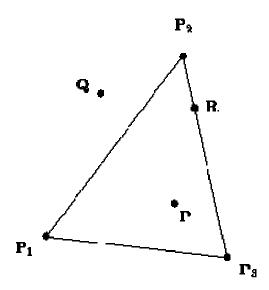
# FIGURES FOR ALGEBRAIC TOPOLOGY LECTURE NOTES

# I: Foundatonal and geometric background

## I.2: Barycentric coordinates and polyhedra

<u>Barycentric coordinates.</u> In the drawing below, each of the points P, Q, R lies in the plane determined by  $P_1$ ,  $P_2$ , and  $P_3$ , and consequently each can be written as a linear combination  $w_1P_1 + w_2P_2 + w_3P_3$ , where  $w_1 + w_2 + w_3 = 1$ . In the picture below, for the point P the barycentric coordinates  $w_i$  are positive, while for the point R the barycentric coordinates are such that  $w_1 = 0$  but the other two are positive, and for the positive.



#### FIGURE 1

 $\begin{array}{c} (\underline{Source:} \\ \underline{ \text{Notes:}} \\ \underline{ \text{Coordinates/Barycentric-Coordinates.html}} \end{array}) \\ \\ \underline{ \text{Coordinates/Barycentric-Coordinates.html}} \\ \end{array}) \\$ 

Examples of points for which  $w_2$  is positive but the remaining coordinates are negative can also be constructed using this picture; for example, if one draws the perpendicular from  $P_2$  to the line  $P_1P_3$ , then each point S on this perpendicular which lie above  $P_2$  in the picture (alternatively,  $P_2$  is between S and the foot of the perpendicular on  $P_1P_3$ ) will have this property.

<u>Illustration of a 2 - simplex</u>. We shall use a modified version of Figure 1; the points of the 2 - simplex with vertices  $P_1$ ,  $P_2$ , and  $P_3$  consists of the triangle determined by these points and the points which lie inside this triangle (in the usual intuitive sense of the word).

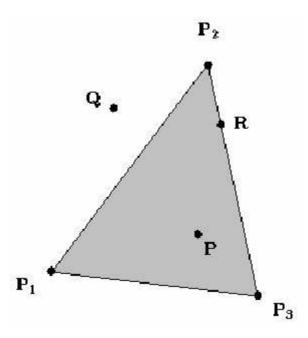
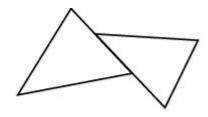


FIGURE 2

In this picture the points  ${\bf P}$  and  ${\bf R}$  lie on the simplex  ${\bf P_1P_2\,P_3}$  because their barycentric coordinates are all nonnegative, but the point  ${\bf Q}$  does not because one of its barycentric coordinates is negative.

Note that the (*proper*) *faces* of this simplex are the closed segments  $P_1P_2$ ,  $P_2P_3$ , and  $P_1P_3$  joining pairs of vertices as well as the three vertices themselves (and possibly the empty set if we want to talk about an empty face with no vertices).

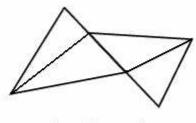
<u>Simplicial decompositions.</u> It is useful to look at a few spaces given as unions of 2- simplices, some of which determine simplicial complexes in the sense of the notes and others that do not.



not a simplicial complex FIGURE 3

(Source: http://mathworld.wolfram.com/SimplicialComplex.html)

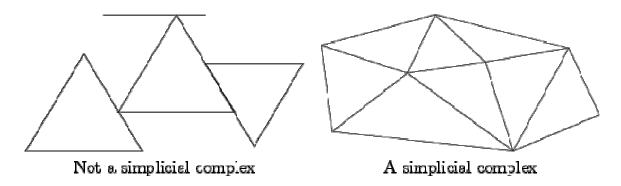
In the example above the intersection of the 2 – simplices is not a common face. On the other hand, we can split the two simplices into smaller pieces such that we do have a simplicial decomposition.



simplicial complex

### FIGURE 4

Here are two more examples; in the second case the simplices determine a simplicial complex and in the first they do not. As in the preceding example, one can subdivide the simplices in the first example to obtain a simplicial decomposition.



(Source: http://planning.cs.uiuc.edu/node274.html)

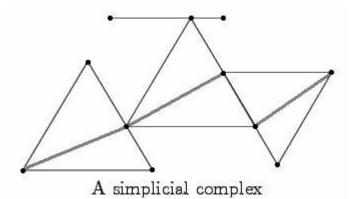


FIGURE 5

<u>Triangulations.</u> In the example from page 523 of Marsden and Tromba, the annulus bounded by two circles is split into four isometric pieces as in the drawing on the next page.

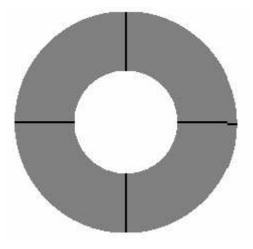


FIGURE 6

Each of the four pieces is homeomorphic to a solid rectangle. Since a solid rectangle has a simplicial decomposition into two 2 – simplices, one can use such a decomposition to form a triangulation of the solid annulus.

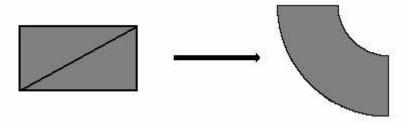


FIGURE 7

Another way of triangulating the annulus is suggested by the figure below:

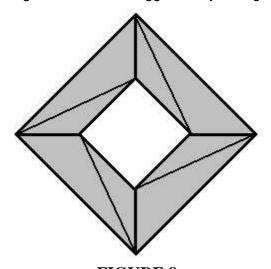
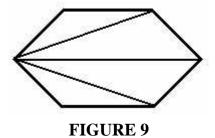
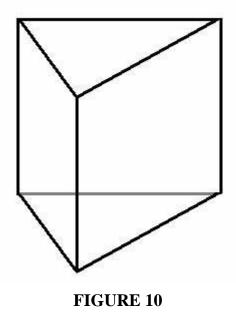


FIGURE 8

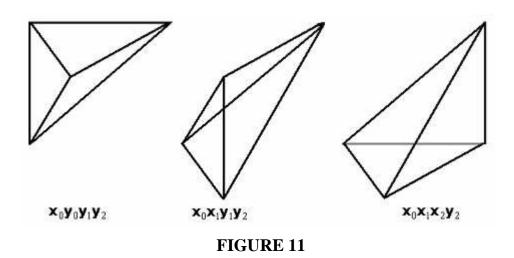
Similarly, many familiar closed polygonal regions can be triangulated fairly easily. Here is an example for a solid hexagon.



<u>Triangulations of prisms.</u> The drawings below illustrate the standard decomposition of a 3 – dimensional triangular prism.



If we take  $x_0$ ,  $x_1$ , and  $x_2$  to be the vertices of the bottom triangle and  $y_0$ ,  $y_1$ , and  $y_2$  to be the vertices of the top triangle, then the decomposition is given as follows:



#### I.3: Subdivisions

<u>Simple subdivisions 1.</u> The drawing below depicts a subdivision of a 1 – simplex given by a closed interval in the real line into three 1 – simplices (which are just subintervals of the original interval).

Similarly, every partition of an interval determines a subdivision.

<u>Simple subdivisions 2.</u> The drawing below depicts a subdivision of a 2- simplex into two 2- simplices.

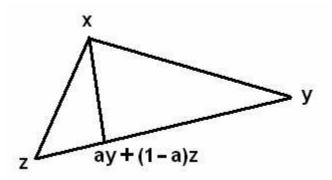


FIGURE 2

If  $\mathbf{w} = a\mathbf{y} + (1-a)\mathbf{z}$  where 0 < a < 1 and  $p\mathbf{x} + q\mathbf{y} + r\mathbf{z}$  is a point on the simplex  $\mathbf{x}\mathbf{y}\mathbf{z}$  (so that  $p, q, r \geq 0$  and  $p\mathbf{x} + q\mathbf{y} + r\mathbf{z} = 1$ ), then the point  $p\mathbf{x} + q\mathbf{y} + r\mathbf{z}$  lies on the simplex  $\mathbf{x}\mathbf{w}\mathbf{z}$  if and only if p = 1 or p < 1 and  $q \geq a(1-p)$ , and  $p\mathbf{x} + q\mathbf{y} + r\mathbf{z}$  lies on the simplex  $\mathbf{x}\mathbf{w}\mathbf{y}$  if and only if p = 1 or p < 1 and  $p \leq a(1-p)$ . The intersection of these simplices is the face with vertices  $\mathbf{x}$  and  $\mathbf{w}$ . Some other simple subdivisions of a 2- simplex are illustrated below.

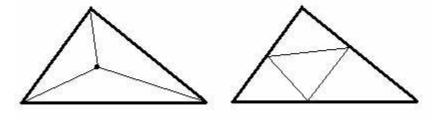


FIGURE 3

<u>A nonexample.</u> In general, if we given two simplicial decompositions, then neither is a subdivision of the other. For example, neither of the two simplicial decompositions of a rectangle described below is a subdivision of the other.



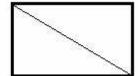


FIGURE 4

On the other hand, there is a decomposition which is a subdivision of **both** the decompositions shown above.

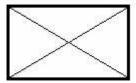


FIGURE 5

More generally, if we are given two simplicial decompositions K and L of a polyhedron P then one can always construct a third decomposition which is a subdivision of both K and L. This follows from results in the book, *Elementary Differential Topology*, by J. R. Munkres (see the notes for a more complete citation).

<u>Barycentric subdivisions.</u> Here is a drawing to illustrate the barycentric subdivision of a 2- simplex.

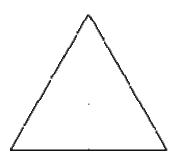


FIGURE 6

The vertices of a 2 – simplex in this subdivision are given by  $\mathbf{a}$ ,  $\mathbf{b}$  and  $\mathbf{c}$ , where  $\mathbf{a}$  is a vertex of the original simplex,  $\mathbf{b}$  is the midpoint of an edge which has  $\mathbf{a}$  as a vertex, and  $\mathbf{c}$  is the barycenter of the 2 – simplex itself. In this example, the diameters of the 2 – simplices in the barycentric subdivision are 2/3 the diameter of the original simplex.

The drawing below illustrates how the barycentric subdivision of a solid rectangular region which is decomposed into two 2 – simplices along a diagonal.

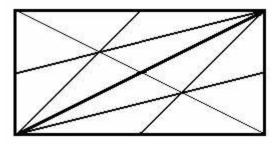


FIGURE 7

The next drawing illustrates the **second barycentric subdivision** of a 2 – simplex (however, the locations of several vertices are slightly inaccurate).

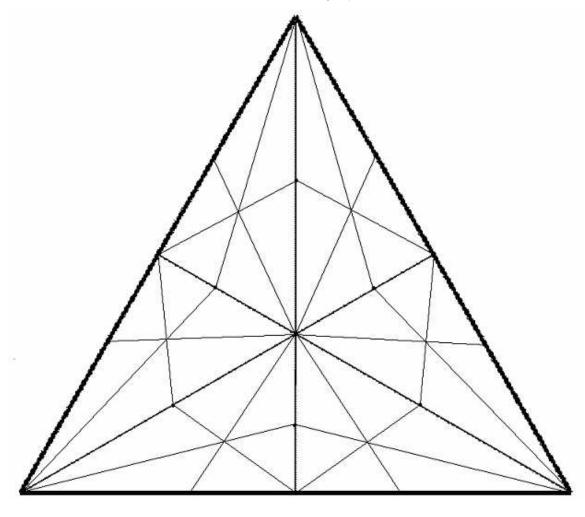


FIGURE 8

This decomposition has 25 vertices, 60 edges and 36 simplices that are 2- dimensional. Incidentally, in the third barycentric subdivision there are 121 vertices, 336 edges and 216 simplices that are 2- dimensional.