The Steiner surface

This is a solution to the following exercise in Conlon:
EXERCISE. Let $p: S^{2} \rightarrow \mathbf{R} \mathbf{P}^{2}$ be the usual double covering map, and let $g: \mathbf{R P}^{2} \rightarrow \mathbf{R}^{2}$ be the unique smooth map such that g maps the equivalence class of $(x, y, z) \in S^{2}$ to $x y, y z, x z)$. Prove that g is an immersion on $\mathbf{R} \mathbf{P}^{2}-($ six points).

SOLUTION.

Cover $\mathbf{R P}^{2}$ with the coordinate charts h_{1}, h_{2} and h_{3} from the open unit disk

$$
\left\{(u, v) \mid u^{2}+v^{2}<1\right\}
$$

to $\mathbf{R P}^{2}$ such that

$$
\begin{aligned}
& h_{1}(u, v)=p\left(u, v, \sqrt{1-\left(u^{2}+v^{2}\right)}\right), \\
& h_{2}(u, v)=p\left(u, \sqrt{1-\left(u^{2}+v^{2}\right)}, v\right), \\
& h_{3}(u, v)=p\left(\sqrt{1-\left(u^{2}+v^{2}\right)}, u, v\right) .
\end{aligned}
$$

In principle, it suffices to find the points $h_{i}(u, v)$ such that g is not an immersion at $h_{i}(u, v)$ for $1 \leq i \leq 3$, and for each i this amounts to finding the points (u, v) such that $g^{\circ} h_{i}$ is not an immersion at (u, v). We need to show that there are six points in $\mathbf{R P}^{2}$ which can be so described.

We shall concentrate on the case $i=1$, and later we shall explain how one can use similar considerations apply to the other cases. Therefore set $\sigma=g{ }^{\circ} h_{1}$. It follows that the set of all points in the image of h_{1} such that g is not a smooth immersion will be equal to the set of all points $h_{1}(u, v)$ such that σ is not an immersion at (u, v), which amounts to solving the vector equation

$$
\frac{\partial \sigma}{\partial u} \times \frac{\partial \sigma}{\partial v}=\mathbf{0}
$$

It will simplify our equations if we set $w=\sqrt{1-\left(u^{2}+v^{2}\right)}$. Note that w is positive, and in particular it is nonzero.

Direct computation now yields

$$
\frac{\partial \sigma}{\partial u}=\left(\begin{array}{c}
v \\
\frac{-v u}{w} \\
\frac{w^{2}-u^{2}}{w}
\end{array}\right) \quad \frac{\partial \sigma}{\partial v}=\left(\begin{array}{c}
u \\
\frac{w^{2}-v^{2}}{w} \\
\frac{-u v}{w}
\end{array}\right) .
$$

Therefore the cross product is given by

$$
\frac{\partial \sigma}{\partial u} \times \frac{\partial \sigma}{\partial v}=\left(\begin{array}{c}
\frac{u^{2} v^{2}-\left(w^{2}-u^{2}\right)\left(w^{2}-v^{2}\right)}{w^{2}} \\
\frac{u\left(w^{2}-u^{2}\right)+u v^{2}}{w} \\
\frac{v\left(w^{2}-v^{2}\right)+v u^{2}}{w}
\end{array}\right)
$$

We need to determine when all three coordinates of the vector on the right hand side are equal to zero. The first coordinate is equal to zero if and only if

$$
u^{2} v^{2}=\left(w^{2}-u^{2}\right)\left(w^{2}-v^{2}\right)
$$

and this reduces to

$$
0+w^{4}-w^{2} u^{2}-w^{2} v^{2}=w^{2}\left(w^{2}-u^{2}-v^{2}\right)
$$

so that $w>0$ implies $w^{2}=u^{2}+v+2$. On the other hand, we have $u^{2}+v^{2}+w^{2}=1$, and hence we have $2 w^{2}=1$, so that $w^{2}=\frac{1}{2}$ and hence the positive number w must be $\frac{1}{2} \sqrt{2}$. Note that we must also have $u^{2}+v^{2}=\frac{1}{2}$.

Next, we note that the second coordinate is zero if and only if

$$
u\left(w^{2}-u^{2}\right)+u v^{2}=0
$$

which means that either (a) we have $u=0$, or else we have $(b) v^{2}=u^{2}-w^{2}$.
If (a) is true, then $v^{2}=w^{2}=\frac{1}{2}$, so that $v= \pm \frac{1}{2} \sqrt{2}$.
If (b) is true, then $u^{2}+v^{2}=w^{2}$ implies $v^{2}=w^{2}-u^{2}$, so that

$$
u^{2}-w^{2}=v^{2}=w^{2}-u^{2}
$$

and since the expressions on the left and right are negatives of each other it follows that $v^{2}=-v^{2}$, so that $v=0$. As in the preceding paragraph we then have $u^{2}=w^{2}=\frac{1}{2}$, so that $u= \pm \frac{1}{2} \sqrt{2}$.

Conversely, one can check directly that the cross product $\sigma_{u} \times \sigma_{v}$ vanishes at the four points $(u, v)=\left(0, \pm \frac{1}{2} \sqrt{2}\right)$ and $(u, v)=\left(\pm \frac{1}{2} \sqrt{2}, 0\right)$, which correspond to the four points $p\left(0, \pm \frac{1}{2} \sqrt{2}, \frac{1}{2} \sqrt{2}\right)$ and $p\left(\pm \frac{1}{2} \sqrt{2}, 0, \frac{1}{2} \sqrt{2}\right)$.

One can analyze the images of h_{2} and h_{3} similarly by simply permuting the coordinates in \mathbf{R}^{3}. In particular, the points in the image of h_{2} for which g is not an immersion are given by $p\left(0, \frac{1}{2} \sqrt{2}, \pm \frac{1}{2} \sqrt{2}\right)$ and $p\left(\pm \frac{1}{2} \sqrt{2}, \frac{1}{2} \sqrt{2}, 0\right)$, and particular, the points in the image of h_{3} for which g is not an immersion are given by $p\left(\frac{1}{2} \sqrt{2}, \pm \frac{1}{2} \sqrt{2}, 0\right)$ and $p\left(\frac{1}{2} \sqrt{2},, 0 \pm \frac{1}{2} \sqrt{2}, 0\right)$. Since $p(x, y, z)=p(-x,-y,-z)$, it follows that the map g is qn immersion except at the six distinct points listed below:

$$
\begin{aligned}
& p\left(\frac{1}{2} \sqrt{2}, \pm \frac{1}{2} \sqrt{2}, 0\right) \\
& p\left(\frac{1}{2} \sqrt{2}, 0, \pm \frac{1}{2} \sqrt{2}\right) \\
& p\left(0, \frac{1}{2} \sqrt{2}, \pm \frac{1}{2} \sqrt{2}\right)
\end{aligned}
$$

This completes the solution to the exercise.

