The Steiner surface

This is a solution to the following exercise in Conlon:

EXERCISE. Let $p: S^2 \to \mathbf{RP}^2$ be the usual double covering map, and let $g: \mathbf{RP}^2 \to \mathbf{R}^2$ be the unique smooth map such that g maps the equivalence class of $(x, y, z) \in S^2$ to xy, yz, xz). Prove that g is an immersion on \mathbf{RP}^2 – (six points).

SOLUTION.

Cover \mathbf{RP}^2 with the coordinate charts h_1 , h_2 and h_3 from the open unit disk

$$\{ (u, v) \mid u^2 + v^2 < 1 \}$$

to \mathbf{RP}^2 such that

$$h_1(u, v) = p(u, v, \sqrt{1 - (u^2 + v^2)}),$$

$$h_2(u, v) = p(u, \sqrt{1 - (u^2 + v^2)}, v),$$

$$h_3(u, v) = p(\sqrt{1 - (u^2 + v^2)}, u, v).$$

In principle, it suffices to find the points $h_i(u, v)$ such that g is not an immersion at $h_i(u, v)$ for $1 \le i \le 3$, and for each i this amounts to finding the points (u, v) such that $g \circ h_i$ is not an immersion at (u, v). We need to show that there are six points in \mathbb{RP}^2 which can be so described.

We shall concentrate on the case i = 1, and later we shall explain how one can use similar considerations apply to the other cases. Therefore set $\sigma = g \circ h_1$. It follows that the set of all points in the image of h_1 such that g is not a smooth immersion will be equal to the set of all points $h_1(u, v)$ such that σ is not an immersion at (u, v), which amounts to solving the vector equation

$$\frac{\partial \sigma}{\partial u} \times \frac{\partial \sigma}{\partial v} = \mathbf{0} \; .$$

It will simplify our equations if we set $w = \sqrt{1 - (u^2 + v^2)}$. Note that w is positive, and in particular it is nonzero.

Direct computation now yields

$$\frac{\partial \sigma}{\partial u} = \begin{pmatrix} v \\ \frac{-vu}{w} \\ \frac{w^2 - u^2}{w} \end{pmatrix} \qquad \frac{\partial \sigma}{\partial v} = \begin{pmatrix} u \\ \frac{w^2 - v^2}{w} \\ \frac{-uv}{w} \end{pmatrix}$$

Therefore the cross product is given by

$$\frac{\partial \sigma}{\partial u} \times \frac{\partial \sigma}{\partial v} = \begin{pmatrix} \frac{u^2 v^2 - (w^2 - u^2)(w^2 - v^2)}{w^2} \\ \frac{u(w^2 - u^2) + uv^2}{w} \\ \frac{v(w^2 - v^2) + vu^2}{w} \end{pmatrix}.$$

We need to determine when all three coordinates of the vector on the right hand side are equal to zero. The first coordinate is equal to zero if and only if

$$u^2 v^2 = (w^2 - u^2)(w^2 - v^2)$$

and this reduces to

$$0 + w^4 - w^2 u^2 - w^2 v^2 = w^2 (w^2 - u^2 - v^2)$$

so that w > 0 implies $w^2 = u^2 + v + 2$. On the other hand, we have $u^2 + v^2 + w^2 = 1$, and hence we have $2w^2 = 1$, so that $w^2 = \frac{1}{2}$ and hence the positive number w must be $\frac{1}{2}\sqrt{2}$. Note that we must also have $u^2 + v^2 = \frac{1}{2}$.

Next, we note that the second coordinate is zero if and only if

$$u(w^2 - u^2) + uv^2 = 0$$

which means that either (a) we have u = 0, or else we have (b) $v^2 = u^2 - w^2$.

- If (a) is true, then $v^2 = w^2 = \frac{1}{2}$, so that $v = \pm \frac{1}{2}\sqrt{2}$.
- If (b) is true, then $u^2 + v^2 = w^2$ implies $v^2 = w^2 u^2$, so that

$$u^2 - w^2 = v^2 = w^2 - u^2$$

and since the expressions on the left and right are negatives of each other it follows that $v^2 = -v^2$, so that v = 0. As in the preceding paragraph we then have $u^2 = w^2 = \frac{1}{2}$, so that $u = \pm \frac{1}{2}\sqrt{2}$.

Conversely, one can check directly that the cross product $\sigma_u \times \sigma_v$ vanishes at the four points $(u, v) = (0, \pm \frac{1}{2}\sqrt{2})$ and $(u, v) = (\pm \frac{1}{2}\sqrt{2}, 0)$, which correspond to the four points $p(0, \pm \frac{1}{2}\sqrt{2}, \frac{1}{2}\sqrt{2})$ and $p(\pm \frac{1}{2}\sqrt{2}, 0, \frac{1}{2}\sqrt{2})$.

One can analyze the images of h_2 and h_3 similarly by simply permuting the coordinates in \mathbb{R}^3 . In particular, the points in the image of h_2 for which g is not an immersion are given by $p(0, \frac{1}{2}\sqrt{2}, \pm \frac{1}{2}\sqrt{2})$ and $p(\pm \frac{1}{2}\sqrt{2}, \frac{1}{2}\sqrt{2}, 0)$, and particular, the points in the image of h_3 for which g is not an immersion are given by $p(\frac{1}{2}\sqrt{2}, \pm \frac{1}{2}\sqrt{2}, 0)$ and $p(\frac{1}{2}\sqrt{2}, 0, 0, 0)$ Since p(x, y, z) = p(-x, -y, -z), it follows that the map g is qn immersion except at the six distinct points listed below:

$$p(\frac{1}{2}\sqrt{2}, \pm \frac{1}{2}\sqrt{2}, 0)$$

$$p(\frac{1}{2}\sqrt{2}, 0, \pm \frac{1}{2}\sqrt{2})$$

$$p(0, \frac{1}{2}\sqrt{2}, \pm \frac{1}{2}\sqrt{2})$$

This completes the solution to the exercise.