
I . Differential Forms and their Integrals

The purpose of this unit is to continue the discussion of differential forms from 205C in several
directions. One objective is to prove a version of the result stating that the line integral of a closed
1-form over a closed curve only depends upon the homotopy class of the curve in the open set U on
which the 1-form and curve are defined. A second objective is to relate the definition of integrals
from 205C to the sorts of constructions one sees in multivariable calculus courses, and the third
objective is to give a generalization of classical results in vector analysis (like Stokes’ Theorem) to
arbitrary dimensions.

I.1 : Differential 1–forms and the fundamental group

(Conlon, §§ 6.2 – 6.4)

In multivariable calculus one learns that certain line integrals in the plane of the form

∫

Γ

P dx + Qdy

depend only on the endpoints of Γ. More precisely, if

∂P

∂y
=

∂Q

∂x

and P and Q have continuous partial derivatives on a convex open set, then the integral does not
depend upon the path. In contrast, if we consider the line integral

∫

Γ

x dy − y dx

x2 + y2

over the counterclockwise unit circle (cos t, sin t) for 0 ≤ t ≤ 2π, then direct computation shows that
the value obtained is 2π, but if we consider the corresponding line integral over the counterclockwise
circle of radius 1

3 centered at ( 2
3 , 0) with parametrization

x(t) = 2
3 + 1

3 cos t, y(t) = 1
3 sin t (0 ≤ t ≤ 2π)

then direct computation shows that the integral’s value is zero. Since both of the curves we have
described start and end at (1, 0), obviously the line integral does depend upon the path in this
case. It is natural to ask the extent to which the line integral does vary with the choice of path;
the main result here states that the value depends only on the homotopy class of the path, where
it is assumed that the homotopy keeps the endpoints fixed.

MAIN RESULT. Let U be an open subset of the coordinate plane, let P (x, y) and Q(x, y) be

two functions with continuous partials satisfying the previous condition on partial derivatives, and
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let Γ and Γ′ be two piecewise smooth curves in U with the same endpoints such that Γ and Γ′ are

homotopic by an endpoint preserving homotopy. Then

∫

Γ

P dx + Qdy =

∫

Γ′

P dx + Qdy .

In particular, if Γ and Γ′ are closed curves, then the line integrals agree if Γ and Γ′ determine

the same element of π1(U, {endpoint}).

At the end of this section we shall explain how this result yields a complete description of all
values that the line integral

∫

Γ

P dx + Qdy =

∫

Γ′

P dx + Qdy

can take, where P and Q are the specific functions above and Γ is a closed piecewise smooth curve
whose image lies in R2 − {(0, 0)}.

Relation to the Cauchy-Goursat Theorem. If f is an analytic function of a complex variable on
the open set U ⊂ R2 = C and we write f = u + i v as usual, then for every piecewise smooth
curve Γ we have

∫

Γ

f(z) dz =

∫

Γ

u dx − v dy + i ·
∫

Γ

v dx + u dy

and by the Cauchy-Riemann Equations the integrands of the two summands satisfy the previously
formulated condition Py = Qx, and hence if u and v are known to have continuous partial
derivatives then the main result proves a reasonably good form of the Cauchy-Goursat Theorem.
Since the usual definition of analytic function does not include the continuity assumption for the
partial derivatives, the main result does not quite prove the entire Cauchy-Goursat Theorem, but
it is possible to modify the argument slightly in order to obtain the general result in which one
does not assume the partial derivatives are continuous (if one continues to develop the subject of
complex variables, it turns out that u and v always have continuous partial derivatives, but this
requires additional work).

The following alternate version of the Main Theorem is frequently found in books on multi-
variable calculus.

ALTERNATE STATEMENT OF MAIN THEOREM. If P and Q are as above, U is a

connected region, and Γ is a piecewise smooth closed curve that is homotopic to a constant in U ,

then
∫

Γ

P dx + Qdy = 0 .

This follows immediately from the Main Result, observation (3) above, and the triviality of
the fundamental group of U . Conversely, the Main Result follows from the Alternate Statement.
To see this, in the setting of the Main Result the curve Γ′ + (−Γ) is a closed piecewise smooth
curve that is homotopic to a constant (verify this!), so the Alternate Statement implies that the
line integral over this curve is zero. On the other hand, this line integral is also the difference of
the line integrals over Γ′ and Γ. Combining these observations, we see that the line integrals over
Γ′ and Γ must be equal.

In fact, it will be more convenient for us to prove the Alternate Statement in the discussion
below.
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The next result is often also found in multivariable calculus texts.

COROLLARY. If in the setting of the Main Result and its Alternate Statement we also know

that the region U is simply connected then

(i) for every piecewise smooth closed curve Γ in U we have

∫

Γ

P dx + Qdy = 0

(ii) for every pair of piecwise smooth curves Γ, Γ′ with the same endpoints we have

∫

Γ

P dx + Qdy =

∫

Γ′

P dx + Qdy .

The first part of the corollary follows from the triviality of the fundamental group of U , the
Alternate Statement of the Main Result, and the triviality of line integrals over constant curve.
The second part follows formally from the first in the same way that the Main Result follows from
its Alternate Statement.

Background from multivariable calculus

As noted above, the following result can be found in most multivariable calculus textbooks.

PATH INDEPENDENCE THEOREM. Let U be a rectangular open subset of the coordinate

plane of the form (a1, b1) × (a2, b2), let P and Q be functions with continuous partials on U such

that
∂P

∂y
=

∂Q

∂x

and let Γ and Γ′ be two piecewise smooth curves in U with the same endpoints. Then

∫

Γ

P dx + Qdy =

∫

Γ′

P dx + Qdy .

The underlying idea behind the proof is to construct a function f such that ∇f = (P,Q).
Green’s Theorem plays major role in showing that the partials of f have the desired values.

Notational and abuse of language conventions. Given two points p = (p1, p2) and q = (q1, q2)
in the coordinate plane, the closed straight line segment joining them is the curve [p,q] with
parametrization

x(t) = tp1 + (1 − t)p2, y(t) = tq1 + (1 − t)q2 (0 ≤ t ≤ 1) .

We would also like to discuss broken line curves, say joining p0 to p1 by a straight line segment,
then joining p1 to p2 by a straight line segment, and so on. The points p0, p1, p2, etc. are called
the vertices of the broken line curve. One technical problem with this involves the choices of linear
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parametrizations for the pieces. However, since line integrals for such curves do not depend upon
such parametrizations and in fact we have

∫

C

P dx + Qdy =
∑

i

∫

[pi−1,pi]

P dx + Qdy

we shall not worry about the specific choice of parametrization. Filling in the details will be left
as an exercise to a reader who is interested in doing so; this is basically elementary but tedious.

Integrals over broken line inscriptions

First some standard definitions. A partition of the interval [a, b] is a sequence of points

∆ : a = t0 < t1 < · · · < tm = b

and the mesh of ∆, written |∆|, is the maximum of the differences ti − ti−1 for 1 ≤ i ≤ m. Given a
piecewise smooth curve Γ defined on [a, b], the broken line inscription Lin (Γ,∆) is the broken line
curve with vertices

Γ(a) = Γ(t0),Γ(t1), · · ·Γ(tm) = Γ(b) .

We are now ready to prove one of the key technical steps of the proof of the main result.

LEMMA. Let U , be a connected open subset of R2, and let P , Q and Γ be as usual, where Γ is

defined on [a, b] and P and Q satisfy the condition

∂P

∂y
=

∂Q

∂x
.

Then there is a positive constant δ > 0 such that for all partitions ∆ of [a, b] with |∆| < δ we have

∫

Γ

P dx + Qdy =

∫

Lin (Γ,∆)

P dx + Qdy .

Proof. If K is the image of Γ then K is a compact subset of the open set U , and therefore there
is an ε > 0 so that if x ∈ R2 satisfies |x − v| < ε for some v ∈ K then x ∈ U . It follows that if
v ∈ K then the inner region for the square centered at v with sides parallel to the coordinate axes
of length ε

√
2 lies entirely in U .

By uniform continuity there is a δ > 0 so that if s, t ∈ [a, b] satisfy |s − t| < δ then

|Γ(s) − Γ(t)| <
ε
√

2

2
.

Let ∆ be a partition of [a, b] whose mesh is less than δ. Then for all i the restriction of Γ to [ti−1, ti]
lies in the open disk of radius 1

2ε
√

2. It follows that both this restriction and the closed straight
line segment joining Γ(ti−1) to Γ(ti) lie in the open square region centered at Γ(ti−1) with sides
parallel to the coordinate axes of length of length ε

√
2; since the latter lies entirely in U . it follows
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that P and Q are defined on this square region. Therefore, by the previously quoted result from
multivariable calculus we have

∫

Γ|[ti−1,ti]

P dx + Qdy =

∫

[Γ(ti−1),Γ(ti)]

P dx + Qdy

for each i. But the line integral over Γ is the sum of the line integrals over the curves Γ|[ti−1, ti],
and the line integral over the broken line inscription is the sum of the line integrals over the line
segments [Γ(ti−1),Γ(ti)], and therefore it follows that the line integral over Γ is equal to the line
integral over the broken line inscription, as required.

Proof of the Alternate Statement of the Main Result

We may as well assume that Γ is defined on the unit interval [0, 1] since we can always arrange
this by a linear change of variables. Let H : [0, 1] × [0, 1] → U be a continuous map such that
H(s, 0) = Γ(s) for all s and H is constant on both [0, 1] × {1} and {0, 1} × [0, 1].

If L is the image of H then L is a compact subset of the open set U , and as in the proof of
the lemma there is an ε′ > 0 so that if x ∈ R2 satisfies |x− v| < ε′ for some v ∈ L then x ∈ U . It
follows that if v ∈ L then the inner region for the square centered at v with sides parallel to the
coordinate axes of length ε′

√
2 lies entirely in U .

By uniform continuity there is a δ′ > 0 so that if s, t ∈ [0, 1] × [0, 1] satisfy |s − t| < δ ′ then

|H(s) − H(t)| <
ε′
√

2

2
.

Without loss of generality we may assume that δ ′ is no greater than the δ in the previous lemma.
Let ∆ be a partition of [a, b] whose mesh is less than 1

2δ′
√

2, and choose a positive integer N such
that

1

N
<

δ′
√

2

2
.

Then for all i such that 1 ≤ i ≤ m and all j such that 1 ≤ j ≤ N the restriction of H to
[ti−1, ti] ×

[

j−1
N

, j
N

]

lies in an open disk of radius 1
2ε′

√
2.

A special case. To motivate the remainder of the argument, we shall first specialize to the case
where H extends to a map on an open set containing the square [0, 1] × [0, 1] and has continuous
partials on this open set. For each i such that 0 ≤ i ≤ m and each j such that 1 ≤ j ≤ N let A(i, j)
be the broken line curve in the square with vertices

(

0, j−1
N

)

, ...
(

ti,
j−1
N

)

,
(

ti,
j
N

)

, ...
(

1, j
N

)

.

In other words, this curve is formed by starting with a horizontal line segment from
(

0, j−1
N

)

to
(

ti,
j−1
N

)

, then concatenating with a vertical line segment from
(

ti,
j−1
N

)

to
(

ti,
j
N

)

, and finally con-

catenating with a horizontal line segment from
(

ti,
j
N

)

to
(

1, j
N

)

. If W (i, j) denotes the composite
H oA(i, j), then it follows that W (i, j) is a piecewise smooth closed curve in U . Furthermore,
W (m, 1) is just the concatenation of Γ with a constant curve and W (0, N) is just a constant
curve, so the proof of the main result reduces to showing that the line integrals of the expression
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P dx + Qdy over the curves W (m, 1) and W (0, N) are equal. We claim this will be established if
we can show the following hold for all i and j:

(1) The corresponding line integrals over the curves W (0, j − 1) and W (m, j) are equal.

(2) The corresponding line integrals over the curves W (i − 1, j) and W (i, j) are equal.

To prove the claim, first note that (2) implies that the value of the line integral over W (i, j) is a
constant zj that depends only on j, and then note that (1) implies zj−1 = zj for all j. Thus the
two assertions combine to show that the line integrals over all the curves W (i, j) have the same
value.

We begin by verifying (1). Since H is constant on {0, 1} × [0, 1], it follows that W (m, j) is
formed by concatenating H|[0, 1] × { j

m
} and a constant curve (in that order), while W (0, j − 1) is

formed by concatenating a constant curve and H|[0, 1] ×{ j
m
} (again in the given order). Thus the

line integrals over both W (0, j − 1) and W (m, j) are equal to the line integral over H|[0, 1] ×{ j
m
},

proving (1).

Turning to (2), since the broken line curves A(i, j) and A(i− 1, j) differ only by one vertex, it
follows that the difference

∫

W (i,j)

P dx + Qdy −
∫

W (i−1,j)

P dx + Qdy

is equal to
∫

V (i,j)

P dx + Qdy −
∫

V ′(i,j)

P dx + Qdy

where V (i, j) is the composite of H with the broken line curve with vertices

(

ti−1,
j−1
N

)

,
(

ti,
j−1
N

)

,
(

ti,
j
N

)

and V ′(i, j) is the composite of H with the broken line curve with vertices

(

ti−1,
j−1
N

)

,
(

ti−1,
j
N

)

,
(

ti,
j
N

)

.

Our hypotheses imply that both of these curves lie in an open disk of radius 1
2ε′

√
2 and thus also

in the open square centered at v with sides parallel to the coordinate axes of length ε ′
√

2; by
construction the latter retion lies entirely in U . Therefore by the previously quoted result from
multivariable calculus we have

∫

V (i,j)

P dx + Qdy =

∫

V ′(i,j)

P dx + Qdy

for each i and j, so that the difference of the line integrals vanishes. Since this difference is also the
difference between the line integrals over W (i, j) and W (i − 1, j), it follows that the line integrals
over the latter two curves must be equal.

The general case. If H is an arbitrary continuous function the preceding proof breaks
down because we do not know if the continuous curves W (i, j) are well enough behaved to define
line integrals. We shall circumvent this by using broken line approximations to these curves and
appealing to the previous lemma to relate the value of the line integrals over these approximations
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to the value on the original curve. Since the proof is formally analogous to that for the special case
we shall concentrate on the changes that are required.

Let X(i, j) denote the broken line curve with vertices

H
(

0, j−1
N

)

, ...H
(

ti,
j−1
N

)

,H
(

ti,
j
N

)

, ...H
(

1, j
N

)

.

By our choice of ∆ these broken lines all lie in U , and the constituent segments all lie in suitably
small open disks inside U .

We claim that it will suffice to prove that the line integrals over the curves X(0, j − 1) and
X(m, j) are equal for all j and for each j the corresponding line integrals over the curves X(i−1, j)
and X(i, j) are equal. As before it will follow that the line integrals over all the broken line curves
X(i, j) have the same value. But X(m,N) is a constant curve, so this value is zero. On the other
hand, by construction the curve X(m, 1) is formed by concatenating Lin (Γ,∆) and a constant
curve, so this value is also the value of the line integral over Lin (Γ,∆). But now the Lemma
implies that the values of the corresponding line integrals over Γ and Lin (Γ,∆) are equal, and
therefore the value of the line integral over the original curve Γ must also be equal to zero.

The first set of equalities follow from the same sort argument used previously for W (0, j − 1)
and W (m, j) with the restriction of Γ replaced by the broken line curve with vertices

H
(

0, j
N

)

, ...H
(

1, j
N

)

.

To verify the second set of equalities, note that the difference between the values of the line
integrals over X(i, j) and X(i − 1, j) is given by

∫

C(i,j)

P dx + Qdy −
∫

C′(i,j)

P dx + Qdy

where C(i, j) is the broken line curve with vertices

H
(

ti−1,
j−1
N

)

, H
(

ti,
j−1
N

)

, H
(

ti,
j
N

)

and C ′(i, j) is the broken line curve with vertices

H
(

ti−1,
j−1
N

)

, H
(

ti−1,
j
N

)

, H
(

ti,
j
N

)

.

By the previously quoted result from multivariable calculus we have

∫

C(i,j)

P dx + Qdy =

∫

C′(i,j)

P dx + Qdy

for each i and j, and therefore the difference between the values of the line integrals must be zero.
Therefore the difference between the values of the line integrals over X(i, j) and X(i − 1, j) must
also be zero, as required. This completes the proof.
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An example

Suppose now that U = R2 − {0} and ω is the closed 1-form

x dy − y dx

x2 + y2
.

We would like to describe the possible values for the line integral

∫

Γ

ω

as Γ ranges over all closed piecewise smooth curves in U .

We shall first consider curves of this type whose initial and final value is the unit vector
e1 = (1, 0), Since we have

π1(S
1, e1) ∼= π1(U, e1) ∼= Z

and the results of this section show that the value of the line integral only depends upon the class
of Γ in the fundamental group, it follows that there are only countably many possible values for
the line integral. Furthermore, by the definition of concatenation for curves we have

∫

Γ+Φ

ω =

∫

Γ

ω +

∫

Φ

ω

it follows that in fact the line integral construction yields a homomorphism from Z to R. Therefore
it is enough to evaluate the line integral on a curve which generates the fundamental group. Of
course, the standard generator is the counterclockwise circle

Ψ(t) = (cos 2π t, sin 2π t)

and by a standard exercise in multivariable calculus the value of
∫

Ψ
ω in this case is 2π. Therefore

we have the following:

The set of all possible values for the line integral
∫

Γ
ω must be the set of all integral multiples of

2π.

If the initial and final point of a curve is some point p which is not necessarily e1, we may
retrieve the same conclusion as follows: Let α be a piecewise smooth curve joining e1 to p. Then
we know that the construction sending a closed curve Γ based at e1 to the closed curve

Γ∗ = −α + Γ + α

passes to an isomorphism of groups from π1(U, e1) to π1(U,p). Since the line integrals of Γ∗ and Γ
are equal (why?), it follows that the images of the associated homomorphisms from π1(U, e1) and
π1(U,p) are also equal, so that the latter also consists of all integral multiples of 2π.
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