# Mathematics 246A, Winter 2009, Take-Home Examination 

This will be due on<br>Wednesday, March 18, 2009, at 4:30 P.M.<br>either in my mailbox, at the front desk of Surge 202<br>or in an electronic format as indicated below.

You must show the work behind or reasons for your answers. The point values for problems are indicated in brackets.

Given a simplicial complex $\mathbf{K}$ and a subcomplex $\mathbf{L}$, the relative Euler characteristic $\chi(\mathbf{K}, \mathbf{L})$ is defined to be

$$
\sum_{q}(-1)^{q} \operatorname{dim} C_{q}(\mathbf{K}, \mathbf{L})_{(0)}
$$

in analogy with Corollary IV.3.11 and Theorem IV.3.12 of the notes (the latter only consider the case where $\mathbf{L}$ is empty). The cited results imply that this number is equal to

$$
\sum_{q}(-1)^{q} \operatorname{dim} H_{q}(|\mathbf{K}|,|\mathbf{L}|)_{(0)}
$$

where the objects on the right are rationalized singular homology groups and $|\mathbf{M}|$ denotes the underlying topological space of a simplicial complex M.

1. [15 points] Explain why the relative Euler characteristic satisfies the following properties:
(a) If $|\mathbf{K}|$ and $|\mathbf{L}|$ are homotopy equivalent, then $\chi(\mathbf{K})=\chi(\mathbf{L})$.
(b) If $\mathbf{L}$ is a subcomplex of $\mathbf{K}$, then $\chi(\mathbf{K})=\chi(\mathbf{L})+\chi(\mathbf{K}, \mathbf{L})$.
(c) If $\mathbf{K}$ and $\mathbf{L}$ are subcomplexes of $\mathbf{M}$, then $\chi(\mathbf{K}, \mathbf{K} \cap \mathbf{L})=\chi(\mathbf{K} \cup \mathbf{L}, \mathbf{L})$ or equivalently $\chi(\mathbf{K} \cup \mathbf{L})=\chi(\mathbf{K})+\chi(\mathbf{L})-\chi(\mathbf{K} \cap \mathbf{L})$.
2. [30 points] Suppose that $g$ is an integer valued function on simplicial complex pairs $(\mathbf{K}, \mathbf{L})$ which satisfies the three properties in the preceding exercise. Prove that for all pairs $(\mathbf{K}, \mathbf{L})$ we have $g(\mathbf{K}, \mathbf{L})=\chi(\mathbf{K}, \mathbf{L}) \cdot g\left(\Delta_{0}\right)$. [Hints: In Property $(c)$, what conclusion can we draw if the intersection is empty? Use this to dispose of the 0-dimensional case, first if $\mathbf{L}$ is empty and then more generally. Next, consider the following statements.
[ $A_{k}$ ] The formula for $g$ is true if $\mathbf{K}$ is at most $k$-dimensional (hence the same is true for $\mathbf{L}$ ).
[ $B_{k}$ ] The formula for $g$ is true for the pair $\left(\Delta_{k}, \partial \Delta_{k}\right)$.
[ $C_{k, m}$ ] The formula for $g$ is true if $\mathbf{K}$ is at most $k$-dimensional and the number of $k$-simplices in $\mathbf{K}$ but not in $\mathbf{L}$ is at most $m$.

Why is $\left[A_{k}\right]$ equivalent to $\left[C_{k+1,0}\right]$ when $\mathbf{L}$ is empty in the second case, and how can one extend this to the general case where $\mathbf{L}$ is not necessarily nonempty? Prove that $\left[A_{k}\right] \Longrightarrow\left[B_{k+1}\right]$ and $\left[C_{k, m}\right] \Longrightarrow\left[C_{k, m+1}\right]$ for all $m \geq 0$.]
3. [30 points] If $\mathbf{K}_{1}$ and $\mathbf{K}_{2}$ are simplicial complexes, then it is possible to construct a simplicial decomposition $\mathbf{K}_{1} \prod \mathbf{K}_{\mathbf{2}}$ on the space $\left|\mathbf{K}_{1}\right| \times\left|\mathbf{K}_{2}\right|$ such that if $\mathbf{L}$ is a subcomplex of $\mathbf{K}_{1}$, then $\mathbf{L} \prod \mathbf{K}_{\mathbf{2}}$ is a subcomplex of $\mathbf{K}_{1} \prod \mathbf{K}_{\mathbf{2}}$. This construction is given in Section II. 8 of Eilenberg and Steenrod; all we need to know about it for this exercise is stated in the previous sentence.
(a) Prove that the Euler characteristic satisfies

$$
\chi\left(\mathbf{K}_{1} \prod \mathbf{K}_{2}\right)=\chi\left(\mathbf{K}_{1}\right) \cdot \chi\left(\mathbf{K}_{2}\right)
$$

[Hint: Try to use the preceding exercise.]
(b) If $n \geq 2$ is an integer, prove that the spaces $S^{n} \times S^{n}$ and $S^{n-1} \times S^{n+1}$ are not homeomorphic (or even homotopy equivalent). Strictly speaking, there are two cases depending upon whether $n$ is even or odd.
4. [25 points] Suppose that $(P, \mathbf{K})$ and $(Q, \mathbf{L})$ are polyhedra in $\mathbb{R}^{n}$ such that $\mathbf{p}$ is a vertex of $\mathbf{K}$ and $\mathbf{q}$ is a vertex of $\mathbf{L}$. Define the wedge sum

$$
(P, \mathbf{p}) \vee(Q, \mathbf{q})=(P \times\{\mathbf{q}\}) \cup(\{\mathbf{p}\} \times Q) \subset \mathbb{R}^{2 n}
$$

and take the simplicial decomposition of this space given by $\mathbf{K} \times\{\mathbf{q}\}$ and $\{\mathbf{p}\} \times \mathbf{L}$.
(a) Give a formula for the Euler characteristic of the wedge sum in terms of $\chi(P)$ and $\chi(Q)$.
(b) For each positive integer $n \geq 2$ construct a connected 2-dimensional polyhedron $P_{n}$ whose Euler characteristic is equal to $n$. [Note: $\chi\left(\Delta_{0}\right)=1$ and for each $m \leq 0$ there is a connected graph whose Euler characteristic is equal to $m$.]

## Guidelines for electronic files

Any version of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ that works easily on the Department's Unix machines (no rare or exotic, hard to find macros) is fine, including standard forms of $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$. If you wish to send PostScript or pdf files, these are also options.

An extra credit problem will be posted later.

