
I.2 : Extending Green’s and Stokes’ Theorems

(Conlon, § 8.1)

In this section we shall use the contents of extforms2007.pdf as needed (with the exception
of Section 3 in the latter). This is probably also a good time to look back at Sections I.2 from the
246A and also Section III.2 up to Lemma 1 of the latter. Illustrations for this section appear in
the following separate file:

http://math.ucr.edu/∼res/figures0102.pdf

Objectives

In advanced calculus textbooks, it is easy to find proofs of basic results in vector analysis like
Green’s Theorem, Stokes’ Theorem, and the Divergence Theorem in special cases. For example,
it is very easy to derive Green’s Theorem in the case of regions defined by standard systems of
inequalities

a ≤ x ≤ b, g(x) ≤ y ≤ f(x)

where g and f are continuous functions such that g(x) < f(x), at least if x 6= a, b (see the first
illustration in figures0102.pdf). However, as noted in many (most?) advanced calculus texts,
the result is true in far more general cases, including regions whose boundaries are given by several
closed curves (the second illustration in figures0102.pdf). The goal of this section is to discuss
some of the tools needed in order to extend the previously mentioned results in vector analysis from
simple cases to more general ones.

Change of variables formulas

Most advanced calculus texts do not discuss the role of change of variables formulas in con-
nection with the main theorems of vector analysis. Conceptually, the idea is clear. Suppose that
we are given a closed region Ω in the plane whose boundary is given by several curves Γi with
suitable senses of directions (there is an outermost curve which has a counterclockwise sense, and
possibly inner curves which will each have a clockwise sense). Let T be a homeomorphism which
is defined on an open set containing Ω such that the coordinate functions of T have continuous
partial derivatives of all orders and the Jacobian is always positive. Then the image T [Ω] will be
another region in the plane whose boundary consists of similar curves, each having the same sense
as its inverse image (the positivity of the Jacobian is needed to ensure this condition).1 As before,
there are illustrations in figures0102.pdf).

1 The assertion in parentheses depends upon knowing that the sense of a closed curve does not
change if the Jacobian is positive and the sense is reversed if the Jacobian is negative. This can
be seen fairly directly if T is an invertible linear transformation and Γ is the counterclockwise
unit circle. Good examples to consider are the linear transformations T (x, y) = (x + y, y) and
T (x, y) = (x,−y).
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It is natural to ask whether one can prove directly that Green’s Theorem holds for the trans-
formed region and boundary curves if it is known to hold for the original region and boundary
curves. In fact, this can be shown using the standard change of variables formula for double inte-
grals and similar results for line integrals, but this is usually not done in advanced calculus texts,
mainly because the computations needed to verify such a formula quickly become very messy.
However, if one uses differential forms, one can do everything fairly easily as indicated below. To
simplify the discussion we shall assume that the boundary of Ω consists of a single curve Γ.

The line integrals over the paths Γ and T oΓ are related by a simple change of variables
argument. In the language of extforms2007.pdf, the formula is

∫

Γ

T ∗θ =

∫

T◦Γ

θ

where θ = P dx + Qdy and T (u, v) = (x, y) (see the bottom of page 5 in the cited document).
By the results of Section 4 in extforms2007.pdf translating Green’s Theorem into a statement
about differential forms, we can rewrite the left hand side as

∫

Ω

d (T ∗θ) =

∫

Ω

T ∗(d θ)

where the equality of the terms follows from the Theorem near the bottom of page 5 in the cited
reference. Yet another application of the Change of Variables formula below the statement of that
theorem shows that the right hand side of the preceding result is equal to

∫

T [Ω]

d θ

and if we combine all these equations, we see that Green’s Theorem holds for the transformed curve
and the transformed region.

An example

At this point we shall start using material on simplicial decompositions and simplicial com-
plexes from Section I.2 of the 246A notes.

A standard approach to proving more general versions of Green’s Theorem is to combine the
change of variables principle with

(i) a nice decomposition of Ω into regions that can be analyzed using simple cases of Green’s
Theorem.

(ii) the change of variables principle described above.

For example, suppose that we are given the closed region bounded by a Star of David curve. It
follows immediately that this closed region has a simplicial decomposition in the sense of Section I.2
in the 246A notes (see figures0102.pdf); specifically, we can cut the region up into solid triangular
regions as illustrated in the picture such that the union of these solid regions is the original subset
and the intersection of two solid trianglular regions in the collection is either a common edge or a
common vertex of the boundary triangles.
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We can then apply Green’s Theorem to each of the solid triangular regions, and thus the
integral over the whole region is equal to the line integrals over the boundary curves of the solid
triangular regions. However, one quickly sees that the line integrals over the “new” pieces of
boundary curves — the pieces that were introduced when one cut up the original region — will
cancel each other in pairs, so the sum of the line integrals over the boundary triangles will reduce
to the line integral over the original Star of David curve.

Reformulation in terms of simplicial chains

Predictably, we shall be using material from the 246A notes on simplicial chains (Section III.3
of the 246A notes) in the discussion below. In addition, we shall need the following elaboration of
the discussion in the first paragraph of Section IV.1 from the same notes:

LEMMA 0. Let Λn be the n-simplex in Rn whose vertices are 0, e1. · · · , en so that Λ is the

set of all (x1, · · · , xn) satisfying xj ≥ 0 for all j and
∑

j xj ≤ 1. Let v0, · · · ,vn ∈ Rn be points

that also are the vertices of an n-simplex S. Then there is an affine map T : Λn → S which is 1− 1
onto, and for which the Jacobian of T at each point is positive.

Proof. Let T0 be the unique affine homeomorphism which sends 0 to v0 and ei to vi for all
i ≥ 0. Then T0 has all the desired properties except perhaps the positivity of the Jacobian. In
any case we know that the Jacobian is everywhere positive or everywhere negative. If the Jacobian
is everywhere positive then we can simply take T = T0. If not, let σ be the map from Λn to
itself which switches coordinates, and take T = T0

oσ; it will follow that T has all the required
properties.

In the spirit of Section IV.1 from the 246A notes we should also observe that there is a standard
affine homomorphism between Λn and the standard simplex ∆n ⊂ Rn+1 with vertices vi = ei+1.
Specifically, take the affine map which sends 0 to v0 and ei to vi for i > 0.

We can relate the preceding constructions on the Star of David set to the constructions of the
246A notes as follows. As before, let Λ2 ⊂ R2 be the solid triangular region with vertices 0 = (0, 0),
e1 = (1, 0) and e2 = (0, 1), so that Λ2 consists of all (x, y) such that x, y ≥ 0 and x + y ≤ 1. For
each solid triangular region, or 2-simplex, α in the Star of David set, by Lemma 0 there is a 1–1 onto
affine map Tα fromn Λ2 onto α such that the Jacobian of Tα is always positive. As in Section IV.1
of the 246A notes, each Tα is naturally associated to a free generator of the ordered simplicial chain
group C2(P ), where P is the closed Star of David region. The double integral over P in Green’s
Theorem is a sum of the double integrals over the images of the mappings Tα. By the Change of
Variables formulas, this may be viewed as a sum of double integrals over the standard 2-simplex
Λ2 corresponding to the changes of variables given by the maps Tα. Stretching the language still
further, we can think of the original double integral as a sum of double integrals determined by the
ordered simplicial chain

∑

α Tα ∈ C2(P ).

Suppose we now apply Green’s Theorem to each of the summands. For each summand the
associated double integral is equal to a line integral over a path which traces the boundary. Now
the definition of simplicial chains and boundaries associates to each 2-simplex a 1-chain called the
boundary; specifically, if we let ∂0, ∂1 and ∂2 be the straight line segment curves which go from e1
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to e2, from 0 to e2 and 0 to e1 respectively (so that ∂i gives the side opposite the ith vertex), then
the boundary 1-chain

d(Λ2) = ∂0 + (−∂1) + ∂2

describes a parametrization for the boundary curve of Λ2 in the counterclockwise sense, and hence
we may view each double integral over Λ2 as an appropriate line integral over the curve described
by d(Λ2).

If we apply this to the chain
∑

α Tα, we see that the original double integral over the Star of
David region is equal to the following sum of line integrals:

∑

α

∫

∂0Tα

ω −

∫

∂1Tα

ω +

∫

∂2Tα

ω

Symbolically, we may view this as a line integral over the simplicial chain

d

(

∑

α

Tα

)

∈ C1(P ) .

An inspection of the picture suggests that this chain can be simplified dramatically. Namely, the
algebraic boundary consists only of a collection of straight line segments which define the topolog-
ical boundary curve of the original region in the counterclockwise sense (the latter relies on our
assumptions about positive Jacobians). All the extra straight line curves from the terms dTα which
do not lie entirely in the boundary turn out to cancel each other in pairs. This means that the line
integral over the boudary chain described above must be equal to the line integral of the boundary
curve for the original region, where as before the sense of the boundary is counterclockwise. This
completes the derivation of Green’s Theorem from the special case for trianglular regions and the
Change of Variables principle, at least for our example of the Star of David region. The same
considerations work for an arbitrary region which has a simplicial decomposition and a boundary
which is a simple closed curve as above.

In fact, similar considerations work for regions which have simplicial decompositions, but whose
boundaries are unions of simple closed curves. For example, consider the example of a solid square
with a square hole in the middle (see figures0102.pdf once more). Note that the boundary
chain in the figure is a sum of two pieces, one of which corresponds to the outer boundary in the
counterclockwise sense and the other of which corresponds to the inner boundary in the clockwise
sense. As indicated by one of the drawings, if there are two inner curves, then the boundary splits
into a sum of three pieces corresponding to the boundary curves; as before, the outer boundary has
a counterclockwise sense and the inner boundary curves both have clockwise senses.

Green’s Theorem in more general situations

A general region may have curves composed of pieces that are not straight line curves, and it
will be necessary to replace the affine mappings and simplicial chains by more complicated objects.
Specifically, we shall want maps Tα which are defined on open sets containing the 2-simplex Λ2, with
continuous partial derivatives and positive Jacobians at every point, and such that the restriction
to Λ2 will be 1–1. Furthermore, we want the images of these mappings to be nonoverlapping in the

16



sense that the image of Tα meets the image of Tβ in either (i) the image of a common boundary
edge-curve, (ii) the image of a common vertex, and when the intersections are a common edge we
want the common boundary curves to have compatible parametrizations. It may not be obvious
that all this can be achieved, but in fact it is always possible to do so (however, the proof is
definitely nontrivial), and illustrations appear in the file figures0102.pdf.

The resulting mappings Tα then have natural interpretations as generators of the group of
singular 2-chains S2(X) defined in Section IV.1 of the 246A notes; here X is the closed region
that we are cutting into pieces). Recall that if n is a nonnegative integer, then the group of
singular n-chains is a free abelian group with generating set given by continuous mappings T from
the standard n-simplex ∆n in Rn+1 (its vertices are the standard unit vectors) to X; we may use
the canonical affine homeomorphism from

Λn =

{

(x1, · · · , xn) ∈ Rn | xi ≥ 0 ,
∑

i

xi ≤ 1

}

to ∆n sending (x1, · · · , xn) to

(

1 −
∑

i

xi

)

e1 +
∑

j

xjej+1

to identify singular n-simplices with continuous mappings defined on Λn. Thus the sum of the
corresponding singular 2-simplices

∑

α Tα may then be viewed as a singular 2-chain, and we can
take its boundary using the same formula as in the simplicial case, obtaining an element in S1(X).
As in the preceding cases, it turns out that the boundary chain simplifies a sum of pieces

∑

j γj ,
where the γj ’s are a nonoverlapping collection of parametrizations for the boundary of X in the
counterclockwise sense (and they give the entire boundary curve).

Stokes’ Theorem and the Divergence Theorem

Similar considerations work in both cases. For Stokes’ Theorem, one must take the smooth
mappings Tα such that the normal directions given by

∂Tα

∂x
×

∂Tα

∂y

are compatible in an appropriate sense. For the Divergence Theorem, there is an added complication
of understanding what sorts of 3-dimensional building blocks should be used. It turns out that the
right sorts of objects are given by images of the 3-simplex Λ3 ⊂ R3 whose vertices are the zero
vector and the three standard unit vectors; equivalently, Λ3 is the set of all (x, y, z) ∈ R3 such that
x, y, z ≥ 0 and x + y + z ≤ 1. Once again, the boundary formula from Section III.2 of the 246A
notes is the right one for working with surface integrals over the boundaries.
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Final remarks

Clearly the preceding discussion has not given many proofs. In fact, one needs methods
from algebraic topology and further input from geometrical topology in order to give rigorous
justifications of everything that is said here. Our purpose right now is mainly to provide motivation,
giving important links between the algebraic theory of simplicial and singular chains in 246A and
familiar issues related to evaluating line, surface and volume integrals by taking complicated sets
and cutting them up into relatively simple pieces. Later in these notes we may say more about the
machinery needed to give a rigorous justification of the general forms of Green’s Theorem, Stokes’
Theorem and the Divergence Theorem.
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