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Cutting and pasting 

 
We begin by quoting the following description appearing on page 55 of C. T. C. 

Wall’s 1960 – 1961 Differential Topology notes, which available are online at  

http://www.maths.ed.ac.uk/~aar/surgery/wall.pdf . 
  

Cutting and gluing are simple geometrical constructions which, given some 

smooth manifolds (possibly with boundaries or corners) and additional data 

where necessary, give rise to new manifolds.  On account of their perspicuity, 

these methods were much used in the days of topology of surfaces, and they 

remain a very powerful tool [ Note:  Although this was written nearly 50 years 

ago, it is still true today!]. 
 

Bicollared submanifolds.  Suppose that  M  is a connected smooth  n – manifold 

without boundary and  N  is a connected smooth (n – 1) – dimensional 

submanifold without boundary such that  N  is a closed subset of  M.  We shall say 

that  N  is bicollared in  M  provided  N  has a tubular neighborhood given by a 

trivial  1 – dimensional vector bundle  N  × RRRR  →→→→  M.   
 

One can completely determine whether a smooth submanifold  N  as above is 

bicollared  by means of invariants called characteristic classes (more precisely, by 

the first Stiefel – Whitney class).  The standard reference for this topic is the 

following classic book: 
 

J.  W.  Milnor and  J.  D.  Stasheff.  Characteristic classes  (Annals of 

Math. Studies No. 76).  Princeton University Press, Princeton, NJ, 1974. 
 

In particular, if  M  and  N  are both orientable, then it follows that  N  is bicollared 

in  M. 
 

Example.   The smoothness condition is absolutely necessary.  In particular, there 

are “wild” topological embeddings of  S 

2
 in  RRRR 

3
  which are not even topologically 

bicollared.  Probably one of the most famous is the  horned sphere  constructed by 

J. W. Alexander in 1924.  This example is discussed on pages 170 – 172 of 

Hatcher, and there are also some curious YouTube videos like the following: 
 

http://www.youtube.com/watch?v=d1Vjsm9pQlc 
 

http://www.youtube.com/watch?v=Pe2mnrLUYFU&NR=1 
 

We are particularly interested in the case where  N  is  two – sided  in the sense that 

the complement  M ���� N consists of two components; for example, the standard 

inclusion of  S 

n
 in  RRRR

n
  
+

 
1
 is two – sided but the slice inclusion of  S 

1
 as  S 

1
 × {1} 
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in  S 

1
 × S 

1
 is not (although it is locally two – sided).   Before proceeding, we note 

one important feature of this example which generalizes and an elementary result 

showing that a bicollared submanifold is either one – sided or two – sided: 
 

Exercise  1.   In the setting above, suppose that  N  is bicollared but not two – 

sided.  Then there is a surjection from  ππππ1(M) to ZZZZ.  [ Hint:  Let  B  be a closed 

tubular neighborhood of  N, so that B is diffeomorphic to N × [ – 1, 1], and let  P  

be a  “vertical” line segment joining (x,  – 1) to (x, 1) for some  x  in  N.  Next, let 

C be the closure of the complement of  B  and construct an embedded curve  Q  in 

C joining the same two points.  The union of  P  and  Q  then defines a closed 

curve from  S 

1  
to M; use the Tietze Extension Theorem to extend the identity on Q 

to a map  C  →→→→  Q, and note that projection onto [ – 1, 1] may be interpreted as an 

extension of the identity on  P  to a map  N  →→→→  P.  Explain why it follows that the 

curve  S 

1  
to  M  determines a retract up to homotopy. ]  

 

Exercise  2.   Suppose that  X  is a locally arcwise connected space and  A  is a 

closed nowhere dense subset of  X, and assume further that  A  has an open 

neighborhood  U  such that  U ���� A  has  k  (arcwise) connected components.  

Prove that  X ���� A  has at most  k  components.  Using this result, explain why the 

complement of a bicollared submanifold has at most two components.  [ Hint:  If  

W  is an arc component of  U ���� A  explain why  W  must have a limit point which 

lies in  A. ]    
 

Note that if  M  is simply connected, then there is no surjection from  ππππ1(M) to ZZZZ, 

and therefore if  N  is bicollared in such a manifold then it is two – sided.    
 

We now have the following theorem on  cutting  a smooth manifold into two 

manifolds with boundary. 
 

Theorem.   Suppose that  N  is a connected, bicollared, two – sided smooth 

submanifold of the connected manifold  M,  and assume that  N  is also a closed 

subset of  M.  Let  U  and  V  be the connected components of  M ���� N.  Then the 

closures  � ���  and   � ���  are smooth submanifolds with boundary  N  =  ∂ � ��� =  ∂ � ���.   
 

All of the preceding results have analogs for topological manifolds. 

 
Pasting constructions 

 
There is also a reverse process of  pasting  or  gluing  together two manifolds with 

boundary by means of a homeomorphism or diffeomorphism between the 
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boundaries.   The first step in describing this construction is a simple but important 

criterion for recognizing when certain quotient spaces are Hausdorff.   
 

Proposition  1.   Suppose that  X  and  Y  are Hausdorff topological spaces and  

that  h:U →→→→ V is a homeomorphism from an open subset of  X  to an open subset 

of  Y.  Assume further that we have the following separation criterion: 
 

There are open neighborhoods W1  and  W2  of  X ���� U  and  Y ���� V  in  

X  and  Y  respectively such that  h[W1 ∩∩∩∩ U]  and  W2 ∩∩∩∩ V are disjoint. 
 

Then there is a Hausdorff space  P  and there are open embeddings  f : X →→→→ P and  

g : Y →→→→ P  such that  f |U is the composite ( g |V ) h, and if  ϕϕϕϕ : X →→→→ Q ,  ψψψψ : Y →→→→ Q   

are two continuous mappings such that  ϕϕϕϕ |U is the composite (ψψψψ |V ) h, then there 

is a unique continuous mapping  ΛΛΛΛ : P →→→→ Q  such that  ΛΛΛΛ f  =  ϕϕϕϕ  and  ΛΛΛΛ g  =  ψψψψ .  
 

Standard arguments imply that the conditions in the proposition characterize the 

space  P  uniquely up to homeomorphism.  It is somewhat predictable that one 

forms  P  by taking the disjoint union of  X  and  Y, and then factoring out the 

equivalence relation associated to the homeomorphism  h.  The main challenge is 

verifying that  P  is indeed Hausdorff; obviously, the idea is to use the separation 

crieterion.  The usual counterexample yielding a non – Hausdorff space when the 

separation criterion is not valid has X  =  Y  =  RRRR  and  U  =  V  =  RRRR ���� {0},  with  h  

equal to the identity map (the two copies of 0 do not have disjoint neighborhoods).  

 

The next step in describing this construction is the following elementary result on 

gluing together a pair of manifolds using an identification of an open subset of one 

with an open subset of the other (this can be done using techniques from 

Mathematics 205C).   
 

Proposition  2.   Suppose that  M  and  N  are  k – manifolds without boundary and  

that  h:U →→→→ V is a diffeomorphism from an open subset of  M  to an open subset of  

N.  Assume also that the separation criterion in the preceding result is valid.  Then 

there is a smooth k – manifold  P  and there are smooth embeddings  f : M →→→→ P and  

g : N →→→→ P  such that  f |U is the composite ( g |V ) h, and if  ϕϕϕϕ : M →→→→ Q ,  ψψψψ : N →→→→ Q   

are two smooth mappings such that  ϕϕϕϕ |U is the composite (ψψψψ |V ) h, then there is a 

unique smooth mapping  ΛΛΛΛ : P →→→→ Q  such that  ΛΛΛΛ f  =  ϕϕϕϕ  and  ΛΛΛΛ g  =  ψψψψ .  
 

As in the first proposition, standard arguments imply that the conditions in the 

proposition characterize the manifold  P  uniquely up to diffeomorphism.   
 

Our pasting or gluing construction will use the preceding result plus the existence 

and uniqueness of collar neighborhoods for boundaries.    
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Definition.   Let  M  and  N  be topological or smooth manifolds with boundaries,  

and suppose we are given a homeomorphism/diffeomorphism  h: ∂∂∂∂M →→→→ ∂∂∂∂N.   Let  

cM   and  cN  be closed collar neighbhorhood embeddings from  ∂∂∂∂M × [0, 1]  and  

∂∂∂∂N  × [0, 1]  to  M  and  N  respectively,  and call their images  U  and  V  

respectively.   Then  M ∪∪∪∪ h N  is the manifold formed from  INT (M)  and  INT (N)  

by gluing  U  to  V  along the homeomorphism/diffeomorphism  H defined by  
 

H(cM (x, t) )  =  cN (h(x), 1 – t ). 
 

One can check directly that the separation criterion of Proposition 1 is valid for this 

sort of example (choose sufficiently thin collars). 
 

Proposition.  The manifold  A  =  M ∪∪∪∪ h N  is homeomorphic to the quotient space 

of the disjoint union  M  �  N  by identifying  x  in  ∂∂∂∂M  with  h(x)  in  ∂∂∂∂N.   In the 

smooth category,   A  contains smooth submanifolds  M ′ and  N ′  diffeomorphic to 

M  and  N  such that  M ′ ∩∩∩∩  N ′  is their common boundary. 
 

Proof.   Take  M ′ and  N ′ to be  M ���� cM [∂∂∂∂M × [0, ½ ) ]  and  N ���� cN [∂∂∂∂N × [0, ½ ) ]  

respectively.   Topologically  A  is  the union of  M ′ and  N ′  such that the 

intersection is the common boundary, which is  cM [∂∂∂∂M × { ½ } ]  =  cN [∂∂∂∂N × { ½ }]. 

To see that M ′ and  N ′ are diffeomorphic to  M  and  N  in the smooth category, 

first notice that one can construct an increasing diffeomorphism  h  from [0, 1)  to  

[ ½ , 1)  which sends  0  to  ½  and is the identity for  t  sufficiently close to 1.  If 

we take the Cartesian product of this with the identity on the boundaries, we obtain 

diffeomorphisms from  M  and  N  to  M ′ and  N ′ respectively. 

 

Strictly speaking, the construction of  A  depends upon the choices of closed collar 

neighbhorhoods, but the homeomorphism/diffeomorphism type of  A  does not 

depend upon these choices by the uniqueness of closed collar neighborhoods  

(since one can always find a homeomorphism/diffeomorphism sending one to the 

other). 
 

However, the homeomorphism/diffeomorphism type of  A  depends very strongly  

upon the choice of the gluing homeomorphism/diffeomorphism  h.  To simplify 

the discussion we shall only consider the topological case.   We shall consider two 

examples. 
 

Example 1.   Take  M  and  N  to be the cylinder  S 

1
 × [ – 1,1], and consider the 

diffeomorphisms of the boundary  S 

1
 × { – 1, 1}  sending  (z, t )  to  (z    εεεε,  – t ) where  
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εεεε  =  ± 1.  If  εεεε  =  1  then one obtains a manifold isomorphic to the torus  S 

1
 × S 

1
, 

while if  εεεε  =  – 1 then one obtains the Klein bottle. 
 

Example 2.   Take  M  and  N  to be the solid torus  S 

1
 × D 

2
, and consider the two 

diffeomorphisms of the boundary S 

1
 × S 

1
 sending  (z, w)  to  (z, w)  and  (w, z)  

respectively.  In the first case one obtains a manifold isomorphic to  S 

1
 × S 

2 
(recall 

that the sphere is the union of two closed hemispheres which are each isomorphic 

to  D 

2
),  while in the second case one obtains a manifold isomorphic to S 

3
.   

 

Here is a sketch  of the proof:  View  S 

3
 as the unit sphere in  CCCC 

2
, and split it into 

two pieces corresponding to the subsets  A, B  of complex ordered pairs  (z, w)  

such that |z|  ≤  |w|  and  |z|  ≥  |w|  respectively.  Then the intersection is 

the set of all such points such that  |z|  =  |w|  =  �/√	 , and hence it is 

isomorphic to the torus  S 

1
 × S 

1
.  One then shows that the maps from  A  and  B  to 

S 

1
 × D 

2
  sending  (z, w)  to |w|

– 1
(w, z)  in the first case and |z|

– 1
(z, w)  in the 

second are diffeomorphisms.   
 

Given two homeomorphic/diffeomorphic bounding manifolds  ∂∂∂∂M  and  ∂∂∂∂N,  it is 

natural to ask whether there are reasonable relations on homeomorphisms or 

diffeomorphisms  ∂∂∂∂M →→→→ ∂∂∂∂N  under which the manifolds obtained by gluing along 

to maps  f  and  g  always yield homeomorphic/diffeomorphic manifolds.   
 

Theorem.   Let  M  and  N  be topological or smooth manifolds with boundaries,  

and suppose we are given homeomorphisms/diffeomorphisms  f , g : ∂∂∂∂M →→→→ ∂∂∂∂N .   

Then the manifolds obtained by gluing  M  and  N  along  f  and  g  are isomorphic 

if either of the following hold: 
 

1.    The homeomorphism/diffeomorphism  g 
– 1

 f  extends to M. 
 

2.    The homeomorphisms/diffeomorphisms  f  and  g  are isotopic. 
 

In fact, one can weaken the second condition to assuming that  f  and  g  are 

concordant  or  pseudo – isotopic; in other words, there is a homeomorphism or 

diffeomorphism  H from  M × (0, 1) to itself such that  H(x, t )  =  ( f (x),  t )  for  t  

close to  0  and  H(x, t )  =  ( g (x),  t )  for  t  close to  1; if  ht  is an isotopy then we 

may use the associated map  H(x, t )  =  (ht (x),  t )  to show that isotopy implies 

concordance.  The canonical extension  H 
####
 of the map  H  to  M × [0, 1]  ( given 

by  f  on  M × {0}  and  g  on  M × {1} )  is called a  concordance  or a  pseudo – 

isotopy;  note that a concordance arises from an isotopy if and only if  p2 H  =  p2 , 

where  p2  denotes projection onto [0, 1].  
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Proof of the theorem.   We shall derive the second sufficient condition (for 

concordant isomorphisms) from the first, so suppose that the first condition holds.  

We can isotop the extension  H  of  αααα  =  g 
– 1

 f  so that it is given by a product of 

the form  α α α α × identity  on the collar neighborhood of the boundary, so let us 

assume  H  already satisfies this condition.   As suggested by the drawing on the 

next page, the homeomorphism or diffeomorphism from) M ∪∪∪∪ f  N  to  M ∪∪∪∪ g N  is 

defined by  H  on the interior of  M  and the identity on the interior of  N.   To see 

this map is well – defined, note that the overlap of  INT ( M
 
) and INT ( N

 
 )  is given 

by  ∂∂∂∂M  × (0, 1)  
  ∂∂∂∂N  × (0, 1) such that  (x, t )  corresponds to  ( f (x), 1 – t ) in 

the manifold| M ∪∪∪∪ f  N.   It follows that the  H(x, t )  =  ( αααα (x), t ) in ∂∂∂∂M  × (0, 1)  

corresponds to  (x, 1 – t )  in  ∂∂∂∂N  × (0, 1)  because the point  (x, t )  corresponds to  

( g (x), 1 – t ) in the manifold|  M ∪∪∪∪ g  N,   
 

 
 

(Modified from  http://www.edupics.com/hemisphere-half-of-a-sphere-t15639.jpg) 
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Assume now that  f  and  g  are pseudo – isotopic, and let  H 
####
  be an extended 

pseudo – isotopy between them.  Then  K 
####
  =  ( g 

– 1 ×  identity[0, 1] ) H 
####        

defines 

an extended pseudo – isotopy from  g 
– 1

 f  to the identity on ∂∂∂∂M.  Using a collar 

neighborhood of the boundary and the concordance  K 
####
 we can construct a 

diffeomorphism from  M  to itself which restricts to  g 
– 1

 f  on the boundary, is 

given by the concordance on the collar neighborhood, and is the identity off this 

collar neighborhood of the boundary.   

 
Connected sums 

 
The idea behind a connected sum of (connected)  n – manifolds is simple.  We take 

the disjoint union, remove the interior of a closed disk from each and join the two 

remaining pieces by a tube. 
 

 
 

 

(Source:  http://mathworld.wolfram.com/ConnectedSum.html) 
 

This definition should be viewed skeptically at first, for there are several issues to 

resolve.  The first one is that the right hand manifold does not look like a smooth 

submanifold where the two ends of the tube meet the complementary pieces.   We 

can overcome this difficulty using the previous gluing construction.  Specifically, 

suppose we are given smooth embeddings  f :  D
n
 →→→→ M  and g: D

n
 →→→→ N, let  M0 

and  N0  denote the complements of the images of  INT ( D
n

 ), take  h  to be the 

diffeomorphism  from  ∂∂∂∂M0  and  ∂∂∂∂N0  corresponding to  g  f   

– 1
,  and provisionally 

define a  connected sum  M  &  N  to be a manifold of the form  M0 ∪∪∪∪ h  N0 .    
 

The next issue involves the choices of the smooth embeddings  f  and  g.  Suppose 

first that we have new embeddings  F  and  G  such that  F  is isotopic to  f  and  G  

is isotopic to  G.   Now let  M1 and  N1  denote the complements of the images of  

INT ( D
n

 ), take  H  to be the diffeomorphism  from  ∂∂∂∂M1  and  ∂∂∂∂N1  corresponding 

to  G F 
– 1

 .  By the proof of the Cerf – Palais Disk Theorem,  there exist extended 

diffeomorphisms  K  and  L  of  M  and  N  which are isotopic to the respective 
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identity maps such that  K f  =  F  and  L g  =  G.   Using these diffeomorphisms, 

we can define a new diffeomorphism  ΨΨΨΨ  from   M0 ∪∪∪∪ h  N0   to  M1 ∪∪∪∪ H  N1 .  
 

If we take arbitrary new embeddings  F  and  G, then the Cerf – Palais Disk 

Theorem only implies that  F  is isotopic to either  f  or  f S, and  G  is isotopic to 

either  g  or  g S, where  S  is the previously defined hyperplane reflection.  In 

order to complete our analysis of the way  M  &  N  depends upon the choices, by 

the preceding sentence and the previous paragraph it is enough to see what happens 

if we replace one or both of  f  or  g  by  f S  or  g S  respectively.   Since  S  is its 

own inverse, it follows that if we make  just one  replacement then the 

identification of the boundaries changes from  g  f   

– 1
  to  g S  f   

– 1
, while if we 

make  both  replacements then the identification of the boundaries is unchanged.  

Thus we see that the construction is almost uniquely defined, and in all cases  there 

are at most  two  diffeomorphism types that can be realized by the various 

choices. 
 

In fact, we shall see that one obtains exactly two diffeomorphism types in some 

cases; the simplest examples arise when   M  =  N  =   CPCPCPCP 

2
.
 
  In fact, for this 

particular case we shall eventually show that  the two choices for   CPCPCPCP 

2
  &  CPCPCPCP 

2
  

are not even homotopy equivalent . 

 
Orientation considerations 

 
The ambiguity in the preceding construction can be traced back issues involving 

orientations.  We begin with a result which generalizes our previous observations 

about the Möbius strip. 
 

Proposition.   If  P  is a  nonorientable  smooth  n – manifold and   f :  D
n
 →→→→ P  is 

a smooth embedding,  then  f  is isotopic to  f S, where  S  is the reflection 

discussed previously. 
 

Comment on the proof.    The key idea in one standard approach is that  if  P  is a 

nonorientable  n – manifold then inside  P  there is an embedded copy of the open 

Möbius strip crossed with  RRRR 
n – 2

.  As in the case of the Möbius strip, one can then 

find a smooth closed  n – disk embedding  f 0  such that  f 0  and  f 0 S  are ambient 

isotopic.  In fact, one can assume that the base point of the closed curve in the 

middle of the Möbius strip is an arbitrary point of  P.  This proves the proposition 

for the choice  f 0 .  For any other arbitrary choice  f , we know that  f  is isotopic to 

either  f 0  or  f 0 S, which implies that  f S  must be isotopic to either  f 0 S  or  f 0.  
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Since we know that  f 0  and  f 0 S  are isotopic, it follows in either case that  f  and  

f S  must be isotopic. 
 

Corollary.    In the notation of the previous subheading, if  either   M  or  N  is 

nonorientable,  then the diffeomorphism type of  M  &  N  is independent of all 

choices. 
 

We have already noted that this result does  not  extend to cases where both 

manifolds  M  and  N  are orientable.    Obviously, the next order of business is to 

analyze this case more carefully.    In this discussion we shall use the description of 

orientations in terms of the canonical double covering  X[+]  →→→→  X  in which the 

fiber over a point  p  is given by the two algebraic generators of the homology 

group  Hn ( X,  X ���� { p }; ZZZZ),   or by the unit  0 – sphere bundle of  the  1 – 

dimensional determinant vector bundle  �n
 ττττX .  In either case, the orientation is 

given by a cross section  ΩΩΩΩ     of the double covering  X [+] →→→→  X  (we have noted 

that these formulations of the double covering are equivalent).   For our purposes, 

two important properties of the double covering are its naturality with restriction to 

open subsets, and another is the cylinder identity  X [+] × R   R   R   R   
        ( X × RRRR)[+].   
 

One can use the preceding paragraph and the Collar Neighborhood Theorem to 

show that if (the interior of) a manifold  M  with boundary is orientable, then the 

orientation on  M  determines an orientation of  ∂∂∂∂M. 
 

Definition.   A homeomorphism (or diffeomorphism)  h  from a connected 

oriented manifold  ( X, ΩΩΩΩX )  to another connected oriented manifold  ( Y, ΩΩΩΩY )  is 

said to be orientation – preserving  provided either of the following equivalent 

conditions holds: 
 

1. For one (equivalently, for all) points p in X, the induced map h∗∗∗∗ from the 

group  Hn ( X, X ���� { p }; ZZZZ) to  Hn ( Y, Y ���� { h( p ) }; ZZZZ)  maps the generator 

ΩΩΩΩX ( p ) in the first (infinite cyclic) group to the generator  ΩΩΩΩY (h( p )) in the 

second. 
 

2. If  θθθθY  is the differential  n – form on  Y  such that  <θθθθY , ΩΩΩΩY >(h( p )) is 

positive for all  p, then the pullback  h
∗∗∗∗
θθθθY  is a differential form on X such 

that  <θθθθY , ΩΩΩΩY >( p )  is positive for all  p. 
 

Before considering the question about connected sums, it will be useful to make a 

few observations about orientations.  The following one contains a converse to the 

cylinder identity: 
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Proposition.  Suppose that  P  is a connected smooth manifold such that  P × RRRR  is 

orientable.  Then  P  is also orientable and there is a  1 – 1  correspondence 

between orientations of  P  and orientations of  P × RRRR.  Furthermore, the reflection 

map sending (x, t ) to (x, – t ) defines an orientation – reversing diffeomorphism of    

P × RRRR.   
 

Next, we shall illustrate the importance of orientations in cutting and pasting with 

the following result: 
 

Proposition.   In the definition of the gluing construction  A  =  M ∪∪∪∪ h N , suppose 

that  M  and  N  are oriented  h  is an orientation – reversing(!)  diffeomorphism 

from  ∂∂∂∂M  to  ∂∂∂∂N.   Then there is an orientation of  A  which restricts to the given 

orientations on the interiors of  M0 and  N0  (we view the latter as open subsets of  

M  and  N  respectively). 
 

The idea is simple.  Suppose we have two oriented manifolds  M  and  N together 

with an orientation – preserving homeomorphism or diffeomorphism  ϕϕϕϕ :U →→→→ V 

from an open subset of  M  to an open subset of  N.  Then we can piece together 

the orientations of  M  and  N  to obtain an orientation of the manifold  P   formed 

from gluing  M  and N  together by means of  ϕϕϕϕ    .  Next, if we are gluing together 

two bounded manifolds using an orientation – reversing diffeomorphism  h  of the 

boundary, then the associated diffeomorphism of collars  we note that by a 

previous result the homeomorphism/diffeomorphism identifying  ∂∂∂∂M  × (0, 1)  

with  ∂∂∂∂N  × (0, 1), by sending  (x, t )  to  ( h(x), 1 – t ) , will be the composite of two 

orientation – reversing homeomorphisms/diffeomorphisms and therefore will be 

an orientation – preserving homeomorphism/diffeomorphism.  It follows that we 

can piece together the orientations on the interiors of  M  and  N  to form an 

orientation of  A  =  M ∪∪∪∪ h N . 
 

To complete our discussion of connected sums, we need the following version of 

the Cerf – Palais Disk Theorem for oriented manifolds. 
 

Oriented Cerf – Palais Disk Theorem.   Let  M  be an oriented connected smooth  

n – manifold without boundary, and let  f , g: D
n
  →→→→  M  be smooth orientation – 

preserving embeddings (it follows that these extend to smooth embeddings on 

slightly larger open disks; in this context orientation – preserving means that the 

standard orientation on the thickened disk corresponds to the induced orientation 

on its image).  Then  f  and  g  are ambient isotopic. 
 

Note that the extra assumption involving orientations leads to a stronger conclusion 

with no ambiguity involving reflections. 



11 

 

 

To derive this from the ordinary Disk Theorem, recall that the latter implies  f  is 

ambient isotopic to either  g  or  g S, where  S  is the orientation – reversing 

reflection.  Therefore it is enough to check that if  f  and  h  are isotopic 

embeddings into an oriented manifold and  f  is orientation – preserving, then  h  is 

also orientation – preserving.  For if we know this, then we know that  f  cannot be 

(ambient) isotopic to  g S  because the latter is not orientation – preserving.    
 

We shall prove isotopy invariance using differential forms.  If  Kt  is the isotopy 

and  ΩΩΩΩM  is the orientation structure on  M,  consider the pullback forms  Kt
*ΩΩΩΩM .  

This is a continuous  1 – parameter family of forms, and it can be written in the 

form  λλλλ (x, t )    θθθθ, where  θθθθ    is the standard volume  n – form on  RRRR
 n

  and λλλλ (x, t ) is a 

smooth function which is never zero.  Since  K0  =  f  is orientation – preserving, it 

follows that λλλλ (x, 0) is positive.  Furthermore, if we fix a point  x0 , then it also 

follows by connectedness that the function  ρρρρ( t )  =  λλλλ (x0 , t )  must also be positive.  

Once again, using connectedness we conclude that for each  t0  the sign of  λλλλ (x, t0 )  

is the same for all  x.  Combining these, we see that  λλλλ  is positive everywhere, and 

therefore for each choice of  t  the embedding  Kt  is orientation – preserving.   

 

This finally shows what we want:   
 

1. The diffeomorphism type of the connected sum does not depend upon the 

choices if at least one of the manifolds  M, N  is not orientable.  
 

2. The oriented diffeomorphism type will be independent of choices in the 

oriented case if we stipulate that the disk embeddings must preserve 

orientations.   
 

These well – defined diffeomorphism types are denoted by  M  #  N  and called  

the connected sum of the two manifolds (if at least one of  M, N  is not orientable) 

or the oriented connected sum of the two oriented manifolds if both M  and  N  are 

oriented. 
 

The connected sum constructions have the following important properties: 
 

Theorem.  The connected sum constructions are associative and commutative up 

to diffeomorphism or oriented diffeomorphism (in the oriented case), and the 

sphere  S 

n
 (with the standard orientation in the oriented case) is a two – sided unit 

for connected sum up to diffeomorphism or oriented diffeomorphism.    
 

A simple argument involving Mayer – Vietoris sequences implies that the 

homology groups of a connected sum of n – manifolds must satisfy  
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�
��  #  ��  
   �
��� �  �
���     for       0  <  k  <  n – 1 
 

it is clear that most manifolds are not “invertible” with respect to connected sum; 

specifically, if  M  has more homology than the sphere in the given dimensions, 

then it is usually impossible to find some  N  such that M  #  N  is diffeomorphic to 

S 

n
.  As noted in the paper below, if  � � �  then the class of  “invertible”  compact 

manifolds equals the class of smooth manifolds which are almost diffeomorphic to  

S 

n
 (the so – called exotic spheres).  There is some additional discussion of 

“invertible” compact manifolds in the following paper: 
 

J. W. Milnor. Sommes de variétes différentiables et structures différentiables 
des sphères.  Bull. Soc. Math. France 87 (1959).  439 – 444. 

 

There is also a more detailed treatment on pages 94 – 94 of the following book: 
 

A.  Kosinski.   Differential manifolds (Pure and Applied Mathematics, Vol. 138).   

Academic Press, Boston MA, 1993. 
 

Modifications for manifolds with boundary.    In several contexts it is useful to 

have a corresponding notion of connected sum for manifolds with boundary.  We 

shall only sketch the construction; further information appears on pages 97 – 99 of 

the previously cited book by Kosinski. 
 

Following standard practice (e.g., see  http://en.wikipedia.org/wiki/Embedding), an 

embedding of manifolds with boundary is called a proper embedding if it sends the 

boundary of the domain to the boundary of the codomain and the interior of the 

domain to the interior of the codomain, and in addition the image of the domain is 

not tangent to the boundary of the codomain.  The final condition is included to 

exclude situations like the embedding of the closed interval  [0, ππππ]  in the solid 

elliptical region  ��	 � �	  �   �  as the semicircular arc  (cos t, sin t ). 
 

 
 

The red manifold with boundary is not properly embedded in the solid ellipse.  On 
the other hand, the major and minor axes of the ellipse are properly embedded. 
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A closely related concept of neat submanifold is defined and studied in Hirsch 

(see especially pages 30 – 31). 
 

Define the upper half  UP-D
n
 of the closed disk  D

n
 to be the set of points whose 

last coordinates are nonnegative.  Topologically  UP-D
n
 is a manifold with 

boundary, and the latter consists of two smooth manifolds with boundary; the 

external boundary ∂∂∂∂EXT UP-D
n
 is simply the disk  D 

n – 1
 , while the internal 

boundary ∂∂∂∂INT UP-D
n
 is the upper hemisphere  ��

��� of the unit sphere S 

n – 1
 .  The 

drawing below might be helpful for understanding the notation. 
  

 
Notice that if  M  is a manifold with boundary, then every point in the boundary 

has a closed neighborhood diffeomorphic to UP-D
n
 (in the sense that the map 

extends to a diffeomorphism over a small neighborhood) such that the given point 

corresponds to the origin and the intersection of the neighbhorood with  ∂∂∂∂M 

corresponds to ∂∂∂∂EXT UP-D
n
.   In the discussion below we shall need a canonical 

diffeomorphism  j  from  ��
��� � (0, 1) to the complement of  ∂∂∂∂EXT UP-D

n
 ∪∪∪∪ {0}  

in  UP-D
n
 which is given by  j (x, t )  =  t x (here juxtaposition means scalar 

multiplication) . 
 

Notation.   We shall say that a smooth embedding of  UP-D
n
 in  M  is chartlike  if 

it maps  ∂∂∂∂EXT UP-D
n
 to  ∂∂∂∂M  and the complement of the exterior boundary to the 

interior of  M.   
 

One can now state and prove analogs of the Cerf – Palais Theorems for chartlike 

embeddings if we have a manifold with a connected boundary; the main difference 

is that the reflection  S  must be replaced with the diagonal reflection matrix whose 

diagonal entries are  ( – 1, 1, … , 1) .  We shall omit the details of proving these 

extensions of the Cerf – Palais Theorems (as before, there is one version which 

does not consider orientations and another which does).   
 

We can now define a boundary connected sum of  bounded manifolds  (M, ∂∂∂∂M) 

and (N, ∂∂∂∂N), provided the manifolds are connected and have connected boundaries.  
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Specifically, take chartlike embeddings   f : UP-D
n
  →→→→  M  and  g : UP-D

n
  →→→→  N  

(which preserve orienetations in the oriented case) and construct the quotient of the 

disjoint union of  M – f  [{0}]  and  N – g [{0}]  modulo identification of  j f (x, t )  

with  j g(x, 1 – t ).  As before, the diffeomorphism (or oriented diffeomorphism) 

type of this manifold does not depend upon the choices, and it is called the 

boundary connected sum.  Generally these manifolds are denoted by notation like  

(M, ∂∂∂∂M)   #  (N, ∂∂∂∂N),  but in some papers and books they are denoted by the 

symbol  M  ����  N  (musical natural sign).   
 

As in the unbounded case, this connected sum is associative and commutative up 

to diffeomorphism (orientation – preserving in the oriented case), and the  n – disk  

D
n
 turns out to be a two – sided identity up to diffeomorphism.  Furthermore, by 

construction the boundary of  (M, ∂∂∂∂M)   #  (N, ∂∂∂∂N)  is canonically diffeomorphic 

(with appropriate orientations in the oriented case) to  ∂∂∂∂M  #  ∂∂∂∂N. 
 

Of course, one can make similar constructions if the boundaries of the manifolds 

are not connected, but then one must specify which components are being glued 

together.  None of this is difficult, but it does require time and effort to write things 

out precisely. 

  


