
Survey of differential forms

This is a summary of the main points of the theory. Additional details can be found in Conlon
or on pages 245–288 of Little Rudin.

1 : The basic definitions

Differential forms provide a convenient and powerful setting for generalizing classical vector
analysis to higher dimensions, and they have numerous uses in both mathematics and physics. Set-
ting up the theory requires some time and effort, but differential forms can be used very effectively
to unify and simplify some fundamentally important concepts and results. They have become the
standard framework for analyzing an extremely wide range of topics and problems.

Covariant tensors and differential forms

Let U be an open subset of Rn, and let p be a nonnegative integer. A covariant tensor field

of rank p is defined to be an expression of the form

∑

i1,i2, (etc.)

gi1 i2 ··· ip
dxi1 ⊗ · · · ⊗ dxip

where

(1) each gi1 i2 ··· ip
is a smooth real valued function on U ,

(2) each ij ranges from 1 to n,

(3) two expressions are equal if and only if the functional coefficients of each dxi1 ⊗ · · · ⊗dxip

are equal.

We shall call denote this object by Covp(U). It will be understood that Cov0(U) = C∞(U); note
also that there is a natural identification of Cov1(U) with the space of differential 1-forms we
considered in Section V.3 of the lecture notes.

The space of exterior or differential p-forms on U is defined to be the quotient of Covp(U)
obtained by the identification

dxi1 ⊗ · · · ⊗ dxip ≈ − dxj1 ⊗ · · · ⊗ dxjp

if [ j1 i2 · · · jp ] is obtained from [ i1 i2 · · · ip ] by switching exactly two of the terms, say is and
it where s 6= t. If is = it for some s 6= t then this is understood to imply that dxi1 ⊗ · · · ⊗ dxip

is equal to its own negative, and since we are working with real vector spaces this means that the
expression in question is identified with zero. The set of all differential p-forms on an open subset
U ⊂ Rn is denoted by ∧p(U), and the images of the basic objects in if dxi1 ⊗ · · · ⊗ dxip is one of
the basic objects in Covp(U) as above, then its image in ∧p(U) is denoted by

dxi1 ∧ · · · ∧ dxip .
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By convention we also set ∧0(U) equal to C∞(U).

PROPOSITION. If p > n then ∧p(U) = 0, and if 0 < p ≤ n then every element of ∧p(U) can
be written uniquely as a linear combination of the basic forms

dxi1 ∧ · · · ∧ dxip

with coefficients in C∞(U), where the indexing sequences { ij } satisfy i1 < · · · < ip.

This is an immediate consequence of the construction.

If p = 1 then the definition of ∧1(U) is equivalent to the previous one involving sections of the
cotangent bundle.

Integrals defined by differential forms

The motivation for the definition comes from the use of differential 1-forms as the integrands
of line integrals. In particular, we would like 2-forms to represent the integrands of surface inte-
grals and n-forms to represent the integrands of ordinary (Riemann or Lebesgue) integrals over
appropriate subsets of U . Note in particular that if U is open in Rn, then every element of ∧n(U)
is uniquely expressible as

h(x) · dx1 ∧ · · · ∧ dxn

for some h ∈ C∞(U).

So how do we form integrals such that the integrand is a p-form and the construction reduces
to the usual ones for line and surface integrals if p = 1 or 2? The key is to notice that such
integrals are first defined using parametric equations for a curve or surface defined for all values of
the variable(s) in some open subset of R or R2.

Following Rudin, we do so by defining a smooth singular p-surface piece in U to be a continuous
map σ : ∆ → U such that ∆ is compact in Rp and σ extends to a smooth function on an open
neighborhood of ∆ in Rp. In multivariable calculus one genreally assumes also that the extension
of σ to an open set is a smooth immersion, or at least this is true if one subdivides the domain of
definition into suitable pieces and permits bad behavior at boundary points of such pieces, but we
shall not make any such assumptions on the rank of Dσ in these notes.

For each object σ as in the previous paragraph and each tensor Λ ∈ Covp(U) we can define
an integral by the following formula:

∫

σ

Λ =

∫

σ

∑

i1,i2, etc.

gi1 i2 ··· ip
dxi1 ∧ · · · ∧ dxip =

∑

i1,i2, etc.

∫

∆

gi1 i2 ··· ip

oσ(u)
∂(xi1 , · · · , xip)

∂(u1, · · · , up)

As usual, expressions of the form
∂(xa, · · · )

∂(u1, · · · )

represent Jacobian determinants. We then have the following key observation which allows us to
work with forms rather than tensors:

PROPOSITION. In the integral above, the value only depends upon the image λ of Λ in ∧p(U).
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Proof. It suffices to consider simple integrands consisting of only one summand. For each
sequence

xi1 , · · · , xip

we need to show that if we switch two terms xa and xb then the sign of the integral changes if dxa

and dxb are both factors of the integrand. The effect of making such a change on the integrand is
to switch two columns in the p× p matrix of functions whose determinant is the Jacobian

∂(xi1 , · · · , xip)

∂(u1, · · · , up)

and we know this operation changes signs; this proves the point that we need to reach the conclusion
of the proposition.

Because of the preceding result WE SHALL ASSUME HENCEFORTH THAT INTEGRANDS ARE

DIFFERENTIAL p-FORMS.

2 : Operations on differential forms

There are several fundamental constructions on differential forms that are used extensively.

Exterior products

It follows immediately from the definitions that each ∧p(U) is a real vector space and in fact is
a module over C∞(U) However, there is also an important multiplicative structure that we shall now
describe. We shall begin by defining a version of this structure for covariant tensors. Specifically,
there are C∞(U)-bilinear maps

⊗ : Covp(U) ×Covq(U) −→ Covp+q(U)

sending a pair of monomials

(

gi1 i2 ··· ip
dxi1 ⊗ · · · ⊗ dxip , hj1 j2 ··· jq

dxj1 ⊗ · · · ⊗ dxjq

)

to the monomial

gi1 i2 ··· ip
hj1 j2 ··· jq

· dxi1 ⊗ · · · ⊗ dxip ⊗ dxj1 ⊗ · · · ⊗ dxjq .

In order to show this passes to a C∞(U)-bilinear map

∧p,q : ∧p(U) × ∧q(U) −→ ∧p+q(U)

we need to show that if ξ ∈ Covp(U) and η ∈ Covq(U) are monomials as above and ξ ′ and η′ are
related to ξ and η as in the definition of differential forms, then the images of ⊗(ξ, η) and ⊗(ξ ′, η′)
are equal. As above we are assuming

ξ = gi1 i2 ··· ip
dxi1 ⊗ · · · ⊗ dxip , η = hj1 j2 ··· jq

dxj1 ⊗ · · · ⊗ dxjq .
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Since two covariant monomial tensors determine the same differential form if they are related by
a finite sequence of elementary moves (permuting the dxq ’s or replacement by zero if there is a
repeated such factor), it is enough to show that one obtains the same differential form provided
ξ′ and η′ are related to ξ and η by a single elementary move (which affects one form but not the
other).

Suppose the elementary move switches two variables; then we may write

ξ′ = α · gk1 k2 ··· kp
dxk1 ⊗ · · · ⊗ dxkp , η′ = β · h`1 `2 ··· `q

dx`1 ⊗ · · · ⊗ dx`q

where {k1 k2 · · · kp} and {`1 `2 · · · `q} are obtained from {i1 i2 · · · ip} and {j1 j2 · · · jq} either by
doing nothing or by switching two of the variables and the coefficients α and β are ± 1 depending
upon whether or not variables were switched in each case. From this description one can check
directly (with some tedious computations) that the images of ⊗(ξ, η) and ⊗(ξ ′, η′) in ∧p+q(U) are
equal. On the other hand, if one has repeated factors in either ξ or η and the corresponding object
ξ′ or η′ is zero, then it is immediately clear that ⊗(ξ, η) and ⊗(ξ ′, η′) in ∧p+q(U) both zero and
hence are equal.

PROPOSITION. If θ ∈ ∧p(U) and ω ∈ ∧q(U), then we have θ ∧ ω = (−1)pq ω ∧ θ.

Proof. Using bilinearity we may immediately reduce this to the special case where

θ = dxi1 ∧ · · · ∧ dxip , ω = dxj1 ∧ · · · ∧ dxjq .

In this case we have

θ∧ω = dxi1 ∧ · · · ∧dxip ∧dxj1 ∧ · · · ∧dxjq , ω∧θ = dxj1 ∧ · · · ∧dxjq ∧dxi1 ∧ · · · ∧dxip .

Therefore we need to investigate what happens if one rearranges the variables using some permu-
tation.

If γ is an arbitrary permutation then γ is a product of transpositions, and therefore it follows
that if one permutes variables by γ the effect on a basic monomial form is multiplication by
sgn(γ). Therefore the proof of the formula in the proposition reduces to computing the sign of the
permutation which takes the first p numbers in {1, · , p + q} to the last p numbers in order and
takes the last q numbers to the first q numbers in order. It is an elementary combinatorial exercise
to verify that the sign of this permutation is pq (e.g., fix one of p or q and proceed by induction on
the other).

The following property is also straightforward to verify, and in fact it is a consequence of the
analogous property for covariant tensors:

PROPOSITION. If θ and ω are as above and λ ∈ ∧r(U), then one has the associativity property
(θ ∧ ω) ∧ λ = θ ∧ (ω ∧ λ).

Exterior derivatives

We have already seen that there is a well-defined map d : ∧0(U) → ∧1(U) defined by taking
exterior derivatives, and in fact for each p one can define an exterior derivative

dp : ∧p(U) −→ ∧p+1(U) .
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These maps are linear transformations of real vector spaces and are defined on monomials by the
formula

d
(

g dxi1 ∧ · · · ∧ dxip

)

= dg ∧ dxi1 ∧ · · · ∧ dxip .

If we take g = 1 the preceding definition implies

d
(

dxi1 ∧ · · · ∧ dxip

)

= 0 .

One then has the following basic consequences of the definitions.

THEOREM. The exterior derivative satisfies the following identities:

(i) If θ is a p-form then d(θ ∧ ω) = (dθ) ∧ ω + (−1)pθ ∧ (dω).

(ii) For all λ we have d(dλ) = 0.

Sketch of proof. In each case one can use linearity or bilinearity to reduce everything to the
special case of forms that are monomials. For examples of this type it is a routine computational
exercise to verify the identities described above.

Definition. A differential form ω is said to be closed if dω = 0 and exact if ω = dλ for some λ.
The second part of the theorem implies that exact forms are closed. On the other hand, the 1-form

y dx− x dy

x2 + y2

on R2 − {0} is closed but not exact.

Change of variables (pullbacks)

The pullback construction on 1-forms extends naturally to forms of higher degree. Specifically,
if V is open in Rm and f : V → U is smooth then there are real vector space homomorphisms
f∗ : ∧p(U) → ∧p(U) that are defined on monomials by the formula

f∗
(

g dxi1 ∧ · · · ∧ dxip

)

= (g of) df i1 ∧ · · · ∧ df ip

where f i denotes the ith coordinate function of f . If p = 1 this coincides with the previous
definition.

The next result implies that the pullback construction preserves all the basic structure on
exterior forms that we defined above and it has good naturality properties:

THEOREM. (i) In the notation above we have f ∗(θ ∧ ω) = f∗θ ∧ f∗ω and f∗ odλ = d of∗λ.

(ii) The pullback map for idU is the identity on ∧p(U), and if h : W → V is another smooth
map, then (f oh)∗ = h∗ of∗.

(iii) The pullback maps and exterior derivatives satisfy the compatibility relations d of∗ = f∗ od.

Complete derivations of these results appear on pages 263–264 of Rudin.

The pullback also has the following basic compatibility property with respect to integrals:

CHANGE OF VARIABLES FOR INTEGRALS. Let ω ∈ ∧p(U), let f : V → U be smooth,
and let σ : ∆ → V be a smooth p-surface. Then integration of differential forms satisfies the
following change of variables formula:

∫

∆

f∗ω =

∫

f oσ

ω

A derivation of this formula appears on pages 264–266 of Rudin.
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3 : Globalization to smooth manifolds

We shall now indicate how the entire theory of differential forms extends to smooth manifolds.
(This draws more heavily on other material from Mathematics 205C).

Exterior powers of a vector bundle

As in many other cases, the vector bundle construction comes from a construction on vector
spaces which we shall now outline. If V is a vector space over the field k, then one has exterior
power vector spaces ∧p(V ) that are spanned by objects of the form v1 ∧ · · · ∧ vp where vj ∈ V .
As in the case of exterior forms we set one such monomial equal to the negative of the other if the
factors of one are obtained from the factors of another by a single transposition, and if 1 + 1 = 0
in k we also set a monomial equal to zero if it has two identical factors (this follows from the first
condition in the other cases). The wedge construction is multilinear, and there are wedge products
similar to those for differential forms. Some work is needed to justify all these assertions; details
will appear in the full version of Section V.4 of the notes. Likewise one has the relationship

dimV = n =⇒ dim∧p(V ) =

(

n

p

)

and if {xi } is a basis for V then x11
∧ · · · ∧xip

is a basis for ∧p(V ). Given a linear transformation
T : V → W one has associated linear transformations ∧p(T ) that have the standard naturality
properties:

(1) ∧p(I) = I

(2) ∧p(S oT ) = ∧p(S) o ∧p (T )

(3) If T is invertible then so is ∧p(T ) and ∧p(T )−1 = ∧p(T−1).

Taken together these define a homomorphism

∧p : GL(n,k) −→ GL

((

n

r

)

,k

)

such that for each invertible matrix A the entries of ∧p(A) are polynomials in the entries of A. If k

is the real or complex numbers this is enough to construct associated exterior power bundles ∧p(ξ)
associated to a continuous or smooth vector bundle ξ.

Definition. If M is a smooth manifold, then a differential p-form on M is a smooth cross
section of ∧p(τ∗M ).

Locally these correspond to our previous definitions of differential forms.

Constructing differential forms from local data

We begin by reformulating our earlier result on this question for differential 1-forms.

LEMMA. Let f : U → V be a diffeomorphism between open subsets of Rn, let f∗ : ∧1(U) → ∧1(V )
be the direct image map, and f ∗ : ∧1(V ) → ∧1(U) be the pullback map. Then f ∗ and f∗ are inverse
to each other.

6



This is an immediate consequence of the definitions.

We can now give a criterion for fitting together differential forms that are defined locally.

CONSTRUCTION OF DIFFERENTIAL FORMS. Let M be a smooth manifold with an
atlas of smooth charts (Uα, hα) whose transition maps are given by ψβα : Vβα → V|alphaβ . Suppose
that we are given forms ωα ∈ ∧p(Uα) such that

ψ∗
βαωβ|Vαβ = ωα|Vβα

for all α and β. Then there is a unique p-form ω ∈ ∧p(M) such that h∗αω = ωα for all α.

Thanks to this result and the properties of the pullback maps we can generalize all the algebraic
and differential structure that had been defined for p-forms over open subsets of Euclidean spaces,
and we can generalize all the identities that were established for forms over these open sets.

4 : Relation to classical vector analysis

We shall now explain how the basic constructions and main theorems of vector analysis can
be expressed in terms of differential forms. For most of this section U will denote an open subset
of R3.

Let X(U) be the Lie algebra of smooth vector fields on U . As a module over C∞(U) the space
of vector fields is isomorphic to each of ∧1(U) and ∧2(U), and C∞(U) is isomorphic to ∧3(U); recall
that C∞(U) = ∧0(U) by definition. For our purposes it is important to give specific isomorphisms
Φ1 : X(U) → ∧1(U), Φ2 : X(U) → ∧2(U), Φ3 : C∞(U) → ∧3(U). A vector field will be viewed as a
vector valued function V = (F,G,H) where each of F,G,H is a smooth real valued function on U .

Φ1(F,G,H) = F dx+Gdy +H dz

Φ2(F,G,H) = F dy ∧ dx+ Gdz ∧ dx+H dx ∧ dy

Φ3(f) = f dx ∧ dy ∧ dx

We then have the following basic relationships:

(i) ∇f = Φ−1
1 (df)

(ii) curl(V) = Φ−1
2

od oΦ1(V)

(iii) div(V) = Φ−1
3

od oΦ2(V)

Each of these is a routine computation.

From this perspective the vector analysis identities

curl(∇f) = 0 , div curl(V) = 0

are equivalent to special cases of the more general relationship d od = 0.
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More important, the identifications in (i) − (iii) lead to a general statement that includes the
following three basic results:

(1) The standard path independence result stating that the line integral
∫

∇f · dx is equal
to f(final point on curve) − f(initial point on curve).

(2) Stokes’ Theorem (note the spelling!! ) relating line and surface integrals.

(3) The so-called Gauss or Divergence Theorem relating surface and volume integrals.

In each case the result can be stated in terms of differential forms and p-surfaces (where
p = 1, 2, 3) as follows: If we are given a p-surface σ that has a reasonable notion of boundary ∂σ
such that ∂σ is somehow a sum of (p− 1)-surfaces with coefficients of ± 1, then

∫

∂σ

ω =

∫

σ

dω

for all (p− 1)-forms ω.

These are also special cases of a more general result.

GENERALIZED STOKES’ FORMULA. The formula above is valid for open subsets in Rn

and for arbitrary values of n where p is an arbitrary positive number ≤ n.

Clearly it is eventually important to be specific about what sorts of pieces are reasonable in
the description of boundary. Certainly any such concept should include the intuitive notions of
boundary for the disk Dp ⊂ Rp and the hypercube [−1, 1]p ⊂ Rp. It turns out that one wants
objects whose fundamental building blocks are suitably positioned diffeomorphic images of the
simplex

(0 ∗ ∆)p ⊂ Rp

consisting of all (x1, ! · · · , xp) ∈ Rp such that xi ≥ 0 for all i and
∑

i xi ≤ 1; this object is called
Qp on page 247 of Rudin. Unfortunately, an attempt to describe terms like “building blocks”
and “suitably positioned” would require some lengthy digressions into topology that are beyond
the scope of Mathematics 205C, so we are going to stop here. However, these issues will be

studied further in Mathematics 246B.

A derivation of Stokes’ formula for the building blocks described above in Rudin on pages
272–275.

For more general cases, one uses a decomposition of the p-surface into such building blocks
to obtain a similar conclusion. In spirit this is similar to the procedure one uses to generalize a
result like Green’s Theorem in the plane. Proving the result for the standard right triangle whose
vertices are the origin and the standard unit vectors is straightforward, and one splits a general
region with boundary into finitely many pieces that are diffeomorphic images of this triangle to
recover the general result.
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