
II.2 : Homological comparison theorem

(Hatcher, § 2.3)

The aim of this section is to show that the natural map from smooth singular chains to ordinary
chains

Ssmooth
∗ (U) −→ S∗(U)

defines isomorphisms in homology and in cohomology with real coefficients if U is an arbitrary open
subset of some Rn.

It will be convenient to extend the definition of smooth singular chain complexes to arbi-
trary subsets of Rn for some n. Specifically, if A ⊂ Rn then the smooth singular chain complex
Ssmooth
∗ (A) is defined so that each group Sq(A) is free abelian on the set of continuous mappings

T : Λq → A which extend to smooth mappings T ′ from some open neighborhood W (T ′) of Λq to
Rn. If A is an open subset of Rn, then this is equivalent to the original definition, for if we are
given T ′ as above we can always find an open neighborhood V of Λq such that T ′ maps V into A.

Clearly the definitions of smooth and ordinary singular chains are similar, and in fact many
properties of ordinary singular chain complexes extend directly to smooth singular chain complexes.
The following two are particularly important:

(0) If A is a convex subset of Rn (which is not necessarily open), then the constant map
defines an isomorphism from H smooth

q (A) to Hsmooth
q (R0) for all q; in particular, these

groups vanish unless q = 0.

(1) If we are given two smooth maps f, g : U → V such that f and g are smoothly homotopic,
then the chain maps from Ssmooth

∗ (U) to Ssmooth
∗ (V ) determined by f and g are chain

homotopic.

(2) The construction of barycentric subdivision chain maps β : S∗(U) → S∗(U) in Section
IV.4 of the 246A notes, and the related chain homotopy from β to the identity, determine
compatible mappings of the same type on smooth singular chain complexes.

The first two of these follow because the chain homotopy constructions from Unit III of the
246A notes send smooth chains to smooth chains. The proof of the final assertion has two parts.
First, the barycentric subdivision chain map in Section IV.4 of the 246A notes takes singular chains
in the images of the canonical mappings

Ssmooth
∗ (W ) −→ S∗(W )

into chains which also lie in the images of such mappings. However, the construction of the chain
homotopy must be refined somewhat in order to ensure that it sends smooth chains to smooth
chains. In order to construct such a refinement, one needs to know that the homology of S smooth

∗ (Λq)
is isomorphic to the homology of a point (hence is zero in positive dimensions). The latter is true
by Property (0).

As in the ordinary case, if W is an open covering of an open set U ⊂ Rn, then one can define
the complex W-small singular chains

Ssmooth,W
∗ (U)
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generated by all smooth singular simplices whose images lie inside a single element of W, and the
argument for ordinary singular chains implies that the inclusion map

Ssmooth,W
∗ (U) −→ SW

∗ (U)

defines isomorphisms in homology. The latter in turn implies that one has long exact Mayer-Vietoris
sequences relating the smooth singular homology groups of U , V , U ∩V and U ∪V , where U and V

are open subsets of (the same) Rn, and in fact one has a long commutative ladder diagram relating
the Mayer-Vietoris sequences for (U, V ) with smooth singular chains and ordinary singular chains.

The smooth and ordinary singular chain groups for R0 are identical, and therefore their smooth
and ordinary singular homology groups are isomorphic under the canonical map from smooth to
ordinary singular homology. By the discussion above, it follows that the canonical map

ϕU
∗ : Ssmooth

∗ (U) −→ S∗(U)

is an isomorphism if U is a convex open subset of some Rn. The next step is to extend the class
of open sets for which ϕU

∗ is an isomorphism.

THEOREM. The map ϕU
∗ is an isomorphism if U is a finite union of convex open subsets in Rn.

Proof. Let (Ck) be the the statement that ϕU
∗ is an isomorphism if U is a union of at most k

convex open subsets. Then we know that (C1) is true. Assume that (Ck) is true; we need to show
that the latter implies (Ck+1).

The preceding statements about ladder diagrams and the Five Lemma imply the following
useful principle: If we know that ϕU

∗ , ϕV
∗ , and ϕU∩V

∗ are isomorphisms in all dimensions, then the

same is true for ϕU∪V
∗ . — Suppose now that we have a finite sequence of convex open subsets

W1, · · · ,Wk+1, and take U and V to be W1 ∪ · · · ∪ Wk and Wk+1 respectively. Then we know
that ϕU

∗ and ϕV
∗ are isomorphisms by the inductive hypotheses. Also, since

U ∩ V = (W1 ∩ Wk+1) ∪ · · · ∪ (Wk ∩ Wk+1)

and all intersections Wi ∩Wj are convex, it follows from the induction hypothesis that ϕU∩V
∗ is an

isomorphism in all dimensions. Therefore by the observation at the beginning of this paragraph we
know that ϕU∪V

∗ is an isomorphism, which is what we needed in order to complete the inductive
step.

To complete the proof that ϕU
∗ is an isomorphism for all U , we need the so-called compact

carrier properties of singular homology. There are two versions of this result.

THEOREM. Let X be a topological space, and let u ∈ Hq(X). Then there is a compact subset

K ⊂ X such that u lies in the image of the canonical map from Hq(K) to Hq(X). Furthermore, if

K is a compact subset of X, and v and w are classes in Hq(K) whose images in Hq(X) are equal,

then there is a compact subset L such that K ⊂ L ⊂ X such that the images of v and w are equal

in Hq(L).

Proof. Choose a singular chain
∑

i ni Ti representing u, where each Ti is a continuous mapping
∆q → X. If K is the union of the images Ti[∆q], then K is compact, and it follows that u lies in
the image of Hq(K) (because the chain lies in the subcomplex S∗(K) ⊂ S∗(X).
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To prove the second assertion in the proposition, note that by additivity it suffices to prove this
when w = 0. Once again choose a representative singular chain

∑
i ni Ti for v; since the image of v

in Hq(X) is a boundary, there is a (q +1)-chain
∑

j mj Uj on X whose boundary is
∑

i ni Ti. Let
L be the union of K and the compact sets Uj [∆q+1]; then L is compact and it follows immediately
that v maps to zero in Hq(L).

We shall need a variant of the preceding result.

THEOREM. Let U be an open subset of some Rn, and let u ∈ HCAT
q (U), where CAT denotes

either ordinary singular homology or smooth singular homology. Then there is a finite union of

convex open subsets V ⊂ U such that u lies in the image of the canonical map from HCAT
q (V )

to HCAT
q (U). Furthermore, if V is a finite union of convex open subsets of U , and v and w are

classes in HCAT
q (V ) whose images in HCAT

q (U) are equal, then there is a finite union of convex

open subsets W such that V ⊂ W ⊂ U such that the images of v and w are equal in HCAT
q (W ).

Proof. The argument is similar, so we shall merely indicate the necessary changes. We adopt all
the notation from the preceding discussion.

For the first assertion, by compactness we know that there is a finite union of convex open
subsets V such that K ⊂ V ⊂ U , and it follows that u lies in the image of the homology of V . For
the second assertion, take W to be the union of V and finitely many convex open subsets whose
union contains L. It then follows that v maps to zero in the homology of W .

We can now prove the following general result.

THEOREM. The map ϕU
∗ is an isomorphism for arbitrary open subsets of some Rn.

Proof. If u ∈ Hq(U), then we know there is some finite union of convex open subsets V such
that u = i∗(u1), where i : V ⊂ U is inclusion. By our previous results we know that u1 = ϕV

∗ (u2)
for some u2 ∈ Hsmooth

q (V ), and since i∗ oϕV
∗ = ϕU

∗
oi∗, it follows that u = ϕU

∗ i∗(u2), so that ϕU
∗ is

onto.

To show that ϕU
∗ is 1–1, suppose that v lies in its kernel. By the previous results we know that

v lies in the image of Hsmooth
q (V ); suppose that v1 maps to v. Then it follows that v2 = ϕV

∗ (v1) ∈
Hq(V ) maps to zero in Hq(U), so that there is a finite union of convex open subsets W such that
V ⊂ W and v2 maps to zero in Hq(W ). If j : V → W is inclusion, then it follows that j∗(v1)
lies in the kernel of ϕW

∗ ; however, we know that the latter map is 1–1 and therefore it follows that
j∗(v1) = 0. Since the image of the latter element in H smooth

∗ (U) is equal to v, it follows that v = 0
and hence ϕU

∗ is 1–1, which is what we wanted to prove.

If we combine this result with the observations in Section II.1, we immediately obtain a similar
result for cohomology with real coefficients:

THEOREM. If U is an arbitrary open subset of Rn, then the map ϕ∗
U : H∗(U ;R) −→

H∗

smooth(U ;R) is an isomorphism of real vector spaces.
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