
II . De Rham Cohomology

There is an obvious similarity between the condition dq−1
odq = 0 for the differentials in

a singular chain complex and the condition d[q] od[q − 1] = 0 which is satisfied by the exterior
derivative maps d[k] on differential k-forms. The main difference is that the indices or gradings
are reversed. In Section 1 we shall look more generally at graded sequences of algebraic objects
{Ak }k∈Z which have mappings δ[k] from Ak to Ak+1 such that the composite of two consecutive
mappings in the family is always zero. This type of structure is called a cochain complex, and
it is dual to a chain complex in the sense of category theory; every cochain complex determines
cohomology groups which are dual to homology groups. We shall conclude Section 1 by explaining
how every chain complex defines a family of cochain complexes. In particular, if we apply this to
the chain complexes of smooth and continuous singular chains on a space (an open subset of Rn in
the first case), then we obtain associated (smooth or continuous) singular cohomology groups for
a space (with the previous restrictions in the smooth case) with real coefficients that are denoted
by S∗(X;R) and S∗

smooth(U ;R) respectively. If U is an open subset of Rn then the natural chain
maps ϕ# from Section I.3 will define associated natural maps of chain complexes from continuous
to smooth singular cochains that we shall call ϕ#, and there are also associated maps of the

corresponding cohomology groups. In Section 2 we shall prove that the homology maps ϕ#
∗ and

cohomology maps ϕ∗

# are isomorphisms. This illlustrates a phenomenon which already arose in
246A; namely, there are several different ways to define homology (and cohomology) groups, and
each is particularly convenient in certain situations. In Section 3 we shall prove that De Rham
cohomology has many of the basic formal properties that hold for singular cohomology. Finally,
in Section 4 we prove an important result first discovered by G. De Rham in the 1930s: If U is
an open subset of Rn, then the generalized Stokes’ Formula from Section I.3 deines a map J from
the cochain complex ∧∗(U) of differential forms on U to the smooth singular cochain complex
S∗

smooth(U ;R), and De Rham’s Theorem states that the associated map in cohomology J ∗ is an
isomorphism. Some elementary consequences of this result will also be discussed.

II.1 : Smooth singular cochains

(Hatcher, § 2.1)

We begin by dualizing chain complexes and homology.

Definition. Let R be a commutative ring with unit. A cochain complex over R is a pair
(C∗, δ∗) consisting of a sequence of R-modules C q (the cochain modules) indexed by the integers,
and coboundary homomorphisms dq : Cq → Cq+1 such that for all q we have δq+1 oδq = 0. The
cocycles in Cq are the elements x such that δ(x) = 0 and the coboundaries in C q are all elements
x which are expressible as δ(y) for some y.

The defining conditions for a cochain complex imply that the image of δq−1 is contained
in the kernel of δq , and we define the qth cohomology module Hq(C) to be the quotient
Kernel δq/Image δq−1.

Formally speaking, the notions of chain and cochain complex are categorically dual to each
other. Given a chain complex (C∗, d∗), one can define the categorically dual cochain complex
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(C∗, δ∗) by the equatiions Cq = C−q and δq = d1−q. Cochain complex morphisms can be defined
by duality, and one has the following dualizations of standard results for chain complexes and their
morphisms:

(1) Algebraic morphisms of cochain complexes f : C → D pass to algebraic morphisms of
cohomology groups [f ] : H∗(C) → H∗(D).

(2) The algebraic morphisms in the preceding satisfy the conditions [g of ] = [g] o [f ] and
[id] = identity.

(3) If we are given an exact sequence of cochain complexes 0 → A → B → C → 0 (so that
one has a short exact sequence 0 → Aq → Bq → Cq → 0, then there is an associated long
exact sequence of homology:

· · · → Hq−1(C) → Hq(A) → Hq(B) → Hq(C) → Hq+1(A) → · · ·

(4) The long exact sequence in the previous statement is natural with respect to suitably
defined morphisms of short exact sequences of cochain complexes.

In each case, the proof is a straightforward dualization of the corresponding argument for chain
complexes.

Cochain complexes associated to a chain complex

The main reason for introducing formal duals of chain complexes is that there are many
situations in which it is necessary to work with both chain complexes and cochain complexes at
the same time. The discussion of the Generalized Stokes’ Formula in the preceding unit is one
basic example. Our next step is to give a general method for constructing many different cochain
complexes out of a chain complex.

Definition. Let (S∗, d∗) denote a chain complex over a commutative ring with unit A, and let
M be an A-module (we assume all modules satisfy the identity 1 · m = m for all m). The complex
of cochains on S with coefficient in M is given by C q(S;M) = HomA(Sq,M) (i.e., the module of
A-homomorphisms), and the coboundary map δq : Cq(S;M) → Cq+1(S;M) is equal to the adjoint
map (dq+1)

∗ which takes a cochain (or function) f : Sq → M into f odq+1.

The identity dq+2
odq+1 = 0 implies that δq+1 oδq = 0, and therefore we do have a cochain

complex
(C∗(S,M), δ )

whose cohomology is called the cohomology of S with coefficients in M and written H ∗(S;M).

EXAMPLE. If X is a topological space and S∗(X) is the singular chain complex of X, then for each
abelian group M we obtain an associated singular cochain complex with coefficients in M , written
S∗(X;M). Likewise, if U is open in some Rn and Ssmooth

∗
(U) is the smooth singular complex of

U , then we have an associated smooth singular cochain complex with coefficients in M , written
S∗

smooth(U ;M). The Generalized Stokes’ Formula implies that the integration map J defines a map
of cochain complexes from ∧∗(U) to S∗

smooth(U ;R).
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One can now combine the previously described results on formal dualizations with the defini-
tions of associated cochain complexes to obtain the following basic results:

PROPOSITION. Suppose that f : S → T is a morphism of chain complexes over the ring A
as above, and let M be an A-module as above. Then there are associated morphisms of cochain
complexes

f# : C∗(T ;M) −→ C∗(S;M)

and morphisms of cohomology groups

f∗ : H∗(T ;M) −→ H∗(S;M)

which are contravariantly functorial with respect to chain complex morphisms. Furthermore, if
g : M → N is a homomorphism of A-modules, then there are associated morphisms of cochain
complexes

g# : C∗(S;M) −→ C∗(S;N)

and morphisms of cohomology groups

g∗ : H∗(T ;M) −→ H∗(T ;N)

which are covariantly functorial in with respect to module homomorphisms.

In particular, if we are given a continuous map of topological spaces f : X → Y and its
associated map of singular chain complexes f#, then we obtain maps of singular cochain complexes
f# : S∗(Y ;M) → S∗(X;M) and morphisms of cohomology groups f ∗ : H∗(Y ;M) → H∗(X;M)
which are contravariantly functorial with respect to continuous mappings. Likewise, if we are
given a smooth map of open subsets in Euclidean spaces f : U → V and its associated map of
smooth singular chain complexes f#, then we obtain maps of singular cochain complexes f # :
S∗

smooth(Y ;M) → S∗

smooth(X;M) and morphisms of cohomology groups f ∗ : H∗

smooth(Y ;M) →
H∗

smooth(X;M) which are contravariantly functorial with respect to smooth mappings. Finally,
for open subsets in Euclidean spaces the canonical natural transformation from S smooth

∗
(U) to S∗(U)

defines natural transformations of cochain complexes

ϕ## : S∗(U ;M) −→ S∗

smooth(U ;M)

and cohomology groups H∗(U ;M) → Hsmooth(U ;M) which are natural with respect to smooth
maps.

As in the case of chain complexes, one immediate question is whether the smooth and ordinary
definitions of singular chains for open subsets in Rn yield isomorphic groups. One aim of this unit
is to develop enough machinery so that we can prove this, at least in some important special cases.
The following question is clearly closely related:

PROBLEM. Suppose that f : S → T is a map of chain complexes such that f∗ : H∗(S) →
H∗(T ) is an isomorphism in homology. Under what conditions is f ∗ : H∗(T ;M) → H∗(S;M) an
isomorphism in cohomology?

In this section we shall give some frequently occurring conditions under which the cohomology
mappings are isomorphims.
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We have not yet discussed versions of (3) and (4) for cochain complexes of the form C ∗(S;M)
because there is a slight complication. If we have a short exact sequence of A-modules 0 → S →
T → U → 0, then it is fairly straightforward to show that the associated sequence of adjoint
homomorphisms

0 −→ HomA(U ;M) −→ HomA(T ;M) −→ HomA(S;M)

is exact, but the last map in this sequence is not always surjective. Simple examples can be
constructed by taking the short exact sequence 0 → Z → Z → Z2 → 0 (in which the self map
of Z is multiplication by 2) and setting M equal to either Z or Z2. However, if the short exact
sequence is split, so that there is a map from U to T which yields a direct sum decomposition
T ∼= S⊕U , then the associated sequence of adjoint homomorphisms will be exact, for the map from
HomA(T ;M) to HomA(T ;M) will then be onto (verify this!). This leads directly to the following
result.

PROPOSITION. Suppose that we are given a short exact sequence of chain complexes 0 →
S → T → U → 0 such that for each q the short exact sequence 0 → Sq → Tq → Uq splits (with no
assumptions whether or not the maps U∗ → T∗ define a chain complex morphism). Then one has
a short exact sequence of cochain complexes

0 −→ C∗(U ;M) −→ C∗(T ;M) −→ C∗(S;M) −→ 0

and associated long exact sequences of cohomology. The latter are contravariantly functorial with
respect to morphisms of long exact sequences of (suitably restricted) chain complexes, and they are
covariantly functorial with respect to homomorphisms of the coefficient modules.

This result applies directly to singular cochain complexes. If (X,A) is a pair of spaces with
A ⊂ X, then the standard free generators of S∗(A) have a natural interpretation as a subset
of the standard free generators for S∗(X), and therefore we have isomorphisms of chain groups
Sq(X) ∼= Sq(A) ⊕ S∗(X,A) for all q (however, such maps rarely define an isomorphism of chain
complexes). A similar situation holds for smooth singular chains. Therefore, in both cases one has
long exact cohomology sequences, and in fact there is a long commutative latter relating these two
long exact sequences on the category of open subsets in Euclidean spaces.

The Kronecker index pairing

We have defined cochains to be objects that assign values to every chain, and we would like
to have a similar principle in cohomology; namely, if C is a chain complex and M is a module,
then a class in Hq(C;M) assigns a value in M to every class in Hq(M). This map turns out to be
bilinear, and it is usually called the Kronecker index pairing.

Formally, proceed as follows: Given a cocycle u and a cycle z as above, define κ(u, z) =
〈u, z〉 ∈ M by choosing f representing u and c representing z and setting κ(u, z) = f(c). We are
immediately faced with proving the following result to show this is a valid definition.

LEMMA. In the preceding discussion, if we are given other representatives f + δ g and c + d(b)
for u and z, then we obtain the same element in M .
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Sketch of proof. The value of [f + gd](c + db) is given by

f(c) + gd(c) + fd(b) + gdd(b) .

In this expression the second term vanishes because d(c) = 0, the third term vanishes because
fd = 0, and the final term vanishes because dd = 0.

The following result implies that the Kronecker index is often nontrivial:

PROPOSITION. If A is a principal ideal domain and C is a chain complex of free A-modules,
then the adjoint map κ′ : Hq(C;M) → HomA(Hq(C),M) defined by

[κ′(u)](z) = κ(u, z) ∈ M

is onto.

Proof. Let Bq ⊂ Cq−1 denote the image of dq, and let Zq be the kernel of dq. Then we have
Cq/Zq

∼= Bq. Since we are working over a principal ideal domain, a submodule of a free module
is free. Therefore we may deine a one-sided inverse to the projection Cq → Bq by lifting a set
of free generators in Bq to classes in Cq, and then taking the unique extension of this map to a
homomorphism of A-modules. This immediately yields a direct sum decomposition

Cq
∼= Zq ⊕ Bq

and the latter in turn implies that every homomorphism from Zq to a module M can be extended
to Cq.

How does this apply to prove the proposition? Suppose that we are given a homomorhism
α : Hq(C) → M . Since the domain is the quotient module Zq/Bq+1, it follows that we can pull
α back to Zq and obtain a homomorphism α0 on the cycles. By the previous paragraph we can
extend α0 to a map α1 on Cq; this map vanishes on Bq+1 by construction, and this yields the
cocycle condition δ(α1) = α1

odq+1 = 0. Therefore we conclude that u = κ′([α1]).

There are simple examples to show that κ′ is not always onto. Consider the chain complex
given by Z → Z, where the first copy of the integers is in degree 1 and the map is multiplication by
m > 1. Then the only nontrivial homology group is H0

∼= Zm, and direct computation also shows
that the only nonzero cohomology group with integer coefficients is H 1(C;Z) ∼= Zm. In particular,
since the group Hom(H1,Z) is trivial, it follows that κ′ cannot be injective in this case, and in fact
it is the trivial homomorphism. However, the situation is better if we further specialize to chain
complexes which are vector spaces over fields.

PROPOSITION. In the setting of the lemma, if A is a field then κ′ is an isomorphism.

Proof. We already know that the map is onto, so it is only necessary to prove it is 1–1. Suppose
now that κ′(u) = 0 and u is represented by the cocycle f : Cq → M . Then we have f(c) = 0 for
every cycle c ∈ Cq. This means that f factors into a composite

Cq −→ Cq/Zq
∼= Bq −→ M

and since we are working with vector spaces over a field we know that the map Bq → M extends
to a homomorphism g on Cq. By construction we know that f = δ(g), and therefore we conclude
that u = 0.
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Homology with field coefficients

There is a corresponding definition for homology with coefficients in an arbitrary A-module;
for the time being we may assume A is an arbitrary commutative ring with unit. To simplify the
discussion we shall assume that the chain complex (C∗, d∗) has chain groups Cq which are all free
A-modules.

In terms of tensor products, the complex with coefficients is given by C∗⊗AM ; computationally,
this means that the elements of Cq ⊗A M have the form

∑
i γi ⊗ mi where the γi lie in some fixed

set of free generators for Cq and the mi belong to M . The tensor product a⊗A b has the standard
bilinearity properties. There is an evident definition of mappings dq ⊗A M , and these make the
sequence Cq ⊗A M into a chain complex, whose homology is called Hq(C;M).

We recall that if P is an A-module and M is a commutative ring with unit such that the map
A → M sending one unit to the other is a ring homomorphism, then P ⊗A M has a standard
structure as an M -module.

In this section we are primarily interested in situations where A is the integers and M is a
field; in this case the mappings in the chain complex turn out to be morphisms of vector spaces
over fields and the homology groups have associated structures of vector spaces over the field M .

PROPOSITION. In the setting described above, if M has characteristic zero (no sum of 1 with
itself finitely many times yields zero), then there is a natural isomorphism of vector spaces from
Hq(C) ⊗ M to Hq(C;M).

Proof. First of all, if z ∈ Hq(C) and m ∈ M , then the mapping in question sends z ⊗ m to
the class of c ⊗ m, where c is a cycle representing z. One can check directly that this map is a
well-defined and yields a morphism of vector spaces over M . The isomorphism statement follows
because tensoring with the characteristic zero field M (in fact with an arbitrary group having no
nonzero elements of finite order) sends short exact sequences into exact sequences. The latter means
that the cycles in C∗ ⊗ M are given by Z∗ ⊗ M , the boundaries in C∗ ⊗ M are given by B∗ ⊗ M ,
and the homology is given by the quotient of these groups, which is just H∗ ⊗ M .

COROLLARY. If S and T are chain complexes of free abelian groups such that the chain map

f : S → T defines an isomorphism in homology, then for each field M of characteristic zero the

maps f∗ : H∗(T ;M) → H∗(S;M) are also isomorphisms.

Proof. The tensor product construction takes isomorphisms to isomorphisms, so the map defined
by f from H∗(S)⊗M to H∗(T )⊗M is an isomorphism. By the proposition it follows that H∗(S;M)
to H∗(T ;M) is also an isomorphism. Therefore the associated map of dual vector spaces is also
an isomorphism. Since the Kronecker index pairing defines a natural isomorphism from the dual
space of H∗(C;M) to H∗(C;M) for C = S⊗M or T ⊗M , it follows that these cohomology groups
must also be isomorphic under the map defined by f .

COROLLARY. If U is an open subset in some Euclidean space, then the natural map from
H∗(U ;R) to H∗

smooth(U ;R) is an isomorphism.

This is a special case of the preceding result.
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