desired properties.

The hyperplane H ⊂ Rn+1 defined by the linear equation
∑

j tj = 1 is isometric to Rn; to

see this, let b be the barycenter of ∆n, and let S : Rn+1 → Rn+1 be the isometry S(y) = y−b, so
that S maps H to the vector subspace W defined by the linear homogeneous equation

∑

j tj = 0.
Standard results on finite-dimensional inner product spaces imply that W is isometric to Rn, and
thus H is also isometric to Rn. Since an arbitrary closed disk D in Rn is homeomorphic to the
standard unit disk by a map which sends centers to centers and boundary spheres to boundary
spheres, it will suffice to prove there is a homeomorphism from some closed disk B ⊂ H with center
b to ∆n such that b is sent to itself and the boundary of B maps to the boundary of ∆n.

The next step is to find a suitable disk B satisfying the conditions of the previous paragraph.
As before, let b denote the barycenter of ∆n. Then all the coordinates of b are positive, and thus
there is some δ > 0 such that if x ∈ H and |x − b| ≤ δ, then all the barycentric coordinates of x
are also positive, so that the closed disk B ⊂ H with center b and radius δ is contained in ∆n (in
fact, it is contained in ∆n − ∂∆n).

We shall now construct a radial projection homeomorphism ρ from B to ∆n such that rho(b) =
b and ρ sends the boundary sphere of B to ∂∆n. Let ∂B denote the boundary sphere of B, let
x ∈ ∂B, and let Γ denote the ray consisting of all points of the form tx + (1 − t)b where t ≥ 0.
Then Gamma is a convex set, and therefore the set K = Γ ∩ ∆n is also convex; furthermore, it is
closed since Γ and ∆n are closed, and it is bounded because ∆n is also bounded. Furthermore, it
contains all points of the form tx + (1 − t)b where 0 ≤ t ≤ 1. Therefore it follows that there is
some u(x) > 0 such that K consists of all points of the form tx + (1 − t)b where 0 ≤ t ≤ u(x).
The radial projection mapping ρ will be defined by

ρ(tx + (1 − t)b) = utx + (1 − ut)b) .

We need to prove that this mapping is well-defined and determines a homeomorphism from B to
∆n with all the required properties. However, before beginning the proof, we need to verify the
following CLAIM : If x ∈ ∂B, then ρ(x) ∈ ∂∆n.

To prove the claim, suppose that the conclusion is false; then by the definition of ∂∆n we know
that all the barycentric coordinates of ρ(x) = ux + (1 − u)b) are positive. Since the barycentric
coordinates are just the usual linear coordinates if we view ∆n ⊂ H ⊂ Rn+1, it follows that there
is some ε > 0 such that 0 < v − u < ε implies that the barycentric coordinates of v x + (1 − v)b)
are positive. This means that the latter point must also lie in ∆n. However, since v > u we know
that this point does not lie in ∆n, and this contradiction implies that ρ(x) must lie on ∂∆n.
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To see that ρ is well-defined, note that every point in H−{b} can be written as cx for unique
choices of x ∈ ∂B and c > 0. This suffices to show that ρ is well-defined at all points except possibly
b. However, if we write b = cx, where c ≥ 0 and x ∈ ∂B, then the formula yields ρ(0x) = b for
all choices of x. Therefore the function ρ is well-defined.

To see that ρ is 1–1, suppose that

ρ(tx + (1 − t)b) = ρ(sy + (1 − s)b)

where x and y lie on ∂B and s, t ≥ 0. The preceding equation implies that

t u(x) (x − b) = s u(y) (y − b)

and since the vectors on both sides of the equation are nonzero and the function u takes only
positive values, it follows that s = 0 if and only if t = 0, in which case we have

tx + (1 − t)b = sy + (1 − s)b = b .

Therefore we have shown that if two distinct points

tx + (1 − t)b) , sy + (1 − s)b

have the same image under ρ then neither is equal to b, which is equivalent to saying that both s
and t are nonzero.

By construction, both vectors x and y lie on ∂B, and the previously derived equation

t u(x) (x − b) = s u(y) (y − b)

implies that x − b and y − b are positive multiples of each other. But the condition x, y ∈ ∂B
implies that |x − b| = |y − b| and thus it follows that x − b = y − b, so that we have x = y.
Therefore, if neither x nor y is equal to b but

ρ(tx + (1 − t)b) = ρ(sy + (1 − s)b)

then we must have

t u(x) (x − b) = s u(x) (x − b)

and the latter immediately implies s = t. This completes the verification that ρ is 1–1.

We shall next prove that ρ is onto. Since ρ sends b to itself, it will suffice to show that every
point y in ∆n − {b} lies in the image of ρ. The crucial observation is that y can be written in the
form (1 − s)z + sb, where 0 ≤ s < 1 and z lies on the boundary of ∆n.

If y lies on the boundary, the statement in the preceding sentence is true for trivial reasons, so
we shall now consider the case where y is not a boundary point. This means that all the barycentric
coordinates of y are positive numbers. Let t∗ be the minimum barycentric coordinate of y; since
the minimum of finitely many real valued continuous functions is continuous, it follows that t∗ is a
positive valued continuous function of y. Furthermore, since we are assuming that y 6= b we know
that at least one barycentric coordinate is strictly less than 1/(n + 1) and hence the same is true
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for t∗. It follows immediately that if y ∈ ∆n − {b} does not lie on the boundary then we may
rewrite the barycentric coordinate expansion y =

∑

j tj ej as

(n+ 1)t∗b +
∑

j

(tj − t∗)ej = (n+ 1)t∗b + (1 − (n+ 1)t∗)
∑

j

tj − t∗

1 − (n+ 1)t∗
ej .

Since t∗ = ti for some choice of i, it follows that the ith term in the summation

z =
∑

j

tj − t∗

1 − (n+ 1)t∗
ej

is zero; in fact, the coefficients of the vectors ej are all nonnegative (the numerator of each fraction
is nonnegative and the denominator is positive), and direct calculation shows that they add up to
1, so that z represents a point of ∂∆n. Therefore we have (1 − s)z + sb, where s = (n+ 1)t∗, so
that 0 < s < 1 (recall that y is not equal to b and does not lie on the boundary).

It now follows that y is the image under ρ of the point

b +
δ |y − b|
|z − b| ·

(

z − b
)

and therefore we hae shown that ρ maps B onto ∆n. Closer inspection of the formulas above shows
that ρ maps points of ∂B to ∂∆n and points of B − ∂B to ∆n − ∂∆n.

Finally, we must show that ρ is continuous; once we know that ρ is a 1–1 onto continuous
mapping from one compact Hausdorff space to another, general considerations will imply that ρ
must be a homeomorphism. We shall first show that ρ is continuous on B−{b} and then we shall
verify continuity at b by a separate argument. Suppose that x ∈ B − {b}, write x as a convex
combination

∑

j vj ej , and use previous arguments to show that the ray starting at b and passing
through x meets ∂∆n at the point

z(x) =
∑

j

sj − s∗

1 − (n+ 1)s∗
ej

(where s∗ is the least barycentric coordinate) and hence z is a continuous function of x. Since

ρ(x) = b +
|z − b|
δ

·
(

x − b
)

the continuity of ρ away from b follows from the continuity of z.

To show the continuity at zero, first observe that x ∈ ∆n implies |x − b| < 1; of course, this
also means that δ < 1. If 0 < θ ≤ δ and B(θ) denotes the closed disk of radius θ in H with center b,
then it follows from the definitions that ρ maps B(θ) to the simplex with vertices b+ θδ−1(ej −b);
note that these points are affinely independent because the difference vectors

(

b + θδ−1(ej − b)
)

−
(

b + θδ−1(e0 − b)
)

= θδ−1(ej − e0)

(where 1 ≤ j ≤ n) are linearly independent.

Suppose now that ε > 0; without loss of generality, we may assume ε < δ. As the preced-
ing paragraph, we know that the simplex ∆[ε] with vertices b + ε(ej − b) is contained in B(ε).
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Furthermore, the observations of the preceding paragraph also show that ρ maps B(ε · δ) to ∆[ε].
Combining these observations, we see that |x − b| < δ · ε implies |ρ(x) − ρ(b)| < ε, and therefore
it follows that ρ is continuous at b as required.

Adjoining cells to a space

We shall now give the basic step in the construction of cell complexes. The discussion below
relies heavily on the material in Unit V of the online Mathematics 205A notes that were previously
cited.

Definition. Let X be a compact Hausdorff space and let A be a closed subset of X. If k is a
nonnegative integer, we shall say that the space X is obtained from A by adjoining finitely many
k-cells if there are continuous mappings fi : Sk−1 → A for i = 1, · , N such that X is homeomorphic
to the quotient space of the topological disjoint union

A q {1, · · · , N} ×Dk

modulo the equivalence relation generated by identifying (j,x) ∈ {j}×Sk−1 with fj(x) ∈ A, where
the homeomorphism maps A ⊂ X to the image of A in the quotient by the canonical mapping.

By construction, there is a 1–1 correspondence of sets between X and

A q {1, · · · , N} × open(Dk)

where open(Dk) ⊂ Dk is the complement of the boundary sphere. The set Ej ⊂ X corresponding
to the image of {j}×Dk in the quotient is called a (closed) k-cell, and the subset EO

j corresponding

to the image of {j} × open(Dk) in the quotient is called an open k-cell. One can then restate the
observation in the first sentence of the paragraph to say that X is a union of A and the open k-cells,
and these subsets are pairwise disjoint.

Before discussing some topological properties of a space obtained by adjoining k-cells, we shall
consider some EXAMPLES.

1. Let (P,K) be a simplicial complex,let Pk be the union of all k-simplices in K, and let
Pk−1 be defined similarly. Then the whole point of stating and proving Theorem 1 was
to justify an assertion that Pk is obtained from Pk−1 by attaching k-cells, one for each
k-simplex in K. Specifically, for each k-simplex A the map fA is given by the composite
of the homeomorphism Sk−1 → ∂A with the inclusion ∂A ⊂ Pk−1. The homeomorphism
from the quotient of the disjoint union to Pk is given by starting with the composite

Pk−1 q {1, · · · , N} ×Dk −→ Pk−1 qA A −→ Pk

where qA runs over all the k-simplices of K, the first map is a disjoint union of homeomor-
phisms on the pieces where the maps of Theorem 1 are used to define the homeomorphisms
{j} × Dk ∼= A, and the second map is inclusion on each disjoint summand. This com-
posite passes to a map of the quotient of the space on the left modulo the equivalence
relation described above, and it is straightforward to show this map is 1–1 onto and hence
a homeomorphism (all relevant spaces are compact Hausdorff).

2. (GRAPHS) One may define a finite (vertex-edge) graph to be a space obtained from a
finite discrete space by adjoining 1-cells. Frequently there is an added condition that the
attaching maps for the boundaries should be 1–1 (so that each 1-cell has two endpoints),
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and the weaker notion introduced here (and in Hatcher) is then called a pseudograph.
The graph corresponds to a simplicial decomposition of a simplicial complex if and only
if different 1-cells have different endpoints. The simplest example of a graph structure
that is not a pseudograph and does not come from a simplicial complex is given by taking
X = S1 and A = S0 with two 1-cells corresponding to the upper and lower semicircles
E1

± in the complex plane. The attaching maps are defined to map the endpoints of
D1 = [−1, 1] bijectively to −1, 1. — Another example that is historically noteworthy is
the Königsberg Bridge Graph, in which the vertices correspond to four land masses in
the city of Königsberg (now Kaliningrad, Russia) and the 1-cells (or edges) correspond
to the bridges which joined pairs of land masses in the 18th century (see the figures file
for a drawing). This is another example of a graph that does not come from a simplicial
complex but is not a pseudograph; if there are two bridges joining the same pairs of land
masses, then the graph has two deges with the same boundary points. — In the next
unit we shall see how Euler’s analysis of this graph may be stated in terms of algebraic
topology.

We shall encounter further examples after we define the main concept of this section. For the
time being, we mention a few simple properties of spaces obtained by attaching k-cells for some k

PROPOSITION 2. If X is obtained from A by attaching 0-cells, then X is homeomorphic to
the disjoint union of A with a finite discrete space.

This is true because the 0-disk D0 has an empty unit sphere, so there are no attaching maps
and the equivalence relation on the Aq {1, · , N} is the equality relation.

PROPOSITION 3. If X is obtained from A by attaching k-cells, then each open cell EO
j is an

open subset of X, and each such open cell is homeomorphic to open(Dk).

Proof. Each closed cell is compact because it is a continuous image of Dk, and hence each such
subset is closed in X. By the set-theoretic description given above, the open cell EO

j is just the
complement of the closed set

A ∪
⋃

i6=j

Ei

and hence it is open in X. Since the quotient space map from the disjoint union to X defines a
1–1 onto continuous mapping from open(Dk) to EO

j , it suffices to show that an open subset of

open(Dk) is sent to an open subset of EO
j . Let

ϕ : A q {1, · · · , N} ×Dk −→ X

be the continuous onto quotient map corresponding to the cell attachments, and suppose that U is
open in {j} × open(Dk). By construction we then have

U = ϕ−1
[

ϕ[U ]
]

and thus ϕ[U ] is open in X by the definition of the quotient topology.

The last result in this subsection implies that the inclusion of A in X is homotopically well-
behaved if X is obtained from A by adjoining k-cells.

PROPOSITION 4. If X is obtained from A by attaching k-cells and U is an open subset of X
containing A, then there is an open subset V such that

A ⊂ V ⊂ V ⊂ U
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and A is a strong deformation retract of both V and V .

Proof. As in the preceding argument, take

ϕ : A q {1, · · · , N} ×Dk −→ X

to be the continuous onto map corresponding to the k-cell attachments.

Let F = X −U , and let F0 = ϕ−1[F ], so that F0 corresponds to a disjoint union qj Fj , where
each Fj is a compact subset of open(Dk); compactness follows because the image of each Fj in X
is a closed subset of the compact k-cell Ej . Therefore we can find constants cj such that 0 < cj < 1
and Fj is contained in the open disk of radius cj about the origin in {j}×Dk; let c be the maximum
of the numbers cj , and let V ⊂ X be the image under ϕ of the set

W = A q
⋃

j

{j} × { x ∈ Dk | c < |x| ≤ 1 } .

Then V is open because it is the complement of a compact set, and it follows that V is the image
of

Y = A q
⋃

j

{j} × { x ∈ Dk | c ≤ |x| ≤ 1 } .

Each of the sets W and Y is a strong deformation retract of

B = A q
⋃

j

{j} × Sk−1 .

Specifically, the homotopies deforming W and Y into B are the identity on A and map each of
the sets { c < |x| ≤ 1 }, { c ≤ |x| ≤ 1 } to Sk−1 by sending a (necessarily nonzero) vector
y to |y|−1y and taking a staight line homotopy to join these two points. A direct check of the
equivalence relation defining ϕ shows that the associated maps and homotopies W → B →W and
Y → B → Y pass to the quotients V → A → V and V → A → V , and these quotient maps
display A as a strong deformation retract of both V and V .

Cell complex structures

By the preceding discussion, a simplicial complex (P,K) has a finite, linearly ordered chain of
closed subspaces

∅ = P−1 ⊂ P0 ⊂ · · · ⊂ Pm = P

such that for each k satisfying 0 ≤ k ≤ m, the subspace Pk is obtained from Pk−1 by attaching
finitely many k-cells. We shall generalize this property into a definition for arbitrary cell complex
structures.

Definition. Let X be a topological space. A finite cell complex structure (or finite CW structure)
on X is a chain E of closed subspaces

∅ = X−1 ⊂ X0 ⊂ · · · ⊂ Xm = X

such that for each k satisfying 0 ≤ k ≤ m, the subspace Xk is obtained from Xk−1 by attaching
finitely many k-cells. The subspaceXk is called the k-skeleton ofX, or more correctly the k-skeleton
of (X, E)
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At this level of abstraction, the notion of cell complex structure is due to J. H. C. Whitehead;
his definition extended to infinite cell complex structures and the letters CW were described as
abbreviations for two properties of the infinite complexes that are explained in the Appendix
of Hatcher’s book, but one should also note the coincidence(?) that the letters also represent
Whitehead’s last two initials.

It follows immediately that simplicial complexes are examples of cell complexes. Numerous
further examples appear on pages 5–8 of Hatcher. Furthermore, the ∆-complexes discussed on
pages 102–104 are also examples of cell complexes. In analogy with (edge-vertex) graphs, the main
difference between ∆-complexes and simplicial complexes is that two k-simplices in a ∆-complex
may have the same faces, but two k-simplices in a simplicial complex have at most a single (k− 1)-
face in common.

Because of the following result, one often describes a cell complex structure as a cellular
decomposition of X.

PROPOSITION 5. If X is a space and E is a cell decomposition of X, then every point of X
lies on exactly one open cell of X.

Proof. Since X = ∪k (Xk −Xk−1), it follows that every point y ∈ X lies in a exactly subset of
the form Xk−Xk−1. Therefore there is at most one value of k such that x can lie on an open k-cell.
Furthermore, since Xk −Xk−1 is a union of the opne k-cells and the latter are pairwise disjoint, it
follows that x lies on exactly one of these open k-cells.

NOTE. If a cell complex has an n-cell for some n > 0 and 0 < m < n, the cell complex might not
have any m-cells (in contrast to the situation for, say, simplicial complexes); see Example 0.3 on
page 6 of Hatcher.

Finally, we shall give a slightly different definition of subcomplex than the one in Hatcher.

Definition. If (X, E) is a cell complex, we say that a closed subspace A ⊂ X determines a cell
subcomplex if for each k ≥ 0 the set Ak = Xk ∩A is obtained from Ak−1 by attaching k-cells such
that the every k-cell for A is also a k-cell for X.

There is an simple relationship between this notion of cell subcomplex and the previous defi-
nition of subcomplex for a simplicial complex; the proof is straightforward.

PROPOSITION 6. If (P,K) is a simplicial complex and (P1,K1) is a simplicial subcomplex,
then P1 also determines a cell subcomplex.

Finally, here are two further observations regarding subcomplexes. Again, the proofs are
straightforward.

PROPOSITION 7. If X is a cell complex such that A ⊂ X determines a subcomplex of X and
B ⊂ A determines a subcomplex of A, then B also determines a subcomplex of A. Likewise, if B
determines a subcomplex of X then B determines a subcomplex of A.

PROPOSITION 8. If X is a cell complex such that A ⊂ X determines a subcomplex of X,
then for each k ≥ 0 the set Xk ∪A determines a subcomplex of X.
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II.4 : The Homotopy Extension Property

(Hatcher, Ch. 0, § 2.1)

In this section we shall bring together several concepts from the preceding sections. The basis
is the following central Extension Question stated at the beginning of this unit, and our first result
describes a condition under which this question always has an affirmative answer.

PROPSITION 1. Suppose that X and Y are topological spaces, that A ⊂ X is a retract,
and that g : A → Y is continuous. Then there is an extension of g to a continuous mapping
f : X → Y .

Proof. Let r : X → A be a continuous function such that r|A is the identity, and define f = g or.
Then if a ∈ A we have f(a) = g or(a) = g( r(a) ), and the latter is equal to g(a) since r|A is the
identity.

The hypothesis of the proposition is fairly rigid, but the result itself is a key step in proving a
general result on the Extension Question.

THEOREM 2. (HOMOTOPY EXTENSION PROPERTY) Let (X, E) be a cell complex, and
suppose that A determines a subcomplex. Suppose that Y is a topological space, that g : A → Y
is a continuous map, and f : X → Y is a continuous map such that f |A is homotopic to g. Then
there is a continuous map G : X → Y such that G|A = g.

COROLLARY 3. Suppose that X and A are as above and that g : A → Y is homotopic to a
constant map. Then g extends to a continuous function from X to Y .

COROLLARY 4. Suppose that X and A are as above and that g : A→ X is homotopic to the
inclusion map. Then g extends to a continuous function from X to itself.

Corollary 3 follows because every constant map from A to Y extends to the analogous constant
map from X to Y , and Corollary 4 follows because the inclusion of A in X extends continuously
to the identity map from X to itself.

One important step in the proof of the Homotopy Extension Property relies upon the following
result:

PROPOSITION 5. For all k > 0 the set Dk × {0} ∪ Sk−1 × [0, 1] is a strong deformation
retract of Dk × [0, 1].

Proof. This argument is outlined in Proposition 0.16 on page 15 of Hatcher, and there is a
drawing to illustrate the proof in the figures document.

The retraction r : Dk × [0, 1] → Dk × {0} ∪ Sk−1 × [0, 1] is defined by a radial projection
with center (0, 2) ∈ Dk ×R. As indicated by the drawing, the formula for r depends upon whether
2|x| + t ≥ 2 or 2|x| + t ≤ 2. Specifically, if 2|x| + t ≥ 2 then

r(x, t) =
1

|x| (x, 2|x| + t− 2)

while if 2|x| + t ≤ 2 then we have

r(x, t) =
1

2

(

(2 − t)x, 0
)
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and these are consistent when 2|x|+ t = 2 then both formulas yield the value |x|−1(x, 0). Elemen-
tary but slightly tedious calculation then implies that r(x, t) always lies in Dk × [0, 1], and likewise
that r is the identity on Dk ×{0} ∪ Sk−1 × [0, 1]. The homotopy from inclusion or to the identity
is then the straight line homotopy

H(x, t; s) = (1 − s) · r(x, t) + s · (x, t)

and this completes the proof of the proposition.

Proof of Theorem 2. In the course of the proof we shall need the following basic fact: If A
and B are compact Hausdorff spaces and ϕ : A → B is a quotient map in the sense of Munkres’
book, then for each compact Hausdorff space C the product map ϕ× 1C : A× C → B × C is also
a quotient map. This follows because ϕ× 1C is closed, continuous and surjective.

Since the homotopy relation on continuous functions is transitive, a standard recursive argu-
ment reduces the proof of the theorem to the special cases subcomplex inclusions

Xk−1 ∪ A ⊂ Xk ∪ A .

In other words, it will suffice to prove the theorem when X is obtained from A by attaching k-cells.

We now assume the condition in the preceding sentence. Let h : A×[0, 1] → Y be the homotopy
from f (when t = 0) to g (when t = 1). If we can show that the inclusion

A× [0, 1] ∪ X × {0} ⊂ X × [0, 1]

is a retract, then we can use Proposition 1 to find an extension of the map

θ = “h ∪ f ′′ : A× [0, 1] ∪X × {0} −→ Y

to X × [0, 1], and the restriction of this extension to X × {1} will be a continuous extension of g.
— In fact, we shall show that the space A × [0, 1] ∪ X × {0} is a strong deformation retract of
X × [0, 1].

As in earlier discussions let

ϕ : A q {1, · · · , N} × (Dk) −→ X

be the topological quotient map which exists by the definition of attaching k-cells. By Proposition
5 we know that the space

A× [0, 1] q {1, · · · , N} ×
(

Sk−1 × [0, 1] ∪Dk × {0}
)

is a strong deformation retract of

(

A q {1, · · · , N} ×Dk
)

× [0, 1]

because we can the mappings piecewise using the identity on A × [0, 1] and the functions from
Proposition 5 on each of the pieces {j} ×Dk × [0, 1]. Let

r′ :
(

A q {1, · · · , N} ×Dk
)

× [0, 1] −→ A× [0, 1] q {1, · · · , N}×
(

Sk−1 × [0, 1] ∪Dk × {0}
)
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be the retraction obtained in this fashion, and let

H ′ :
(

(

A q {1, · · · , N} ×Dk
)

× [0, 1]
)

× [0, 1] −→
(

A q {1, · · · , N} ×Dk
)

× [0, 1]

be defined similarly. It will suffice to show that these pass to continuous mappings of quotient
spaces; in other words, we want to show there are (continuous) mappings r and H such that the
following diagrams are commutative, in which ψ is the mapping whose values are given by ϕ:

(A q · · ·) × [0, 1]
r′

−−−−−→ A× [0, 1] q
(

{1, ..., N} × [· · ·]
)





y
ϕ× 1





yψ

X × [0, 1]
r−−−−−→ A× [0, 1] ∪X × {0}

(

(A q · · ·) × [0, 1]
)

× [0, 1]
H′

−−−−−→ (A q · · ·) × [0, 1]




y
ϕ× 1 × 1





y
φ× 1

(

X × [0, 1]
)

× [0, 1]
H−−−−−→ X × [0, 1]

Standard results on factoring maps through quotient spaces imply that such commutative diagrams
exist if and only if (i) if two points map to the same point under ψ or′, then they map to the same
point under ϕ× 1, (ii) if two points map to the same point under φ× 1 oH ′, then they map to the
same point under ϕ× 1 × 1. It is a routine exercise to check both of these statements are true.

COROLLARY 6. Suppose that X and Y are as in the theorem and Y is contractible. Then
every continuous mapping f : X → Y has a continuous extension to X.

Proof. It will suffice to prove that an arbitrary continuous mapping f : A → Y is homotopic
to a constant. We know that 1Y is homotopic to a constant map k, and therefore f = 1Y

of is
homotopic to the constant map k of .
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III . Simplicial homology

The goal of this unit is to define a sequence of abelian groups associated to a simplicial complex
(P,K) which are called homology groups and denoted by Hn(P,K), where n runs through all the
integers but the groups are all zero if n is negative. These groups may be interpreted as furnishing
an “algebraic picture” of the underlying topological space P . In order to develop the important
properties of these groups it will be necessary to introduce some basic concepts and results from
homological algebra, but efforts will be made to keep this to a minimum.

We have stated that the groups provide information about the underlying space P rather than
the simplicial complex (P,K) because these groups turn out to depend only upon P itself . This
fact will drop out of the more general constructions in the next unit, where homology groups are
defined for an arbitrary topological space and shown to agree with the groups of this unit if the
space P has a simplicial decomposition.

Some motivation from vector analysis

Suppose that U is an open subset of R3 and Σ is some sort of compact oriented surface in U
(for our purposes, it suffices to think of Σ as having a continuously defined unit normal vector at
every point). Then the boundary of Σ is some union of closed curves Γi, where the sense of Γi is
chosen such that for each point of such a curve the ordered triple of vectors given by

the chosen unit normal vector to the surface at the point,

the unit tangent vector to the curve at the point,

the unit vector which is tangent to the surface at the point, but perpendicular to the
curve’s tangent vector and directed into the surface

will form a right handed triad (see the illustration in the figures document); we shall not try to
make everything rigorous here because the goal is to provide some intuition. In such a situation
one sometimes says that the formal sum

∑

i Γi of the sensed curves Γi is homologous to zero in U ,
and by Stokes’ Theorem we have the following:

If
∑

i Γi is homologous to zero in U and F is a smooth vector field defined on U such that ∇×F = 0,
then

∑

i

∫

Γi

F · dx = 0 .

It is important to note that if V is an open subset of U and
∑

i Γi is homologous to zero in
U , then

∑

i Γi is not necessarily homologous to zero in V . The standard example for this involves
the ordinary unit circle Γ in R2 ⊂ R3 whose center is the origin and whose radius is 1. This curve
is homologous to zero in R3 because it bounds the closed unit disk. To see it is not homologous to
zero in V = (R2 − {0}, consider the vector field given by

F(u, v) =

(

v

u2 + v2
,

−u
u2 + v2

, 0

)

and note that ∇× F = 0 and the standard computation
∫

Γ

F · dx = 2π
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imply that Γ cannot be homologous to zero in V .

Suppose now that we have a union of pairwise disjoint closed oriented surface Σj in our open
set U ; the term “closed” means that the surfaces have no boundary curves, just like the unit sphere
defined by u2 +v2 +w2 = 1. We shall say that the formal sum Σ1 + · · · +Σj is homologous to zero
in U if ∪j Σj bounds a region W ⊂ U such that the closure of W is equal to the union of W and
∪j Σj and the normal directions to Σ are all outward pointing. — For example, the unit sphere
is homologous to zero in R3 because it bounds a unit disk, and if Σr denotes the sphere of radius
r in R3, then Σ1 ∪ Σ2 is homologous to zero if we orient the pieces so that the normal vectors on
Σ2 point outward (away from the origin) and the normal vectors on Σ1 point inward (towards the
origin). The Divergence Theorem from vector analysis then has the following implication:

If Σ1 + · · · +Σn is homologous to zero in U and F is a smooth vector field defined on U such that
∇ · F = 0, then

∑

i

∫ ∫

Σi

F · dΣ = 0 .

We can now show that Σ1 is not homologous to zero in R3 − {0} by an argument similar to
the preceding one. Let F be the vector field on R3 − {0} defined by F(x) = |x|−1x|; then it is a
routine exercise to prove that ∇ · F = 0 but direct computation shows that

∫ ∫

Σ1

F · dΣ = 4π .

Homology theory provides an organized algebraic framework for studying such phenomena.

III.1 : Exact sequences and chain complexes

(Hatcher, § 2.1)

This section is basically algebraic, and at first the need for formally introducing the concepts
may be unclear. However, the notions described here arise repeatedly in algebraic topology and
other subjects.

Definition. Suppose we are given a diagram of the form

A
f−−−−−→ B

g−→ C

in which the objects are abelian groups (possibly with some additional structure) and the morphisms
are abelian group homomorphisms (possibly preserving the extra structure). We shall say that the
diagram is exact at B if the kernel of g is equal to the image of f .

More generally, if we are given a linear diagram such as

· · · −→ Z −→ A −→ B −→ C −→ D −→ · · ·

we shall say that it is an exact sequence if it is exact at every object which is the domain of one
morphism and the codomain of another.
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Examples

There are many standard exact sequences in elementary algebra.

1. A short exact sequence is one having the form 0 → A → B → C → 0. Exactness at A
means that the kernel of A → B is the image of 0 → A, which is equivalent to saying
that the map is injective. Similarly, exactness at C means that the kernel of C → 0 is
the image of B → C, whic is equivalent to saying that the map is surjective. The short
exact sequence property is then equivalent to saying that A → B is injective, and C is
isomorphic to the quotient of B by the image of A.

2. The cokernel of a homomorphism f : A→ B is defined to be the quotient group B/f [A].
Given an arbitrary homomorphism f : A→ B, one then has the following kernel – cokernel
exact sequence:

0 −→ Ker(f) −→ A −→ B −→ Coker(f) −→ 0

3. Let U be a connected open subset of R2, let C∞(U) denote the infinitely differentiable real
valued functions on U , and let let V(U) denote the infinitely differentiable (2-dimensional)
vector fields on U in the sense of vector analysis. If we let R → C∞(U) denote the
inclusion of the constant functions and take the gradient map from C∞(U) to V(U), then
it follows that the sequence R → C∞(U) → V(U) is exact. Furthermore, if we take the
map V(U) → C∞(U) which sends a vector field F = (P,Q) to its “scalar curl” Q1 − P2,
then the sequence C∞(U) → V(U) → C∞(U) will be exact provided U is convex (or
more generally star-shaped). — On the other hand, the second sequence is not exact if
U = R2 − {0}, for the previously described vector field on U with coordinate functions
v/r and −u/r has zero scalar curl but is not the gradient of any smooth function on U ;
this follows from Green’s Theorem and the previous line integral calculation.

We can extend the preceding if U is a connected open set in R3 by considering the following
sequence:

R
constants−−−−−→ C∞(U)

grad−→ V(U)
curl−→ V(U)

div−→ C∞(U)

This is again exact at the left hand object C∞(U), and standard results in vector analysis imply that
the kernel of the curl is contained in the image of the gradient, while the kernel of the divergence
is contained in the image of the curl. If U is convex, then one can also show that the sequence is
exact, but in general this is not true. Our previous examples give a vector field on R2 − {0}) ×R
whose curl is zero but cannot be expressed as a gradient over U , and a vector field on R3 − {0}
whose divergence is zero but cannot be expressed as the curl of another vector field over U .

Graded objects

The next concept is simple but indispensable.

Definition. Let A be a set, and let C be a category. A graded object over C with grading set A
is a function X from A to the objects of C. The object corresponding to a is generally denoted by
Xa

For example, one can construct a graded vector space over the reals with grading set the
integers Z by taking Vn = Rn for n ≥ 0 and setting Vn equal to the zero space if n < 0.

Another example is obtainable from an algebra of polynomials R[x1, · · · , xn] in finitely many
indeterminates. Here we can take Vn to be the set of all homogeneous polynomials of degree n
together with the zero polynomial.
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In this course we shall mainly be interested in nonnegatively graded objects, where the indexing
set is Z and the object Xn is a suitable zero object if n < 0. For the categories of abelian groups
or modules over some associative ring with unit, the meaning of zero object is obvious, and these
categories are the only ones to be considered here.

Definition. If X and Y are nonnegatively graded objects over a category C, then a graded
morphism of degree zero or grade preserving morphism is a function f which assigns to each n ∈ Z
a morphism fn : Xn → Yn in the category C.

In the polynomial example, one can define a grade preserving homomorphism by sending the
homogeneous polynomial p(x1, x2, · · · xn) to the homogeneous polynomial q(x1, x2, · · · xn) =
p(x1, x1 + x2, · · · xn). Obviously there are many other maps of this type.

The following observation is immediate:

PROPOSITION 1. Given a category C, the Z-graded objects over C and graded morphisms
of degree zero form a category.

In fact, this category has many structural properties that are direct analogs of properties that
hold for C (for example, subobjects, quotient objects, direct products, and so on).

Chain complexes

The following concept is absolutely fundamental.

Definition. Let C be the category of abelian groups and homomorphisms or a category of unital
modules over an associative ring with unit R. A chain complex over C is a pair (A, d) consisting
of a graded object A over C indexed by the integers together with morphisms dj : Aj → Aj−1 such
that dj−1

odj = 0 for all j.

Here are a few simple examples.

1. Given an arbitrary graded module A, one can make it into a chain complex by taking
dj = 0 for all j. More generally, given a sequence of homomorphisms f2j : A2j → A2j−1,
one can define a chain complex whose graded module is A with d2j = f2j and d2j−1 = 0.

2. Suppose we are given three modules B, H, and B ′. The we can define a chain complex
with A2 = B, A1 = B ⊕ H ⊕ B′, and A0 = B′ and Aj = 0 otherwise such that d2 is
injection into the first summand, d1 is projection onto the third summand, and all other
maps dj must be zero (since either their domain or codomain is zero).

3. If U is open in R2, then one can obtain a chain complex from the previous sequence
involving C∞(U) and V(U), if one takes A3 to be the reals, A2 and A0 to be the smooth
functions, A0 to be the vector fields, with morphisms given by inclusion of constants from
A3 to A2, gradient from A2 to A1, scalar curl from A1 to A0, and with all other real
vector spaces and morphisms equal to zero. Similarly, if U is open in R3 one has a system
with A4 equal to the reals, A3 and A0 equal to the smooth functions, A2 and A1 equal to
the vector fields, with morphisms given by inclusion of constants from A4 to A3, gradient
from A3 to A2, curl from A2 to A1, divergence from A1 to A0, and with all other real
vector spaces and morphisms equal to zero.

The mapping d is often called a differential; the motivation is related to the preceding examples
where the maps are given by some form of differentiation.
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Definition. Given two chain complexes (A, d) and (B, e) a chain map f : A → B is a graded
morphism such that for all integers j we have ej

ofj = fj−1
odj . In other words, the following

diagram is commutative:

Aj

fj−−−−−→ Bj




y
dj





y

ej

Aj−1
fj−1−−−−−→ Bj−1

If the differential in a chain complex (A, d) is unambiguous from the context we shall frequently
write A instead of (A, d).

The following consequences of the definitions are elementary but important.

PROPOSITION 2. Given a category C, the chain complexes over over C and chain complex
morphisms form a category.

PROPOSITION 3. If (A, d) and (B, e) are chain complexes over C and f : (A, d) → (B, e) is
a morphism of chain complex such that the mappings fj are all isomorphisms, then the map f−1

of graded modules defined by (f−1)j = f−1
j is also a chain map.

Proof. To simplify the formulas let gj = f−1
j . The conclusion of the proposition is equivalent to

the identities dj
ogj = gj−1

oej as maps from Bj to Aj−1.

Let b ∈ Bj be arbitrary. Since fj−1 is injective, it follows that dj
ogj(b) = gj−1

oej(b) if and
only if fj−1

odj
ogj(b) = fj−1

ogj−1
oej(b). The left hand side is equal to

fj−1
odj

ogj(b) = ej
ofj

ogj(b) = ej(b)

by the defining identity for chain maps and the fact that g is inverse to f , and the latter fact also
implies that the right hand side is equal to ej(b). Therefore it follows that the maps gj satisfies the
defining conditions for a chain map.

As before, the category of chain complexes over C has many structural properties that are
direct analogs of properties that hold for C and the category of graded objects over C (such as
subobjects, quotient objects, direct products).

ONE MORE EXAMPLE. Let ∆ be a 2-simplex with vertices x, y and z, let C0 be the free abelian
group generated by these vertices, let C1 be the free abelian group generated by the three edges
yz, xz and xy, let C2 be the free abelian group generated by the element ∆, and define maps
d2 : C2 → C1 and d1 : C1 → C0 by

d2(A) = yz − xy + xz

d1(xy) = y − x, d1(yz) = z− y and d1(xz) = z − x.

We set all other groups Cj equal to zero, and it follows that all remaining homomorphisms must
also be zero. Direct examination shows that the kernel of d1 is the set of akk multiples of d2(∆).
Geometrically, d2(∆) represents the boundary of the simplex A with the edges oriented so that
they correspond to a simple closed curve. More generally, if (A, d) is a chain complex then elements
in the kernel of dj are frequently called cycles, while elements in the image of dj+1 are frequently
called boundaries, and the homomorphisms dj are frequently called boundary homomorphisms.
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III.2 : Homology groups

If (A, d) is a chain complex, then the condition dj
odj+1 implies that the kernel of dj (the

submodule of cycles) contains the image of dj+1 (the submodule of boundaries). The sequence
determined by the chain complex is exact at Aj if and only if these two submodules are equal.
One can view homology groups as measuring the extent to which a chain complex is not an exact
sequence.

Definition. Let (A, d) be a chain complex. The j th homology group Hj(A) = Hj(A, d) is equal
to the quotient module

(Kernel dj)/(Image dj+1) .

By the definitions, the sequence of morphisms determined by a chain complex (A, d) is exact
at Aj if and only if Hj(A) = 0.

Computation of the homology groups for the examples in Section III.1 is fairly straightforward.

1. If we take an arbitrary graded module A and make it into a chain complex by taking
dj = 0 for all j, then Hj(A, 0) = Aj . If we are given a sequence of homomorphisms
f2j : A2j → A2j−1 and define a chain complex whose graded module is A with d2j = f2j

and d2j−1 = 0, then H2j(A) = Kernel d2j and H2j−1(A) = A2j−1/Image d2j .

2. In Example 2 from the previous section, the homology is zero if U is a convex open subset
of R2 or R3.

3. In “ONE MORE EXMPLE” from the previous section, we have Hj(C) = 0 if j 6= 0, while
H0(C) is infinite cyclic, with the generator represented by the class of x (which also turns
out to be represented by y and z).

TO BE CONTINUED

3. Homology and simplicial complexes (Hatcher, 2.1)

4. Chain homotopies (Hatcher, 2.1)

5. Comparison principles (Hatcher, 2.1 – 2.2)
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